

Trabajo Fin de Grado

Identificación de señales autogeneradas que afectan a la patogenicidad de *Fusarium* oxysporum

Identification of self-generated signals affecting fungal pathogenicity in *Fusarium oxysporum*

Author Ismael Sánchez Tarazona

> Director David Turrà

Ponente Pablo Martín Ramos

ESCUELA POLITÉCNICA SUPERIOR DE HUESCA UNIVERSITÀ DEGLI STUDIO DI NAPOLI – DIPARTIMENTO DI AGRARIA

NAPOLI-2021

Escuela Politécnica Superior - Huesca **Universidad** Zaragoza

Resumen

Fusarium oxysporum (Fo) es uno de los hongos fitopatógenos más destructivos a nivel mundial afectando a una gran variedad de cultivos vegetales, utilizados tanto como para alimentación humana, como animal. Por ello es esencial conocer cómo funciona su ciclo de reproducción y de infección, y así poder desarrollar estrategias apropiadas de contención. Ambos ciclos están regulados por una señalización autocrina de feromonas y la α -feromona, que modulan diferentes aspectos de la fisiología y patología de los hongos, entre ellos, la germinación, el quimiotropismo y el quorum sensing.

En el hongo modelo *S. cerevisae*, Bar1 es una aspartil proteasa secretada que actúa como "barrera" y antagonista de la señalización de la α -feromona. Dado que las proteasas Bar1 de diferentes hongos (*C. albicans y S. cerevisae*) reconocen y tienen un sitos de corte diferentes en la α -feromona, es difícil predecir dónde podría cortar Bar1 de *F. oxysporum* la α -feromona en esta especie fúngica. Aquí mostramos que la proteasa Bar1 de *F. oxysporum*, a diferencia de las de otros hongos (C. albicans y S. cerevisae), no es secretada, tal y como se predijo a través de un estudio bioinformático y por otras evidencias experimentales.

En efecto, utilizando exudados fúngicos de *F. oxysporum* y mutantes de $\Delta Bar1$ pudimos identificar la presencia de una proteasa secretada hasta ahora desconocida, que corta la α -feromona de *F. oxysporum* entre Cys² y Thr³, pero la presencia de Bar1 no fue identificada. No se dieron los mismos cortes en la α -feromona de *F. oxysporum* cuando se incubó directamente con la germínula del hongo. En este caso se detectó un sitio de corte adicional entre Thr³ y Trp⁴ cuando se utilizó germínula wt pero no en germínula de $\Delta Bar1$.

Es probable que *F. oxysporum*, al igual que otros hongos filamentosos y a diferencia de los hongos tipo levadura, necesite anclar Bar1 a su membrana por

alguna razón aún desconocida. Para entender mejor esto y el papel que desempeña una proteasa secretada aún no descrita en la señalización autocrina de *F. oxysporum*, serán necesarios más experimentos.

Summary

Fusarium oxysporum (Fo) is one of the most destructive plant pathogenic fungi worldwide, affecting a wide variety of plant crops used for both human food and animal feed. It is therefore essential to gain a better understanding of its reproduction and infection cycles in order to develop appropriate containment strategies. Both are regulated by α -pheromone and autocrine pheromone signalling that modulate different aspects of fungal physiology and pathology, including germination, chemotropism and quorum sensing.

In the model fungus S. cerevisiae, Bar1 is a secreted aspartyl protease that acts as a "barrier" and antagonist of α -pheromone signalling. Given the different recognition and cleavage sites of Bar1 proteases from different fungi (C. albicans and S. cerevisae) on their cognate α -pheromone peptides, it is difficult to predict where Bar1 from F. oxysporum might cleave α -pheromone in this fungal specie. Here we show that the Bar1 protease from F. oxysporum, differently from those from other fungi (C. albicans and S. cerevisae), is not secreted, as predicted through a bioinformatic approach and by further experimental evidences.

Indeed, by using F. oxysporum fungal exudates and Δ Bar1 mutants we could identify the presence of a hitherto unknown secreted protease, which cuts F. oxysporum α -pheromone between Cys² and Thr³, but not of Bar1. The same did not hold true when cuts F. oxysporum α -pheromone was incubated directly with fungal germling. In this case an additional cleavage site between Thr³ and Trp⁴ was detected when using wt but not Δ Bar1 germlings. It is probable that F. oxysporum, like other filamentous fungi and differently from yeast-like fungi, needs to anchor Bar1 to its membrane for some yet unknown reason. To better understand this and the role that a yet undescribed secreted protease plays in F. oxysporum autocrine signalling, further experiments will be required.

INDEX

1	. Introduction1
	Phytopathogenic fungi1
	Fusarium oxysporum
	Pheromones and sexual reproduction in ascomycetous fungi
	Role of α -pheromone in quorum sensing
	α-pheromone and Bar1 protease10
2	. Objectives
3	. Materials y methods12
	Fusarium oxysporum growth conditions12
	<i>F. oxysporum</i> α -pheromone treatment and sample preparation14
	Analysis of pheromone peptide cleavage by High perfonmance liquid
	chromatography – Quadrupole time-of-flight (HPLC-Q-TOF)16
	Sequence retrieval16
	Bioinformatic topology prediction and Phylogenetic analysis
4	. Results and Discussion18
	identification of α -pheromone proteolytic activity in <i>F. oxysporum</i> exudates. 18
	Bioinformatics analysis of Bar1 protease in different fungal species23
	Identification of α -pheromone proteolytic activity on <i>F.oxysporum</i> cultures27
5	. Conclusions
6	. Bibliography
7	. Supplements
	Bar1 Protein Sequences
	Bar1 homologous protein alignments

List of tables

Table 1. Media solutions used in this work. 13
Table 2. Strains of Fusarium oxysporum used in this study
Table 3. Selective agents used in this work14
Table 4. Fungal species against which Bar1 orthologs were searched17
Table 5. Potential α -pheromone cleavage products. M/Z ratios were calculated by
using the Compute pl/Mw tool of the ExPasy software
Table 6. Identified M/Z ratios from α -pheromone samples incubated with the
germling exudates from the indicated <i>F.oxysporum</i> strains
Table 7. Identified M/Z ratios from α -pheromone samples incubated with the
germling exudates from the indicated <i>F.oxysporum</i> strains
Table 8. Potential cleavage products of the FITC-labelled version of F. oxysporum
α -pheromone. M/Z ratios were calculated by using the Compute pl/Mw tool of the
ExPasy software22
Table 9. Identified M/Z ratios from the FITC-labelled version of F. oxysporum α -
pheromone sample incubated with the germling exudates from the wt
F.oxysporum strain
Table 10. Identified M/Z ratios from α -pheromone samples incubated with fungal
germling from the indicated <i>F.oxysporum</i> strains28

List of figures

Figure 1. Life cycle of plant pathogenic fungi	. 1
Figure 2. Example of penetration via appressoria	. 3
Figure 3. F.oxysporum life cycle	. 5
Figure 4. Penetration and colonization of tomato roots by F. oxysporum	. 5
Figure 5. Types of <i>F.oxysporum</i> asexual spores	.6
Figure 6. Pheromone signalling in <i>F. oxysporum</i>	. 8
Figure 7. Model for APS in a population of <i>F. oxysporum</i> cells	. 9

Figure 8. Interrelationships between Ste2, α -pheromone, and the Bar1protease.
Figure 9. Amino acid alignment of predicted mature α -pheromone of <i>F</i> .
oxysporum with orthologues from other ascomycete fungi
Figure 10. Diagram of incubation and sample preparation
Figure 11. Representation of the N-terminally FITC-labelled version of F.
<i>oxysporum</i> α-pheromone (FITC+Ahx+Peptide)21
Figure 12. In silico prediction of potential transmembrane domains in Bar1
orthologues from the indicated fungal species23
Figure 13. Phylogenetic tree of Bar1 proteins from different fungal species26
Figure 14. α -pheromone aminoacidic sequence and potential protease cleavage
sites
Figure 15. Fusarium alignments of Bar1
Figure 16. S. cerevisiae, T. harzianum, V. dahliae and M. grisea aligments of Bar1
protease
Figure 17. F. oxysporum, S. cerevisiae and C. glabrata aligments of Bar1
protease

1. INTRODUCTION

PHYTOPATHOGENIC FUNGI

Plant pathogenic fungi represent a major cause of pre- and post-harvest vegetable, cereal and fruit crop losses worldwide. The damage they cause does not only refer to losses in biological production, i.e., to the alteration of the growth and development of the host plants under attack, but also to economic production losses. (Agrios G.N. 2005)

Plant pathogenic fungi are eukaryotic organisms, most of them possessing a defined cell wall, composed of an outer layer of glycoprotein and an inner skeletal layer of β -glucans or α -glucans and chitin (Plaza, Moreno and Castillo 2020), however, unlike plants, they do not contain chlorophyll. They mainly reproduce through spores, dispersal structures of the fungus, that can be sexual, asexual, or both. The basic structures of these fungi are called hyphae, tubular filaments surrounded by a cell wall, that together form an interconnected network termed mycelium. In some cases, hyphae might have specialised functions, i.e. nutrient uptake from the host or penetration (Figure 1) (Juárez-Becerra, Sosa-Morales and López-Malo 2010).

Phytopathogenic fungal interaction with the host plant can be summarised as follows:

1. Attachment and spore germination on the host plant surface.

2. Formation of specialized infection structures (only for some plant pathogens).

3. Penetration into the external host tissues.

4. Intra- or intercellular colonisation of host tissues.

Importantly, most pathogenic fungi show specificity towards the plant organ to which they attach and very seldomly can attack all organs of the host plant; while some preferentially colonise aerial plant parts others mainly infect roots. Pathogenic fungi can employ different mechanisms to attach to the host plant surface. In either case, penetration of the fungus into the plant requires contact and adherence of the spores and/or the first hyphae resulting from the spore germination process (germination tube) to the plant surface. The mechanisms by which this process is achieved have not been fully understood yet.

In most fungi, spore germination occurs directly, by emitting one or more germ tubes. The process of fungal spore germination is initiated, as in plant seeds, by hydration and enlargement of the spore, hydrolysis of endogenous energy reserves, and synthesis of proteins, membrane and cell wall structural materials necessary for germ tube emergence and elongation. Several endogenous and exogenous factors are known to regulate spore germination. Normally, spores remain in a dormant or metabolically quiescent state, where germination is prevented by various physical or biochemical factors (*i.e.*, water, temperature, light, microbial activity and inhibitors and stimulants) and that influence this process in a species-specific manner. Soon after germination, elongating germ tubes emerging from the spores can undergo changes in the orientation axis in both chemically- (chemotropism) or surface-generated response to (thigmotropism) stimuli, processes that are either important to finely localizing

host cells or to penetrate into appropriate entry portals present on the surface of the host. In some cases the oriented growth of germ tubes requires their adherence to plant surfaces, which takes place through the production of a dense extracellular matrix composed of polysaccharides and/or glycoproteins (Rivera and Codina 1997). Pathogenic fungi have developed efficient strategies to invade and grow within plant hosts. Indeed, in contrast to bacteria, multicellular fungi do not only penetrate through the natural openings present on the surface of plant tissues but can also actively penetrate via the use of specialized structures (Figure 2) (Schäfer 2014).

FUSARIUM OXYSPORUM

Fungi belonging to the genus *Fusarium* are ascomycetous plant pathogens that are distributed worldwide and adapted to a wide variety of geographical areas, climate conditions, ecological habitats and host plants. *Fusarium* wilt pathogens show a high level of host specificity and, based on the plant species and plant cultivars they can infect, they are classified into more than 120 *formae speciales* and races. (Fravel, Oliviain and Alabouvette 2002). These ascomycetes are

normally found in soil, water and decaying organic matter; the widespread distribution of the genus stemming from its ability to grow on a wide range of substrates and to efficiently persist in the soil for long period of time. In addition to this, Fusaria can cause a broad spectrum of diseases in humans, ranging from superficial or localized infections in healthy hosts to lethal disseminated fusarioses in immunocompromised patients.

Different isolates of *F. oxysporum* attack a wide range of economically important crops leading to Fusarium crown and root rot, damping-off and, most commonly, vascular wilts. Importantly, vascular wilt represents a major cause of production losses in several agricultural crops. (Jones *et al.* 2015)

F. oxysporum infectious cycle (Figure 3) starts with conidial germination in the soil, directional growth of fungal hyphae towards the host root and root penetration (Figure 4A). Subsequently, hyphae enter the root cortex, in most cases through the apex, where the endodermis is not completely differentiated. Once inside the root, hyphae grow inter- and intra-cellularly to invade the cortex tissues and cross the endodermis, until they reach the xylem vessels (Figure 4B). The fungus then uses the xylem as an avenue to colonize the host (Figure 4C) (Pérez-Nadales and Di Pietro 2011), where it spreads among cells through the release of microconidia, which are massively produced in this stage of the infectious process. Plant defense responses happen mostly in the vasculature, mainly involving callose deposition, accumulation of phenolics and formation of tyloses and gels in the infected vessels, that combined with the increase of fungal burden, block water streaming through the vessels, leading to progressive wilting and death of the plant.

(A) Germination in response to host signals and direct penetration of the root. (B) Invasion of the root cortex. (C) Colonisation of the xylem vessels. (D) Hyphae and conidia spread through the xylem. (E) Fungal mycelium and plant-produced vascular gels plug the xylem vessels. (F) Wilting and death of the plant. (G) Formation of macromicroconidia and thick-walled chlamydospores on the dead plant tissue and in the soil. (Pérez-Nadales and Di Pietro 2014)

Figure 4. Penetration and colonization of tomato roots by *F. oxysporum*.

A. Germinated microconidia and penetration hyphae of F. oxysporum attaching to the root surface 24 h after inoculation. B. and C. Infection hyphae of F. oxysporum growing in the root cortex, 5 days after inoculation (B); and in a root xylem vessel, 7 days after inoculation (C). Chlamydospores D. of F. oxysporum wildtype strain produced on dying plant tissue. (Di Pietro, García-Maceira et al. 2001)

F. oxysporum spp. lacks a known sexual cycle. Despite this, vegetative hyphal fusion and heterokaryon formation have been suggested to ensure genetic variability through horizontal gene transfer (Kistler 1997). Asexual reproduction occurs through three types of conidia: microconidia, macroconidia and chlamydospores (Figure 5). Microconidia are single-cell dispersal structures that are abundantly produced under most conditions. Macroconidia contain three to five cells and are gradually pointed and curved toward the ends and are commonly found on the surface of dead plants killed by the pathogen (Pérez-Nadales and Di Pietro 2011). Chlamydospores are thick-walled cells generally developed through the modification of hyphal and conidial cells. Their formation is induced by aging or unfavorable environmental conditions such as low temperature or carbon starvation. Chlamydospores represent the principal structure for long-time survival during unfavorable periods in the soil and play an important role as primary inoculum for plant root infection. (Schäfer 2014)

Figure 5. Types of *F.oxysporum* asexual spores.

Macroconidia

Microconidia

Chlamydospores.

PHEROMONES AND SEXUAL REPRODUCTION IN ASCOMYCETOUS FUNGI

In nature, sexual reproduction is a fundamental mechanism by which eukaryotic organisms produce better-adapted recombinant progeny. Ascomycetous fungi have evolved two main reproductive styles, heterothallism (self-incompatibility) and homothallism (self-compatibility). Fungi requiring a compatible partner (genetically different for the composition of a sexual identity locus, but

morphologically identical individuals from the same species) to mate are called heterothallic, whereas those not requiring a mating partner and carrying both sexual identity loci in their genome are homothallic. A few other fungal species are pseudohomotallic, i.e. they are self-fertile, but the fusing nuclei must be genetically different at their sexual identity locus (Bennett and Dunny 2010). Importantly, in order to fuse and mate, fungal cells secrete and sense speciesspecific chemicals (pheromones) to coordinate cell behaviour and cell-to-cell attraction.

Fungi have been intensively studied because of their use of sexual pheromones to regulate intercellular (paracrine) signalling and conjugation. In ascomycetes, pheromones are small peptides or lipopeptides that are secreted into the extracellular milieu and able to induce morphological and transcriptional responses in target cells, where mating specificity is determined by the sets of pheromones and pheromone receptors expressed by each different cell type (Jones, *et al.* 2015).

Synthesis and secretion of pheromones and their receptors is controlled by a single genetic locus named mating type (*MAT*) locus. Heterothallic species have two opposite *MAT* loci (usually indicated as *MAT* α and *MAT* α) in different nuclei in contrast to homothallic species, whose carry both *MAT* loci in a single nucleus, usually closely linked or fused (Bennett and Dunny 2010). In the model ascomycetous fungus *Saccharomyces cerevisiae*, haploids cells of a specific *MAT* locus secrete each a peptide pheromone which is recognized by a cognate G-protein coupled receptor (GPCR) on a cell from the opposite mating type (*MAT* α cells secrete a-pheromone which is sensed by Ste2 in *MAT* α cells, while *MAT* α cells secrete a-factor which is sensed by Ste3 in *MAT* α cells) (Wang and Dohlman 2004).

Despite *F. oxysporum* is a heterothallic fungal specie either existing as $MAT\alpha$ or *MATa* populations, recent studies have shown that *F. oxysporum* $MAT\alpha$ cells can

actively produce both pheromone peptides, a- and a-pheromone, and their receptors, respectively Ste3 and Ste2 (Vitale et al. 2019). Importantly, in F. oxysporum cells secretion and sensing of their own pheromone peptides leads to autocrine signalling mechanism an 6) different (Figure regulating physiological outputs.

Figure 6. Pheromone signalling in *F. oxysporum*.

<u>ROLE OF α-PHEROMONE IN QUORUM SENSING</u>

Autocrine self-signalling via secreted peptides and cognate receptors regulates cell development in a variety of eukaryotes (Doğaner, Yan and Youk 2016). However, secreted peptides from higher fungi have been traditionally associated with paracrine non-self-signalling during sexual reproduction. In the model fungus *S. cerevisiae*, cells fall into two distinct mating types (MAT), which produce either a- or α -pheromone and the cognate receptors Ste2 or Ste3, respectively (Lee *et al.* 2010).

In yeast cells, down-regulation of the self-pheromone receptor and a-cell-specific cleavage of α -pheromone through the pheromone-specific aspartic protease Bar1 prevents inappropriate autocrine pheromone signalling (APS) during mating (Figure 7)(Alby, Schaefer and Bennett 2009). While APS can be artificially induced by manipulation of the pheromone secrete-and-sense circuit, its natural occurrence in ascomycete fungi has been described only recently (Dean, et al. 2012) (Vitale, Di Pletro and Turrá 2019).

Figure 7. Model for APS in a population of *F. oxysporum* cells.

Autocrine pheromone signalling (APS) in *F. oxysporum* MAT α cells is mediated by simultaneous secretion of aand α -pheromone, with a-pheromone signalling prevailing as a result of Bar1-mediated depletion of α pheromone pools. (Vitale, Di Pletro and Turrá 2019)

Indeed, despite *F. oxysporum* sexual cycle has not been described yet, its cells are able to co-express simultaneously both pheromone–receptor pairs (a-Ste3 and α -Ste2), resulting in autocrine regulation of physiological programs other than mating.

F. oxysporum unisexual cells express respond to α - and a-pheromone through conserved elements of the cell wall integrity mitogen-activated protein kinase (MAPK) cascade. While α -pheromone signalling inhibits conidial germination via Ste2, a-pheromone signalling activates it via Ste3. Importantly, at high concentrations of α -pheromone such as those found at high but not low inoculum densities, Ste2- prevails over Ste3-signalling thus inhibiting conidial germination. Of note, Ste2 in *F. oxysporum* also responds to the activity of plant peroxidases to promote chemotropic growth and infection (Martín 2019). Thus, this phytopathogenic fungus uses the same signalling pathway for both chemotropic sensing of mating factors and host cues or to regulate fungal development via quorum sensing (Vitale, Turrá and Di Pletro, 2019).

<u>α-PHEROMONE AND BAR1 PROTEASE</u>

Bar1 is a conserved aspartyl protease acting as a "barrier" and antagonist to α pheromone signaling in multiple ascomycetous fungal species. There, the presence of Bar1 has been correlated with the ability of fungal cells to prevent undesired therefore prevents α -pheromone autocrine signaling events (Figure 8) (Jones *et al.* 2015).

Previous studies in *F. oxysporum* have demonstrated that an increase in the concentration of fungal germlings (up to five folds) causes an appreciable rise in both Bar1 and α -pheromone gene expression (Vitale, Di Pletro and Turrá 2019).

Figure 8. Interrelationships between Ste2, α -pheromone, and the Bar1protease.

Model of interactions between Bar1, Ste2, and α pheromone. Both Bar1 and Ste2 recognize the same or overlapping regions of the α -pheromone peptide, thereby facilitating coevolution of their substrate specificities together with pheromone divergence during speciation (Jones *et al.* 2015).

The α -pheromone from *F.oxysporum* is a small peptide of 10 aminoacids (WCTWRGQPCW) exerting different biological functions as it acts as a growth regulator, a chemoattractant and also as a quorum-sensing signal (Turrà *et al.* 2015) (Turrá and Di Pietro 2015) (Vitale, Di Pletro and Turrá 2019). Interaction of α -pheromone with its plasma membrane cognate receptor, Ste2, leads in turn to the activation of a conserved mitogen activated protein kinase (MAPK) pathway (Turrà *et al.* 2015), which triggers chemotropic growth and regulates fungal community behavior via inhibition of spore germination (Vitale, Di Pletro and Turrá 2019). In addition, α -pheromone also inhibits *F.oxysporum* growth and cell

division in a Ste2-independent manner. However, how α-pheromone-Ste2 interaction induces such a large set of cellular responses is currently unknown (Partida-Hanon et al. 2020).

Heterologously expressed Bar1 proteases from S. cerevisae and Candida albicans have been purified and biochemically characterized. Notably, the results of their interaction with the cognate pheromone peptide from the same fungal specie occurs at different amino acidic residues. In fact, while α-pheromone cleavage by Bar1 occurrs between residues Thr⁵ and Asn⁶ in the *C. albicans* tridecapeptide (GFRLTNFGYFEPG), S.cerevisae Bar1 cleaves the α-pheromone tridecapeptide (WHWLQLKPGQPMY) between Leu⁶ and Lys⁷ (Jones *et al.* 2015) (Naider and Becker 2003). Thus, given the difference in length and primary structure among the α-pheromone from *F.oxysporum* and those from *S.cerevisae* and C. albicans (Figure 9), it is difficult to predict potential Bar1 cleavage sites in the *F.oxysporum* pheromone peptide. Importantly, the α -pheromone from *F.oxysporum* and from few other filamentous fungal ascomycetes presents a couple of highly conserved amino acids at both its N- and C-termini, respectively Trp¹-Cys² and Cys⁹-Trp¹⁰ (Figure 9).

Figure 9. Amino acid alignment of predicted mature α -pheromone of F. oxysporum with orthologues from other ascomycete fungi.

---GRPCOPC--- Absolutely and highly conserved residues GRPCOPC--- are shaded in black and in grey, respectively

2. **OBJECTIVES**

A. Bioinformatic analysis of Bar1 similarities/differences among different fungal species

B. Identify potential Bar1 cleavage sites in *F. oxysporum* α-pheromone

C. Identify potential Bar1-independent cleavage sites in *F. oxysporum* α -pheromone

3. MATERIALS Y METHODS

FUSARIUM OXYSPORUM GROWTH CONDITIONS

To collect fresh *F. oxysporum* microconidia to be used in the experiments, *F. oxysporum* conidia were inoculated in YPD medium supplemented with the required selective agent (Table 1-3), orbitally shacking at 28°C for 3-4 days and 170 rpm. Cultures were collected by filtration through a nylon filter (Monodur; mesh size 10 μ m). Filtrates were centrifuged at 5000 rpm for 10 min, microconidia were collected and resuspended in sterile deionized water, then counted using a haemocytometer.

Freshly recovered microconidia were resuspended in sterile deionized water with 45% glycerol (v/v) and stored at - 80°C. These suspensions were used for later inoculation to obtain fresh microconidia. A complete list of *F. oxysporum* strains used in this study is reported in Table 2. All media solutions used throughout this work are described in Table 1. Synthetic *F. oxysporum* α -pheromone (WCTWRGQPCW) or an N-terminally fluorescein isothiocyanate (FITC) labelled version thereof were obtained from GenScript.

Table	1. Media	solutions	used in	this work.
IUNIC	I. Micala	oorationo	4004 m	

Media solution	Ingredients and preparation
Minimum medium with 25 mM glutamate (Mm 25 mM)	Dissolve in 0,5L of water, 0,25g of MgSO4 x 7·H2O, 0,5g of KH2PO4, 0,25g of KCl, 1g of NaNO3, 15g of sucrose and 2,1g of glutamate. Add NaOH until the solution is adjusted to pH=7,4. Sterilize by autoclaving.
Minimum medium with 5 mM glutamate (Mm 5 mM)	Dissolve in 0,5L of water, 0,25g of MgSO4 x 7·H2O, 0,5g of KH2PO4, 0,25g of KCl, 1g of NaNO3, 15g of sucrose and 0,42g of glutamate. Add NaOH until the solution is adjusted to pH=7,4. Sterilize by autoclaving.
Yeast extract peptone dextrose medium (YPD)	Dissolve in 0,5L of water, 5g of yeast extract, 10g of glucose and 10g of tryptone. Sterilize by autoclaving. Add NaOH until the solution is adjusted to pH=8, for mutants to be treated with phleomycin.

Table 2. Strains of *Fusarium oxysporum* used in this study.

Strain	Genotype	Selective agent	Reference
4287	Wild type	-	(Di Pietro and Roncero 1998)
Bar1∆	Knockout mutant of the <i>Bar1</i> locus	Phleomycin	(Vitale, Di Pletro and Turrá 2019)
Bar1∆+Bar1	Insertional mutant obtained by reinserting the native <i>Bar1</i> locus	Phleomycin Hygromycin	(Vitale, Di Pletro and Turrá 2019)

~^	Knockout mutant of the α	Hygromyoin	(Vitale, Di Pletro	
dΔ	locus	пудготпусти	and Turrá 2019)	
24	Knockout mutant of the a		(Vitale, Di Pletro	
aД	locus	riygronnychi	and Turrá 2019)	
~^^^	Knockout mutant of the a	Phleomycin	(Vitale, Di Pletro	
идад	and α loci	Hygromycin	and Turrá 2019)	
Sto2A	Knockout mutant of the	Hyaromycin	(Turrà <i>et al.</i>	
51622	Ste2 locus	пудготпустт	2015)	
Sto24 Sto24	Knockout mutant of the	Hygromycin	(Vitale, Di Pletro	
31e2/131e3/1	Ste2 and Ste3 loci	Phleomycin	and Turrá 2019)	

Selective agent			
Hygromycin (50mg/ml)	40 µl in 100 ml of YPD medium		
Phleomycin (20mg/ml)	20 µl in 100 ml of YPD medium at pH=8		

F. OXYSPORUM α-PHEROMONE TREATMENT AND SAMPLE <u>PREPARATION</u>

To incubate synthetic α -pheromone (GenScript) from *F. oxysporum* with either fungal germlings or their exudates, a total of 2,5 *10⁸ *F. oxysporum* microconidia were germinated in 50 ml of minimal medium supplemented with 25 mM glutamate (MM 25 mM) at 28°C and 170 rpm for 18h in an orbital shaker. Fungal germlings were filtered through a 1-µm PluriStrainer mini (PluriSelect), concentrated five times by resuspending them in five-fold less volume of minimal medium supplemented with 5 mM glutamate (MM 5 mM) and incubated again at 28°C and 170 rpm for 2h.

To test potential Bar1 activity associated with *F. oxysporum* germlings (G), an aliquot (0,5 ml) of the fungal culture grown in MM 5 mM was either treated with

synthetic α -pheromone (200 μ M final concentration) or not (negative control) and incubated for 1h at 28°C and 170 rpm. Finally, cultures were first filtered through a custom-made filtering device (composed of a P5000 pipette tip filled with a piece of cotton wool) and then through a 0.2 μ m pore-size syringe filter (Sartorious) prior to injection into a HPLC-Q-TOF system (Figure 10).

To investigate if *F. oxysporum* germlings might secrete the Bar1 protease in the extracellular milieu, an aliquot (9 ml) of the fungal culture grown in MM 5 mM was first filtered through a custom-made filtering device (see above) and then through a 0.2 μ m pore-size syringe filter to remove fungal propagules and obtain fungal exudates (E). Exudates (0,5 ml) were then either treated with synthetic α -pheromone (200 μ M final concentration) or not (negative control) and incubated for 1h at 28°C and 170 rpm. Finally, exudates were injected into a HPLC-Q-TOF system (Figure 10).

<u>ANALYSIS OF PHEROMONE PEPTIDE CLEAVAGE BY HIGH</u> <u>PERFONMANCE LIQUID CHROMATOGRAPHY – QUADRUPOLE TIME-</u> <u>OF-FLIGHT (HPLC-Q-TOF)</u>

All samples were analyzed using an Agilent HP 1260 Infinity Series (Agilent 2020) liquid chromato-graph coupled to a Q-TOF mass spectrometer (Agilent 6540 UHD Quadrupole Time-of-Flight Accurate-Mass Mass Spectrometer (Creative proteomics 2015), and equipped with a DAD system (Agilent Technologies).

For chromatographic separation, a Sepachrom Adamas C-18-X-Bond (4.6×50 mm, 3.5μ m) (Sepachrom SrI) was used, maintained at a constant temperature of 37° C. Analyses were conducted at a flow rate of 0.6 mL/min, using a linear gradient system consisting of 0.1% (v/v) formic acid in water (Solvent A), and 0.1% (v/v) formic acid in acetonitrile (Solvent B). The gradient program was as follows: from 5% to 70% solvent B in 4 min, isocratic to 70% solvent B from 4 to 5 min; from 70% to 80% solvent B from 5 to 8 min and from 80% to 100% solvent B from 8 to 10 min; finally down to the initial condition (5% solvent B) from 10 to 15 min and after returning to the initial conditions, after 1 min, equilibrium was achieved. The injection volume was 10 μ I. UV spectra were collected by DAD every 0.4 s from 190 to 750 nm, with a resolution of 2 nm. The MS system was equipped with a dual electrospray ionisation (ESI) source and operated in both positive and negative modes. The capillary was maintained at 2000 V, fragmenter voltage at 180 V, cone 1 (skimmer 1) at 45 V, Oct RFV at 750 V. The gas flow was set at 11 L/min, at 350 °C, and the nebuliser was set at 45 psig.

SEQUENCE RETRIEVAL

The protein sequence of *F.oxysporum* Bar1 (XP_018246670.1) was retrieved from a previous study (Vitale, Di Pletro and Turrá 2019). *F.oxysporum* Bar1 homologoues protein from the different fungal species used in the bioinformatics study (Table 4) were identified by the BLASTp algorithm through comparison with the *F.oxysporum* Bar1 protein. A complete list of sequences corresponding to the identified Bar1 homologues in different fungal species is shown in "Supplements".

Human pathogens	Plants pathogens	Non-pathogenic
Aspergillus fumigatus	Fusarium oxysporum	Neurospora crassa
Candida glabrata	Fusarium verticilloides	Sordaria macrospora
Cryptococcus neoformans	Fusarium solani	Trichoderma harzianum
Candida albicans	Verticillium dahliae	Saccharomyces cerevisiae
	Magnaportha grisea	

Table 4. F	ungal species	against which Bar1	orthologs were	searched.

BIOINFORMATIC TOPOLOGY PREDICTION AND PHYLOGENETIC ANALYSIS

Full-length sequences were aligned with Clustal Omega (Sievers and Higgins 2017), and manually inspected. Only fully aligned parts of the multiple sequence alignment were used. Presence of a signal peptide was determined with SignalP version 5.0 (Almagro *et al.* 2019). Prediction of transmembrane helices in proteins was done with Phobius (Käll, Krogh and Sonnhammer 2007). The phylogenetic trees were obtained from MAB Lirmm (Dereeper *et al.* 2010), with a phylogram tree style.

The m/z ratios of the different α-pheromone fragments were obtained with ExPASy (Compute pl/Mw) (Bjellqvist *et al.* 1993).

4. **RESULTS AND DISCUSSION**

IDENTIFICATION OF α-PHEROMONE PROTEOLYTIC ACTIVITY IN *F.* OXYSPORUM EXUDATES

The α -pheromone cleaving protease Bar1 from the fungal model specie S. cerevisiae has been shown to be largely secreted (95% of Bar1 activity found extracellularly) with only a limited activity of this enzyme associated to fungal cell walls or the periplasmic space (Ciejek and Thorner 1979) (Ballensiefen and Schmitt 1997) (Moukadiri, Jaafar and Zueco 1999) (Ballensiefen and Schmitt 2004). Thus, to identify potential cleavage sites of the F. oxysporum Bar1 orthologue into the α -pheromone peptide (WCTWRGQPCW) from the same fungus we incubated the decapeptide with fungal germling exudates (E). In order to maximize Bar1 activity in fungal cultures, F. oxysporum propagules were concentrated 5 times, as *Bar1* gene expression is known to be enhanced in high cell density conditions (Vitale et al. 2019). Importantly, HPLC-Q-TOF analysis of the α -pheromone peptide after incubation with fungal exudates from the wt strain yielded an M/Z ratio corresponding to the entire pheromone sequence (M/Z 1322), two complementary fragments (M/Z 1033 and 308) and a third fragment (M/Z 205) which is likely to be a proteolysis product of fragments M/Z 308 (Tables 5-6).

Table 5. Potential α -pheromone cleavage products. M/Z ratios were calculated by using the Compute pl/Mw tool of the ExPasy software

Sequence	M/Z	Sequence	M/Z
WCTWRGQPCW	1322		
WCTWRGQPC-	1136	-W	205
WCTWRGQP-	1033	-CW	308
WCTWRGQ-	936	-PCW	405
WCTWRG-	808	-QPCW	533
WCTWR-	751	-GQPCW	590
WCTW-	595	-RGQPCW	746
WCT-	409	-WRGQPCW	932
WC-	308	-TWRGQPCW	1033
W-	205	-CTWRGQPCW	1136

Table 6. Identified M/Z ratios from α -pheromone samples incubated with the germling exudates from the indicated *F.oxysporum* strains.

Exuadate	WT		Bai	⁻ 1Δ	Bar1∆	+Bar1
M/Z	+P	-P	+P	-P	+P	-P
1322	+	-	+	-	+	-
1136	-	-	-	-	-	-
1033	+	-	+	-	+	-
936	-	-	-	-	-	-
932	-	-	-	-	-	-
808	-	-	-	-	-	-
751	-	-	-	-	-	-
746	-	-	-	-	-	-
595	-	-	-	-	-	-
590	-	-	-	-	-	-
533	-	-	-	-	-	-
409	-	-	-	-	-	-
405	-	-	-	-	-	-
308	+	-	+	-	+	-
205	+	-	+	-	+	-

P, treated with α-pheromone; -P, no treated.

In order to understand if at least one of the obtained fragments could derive from Bar1 proteolytic cleavage, the *F. oxysporum* α -pheromone peptide was incubated with fungal exudates from a *Bar1* Δ mutant or its complemented strain

*Bar1*Δ+*Bar1*. Noteworthy, HPLC-Q-TOF analysis did not show any difference in the between α-pheromone samples treated with wt or the *Bar1*Δ exudates, suggesting that *F. oxysporum* secretes an additional, yet unknown, extracellular protease able to cleave either the N-terminal Trp¹-Cys² or the C-terminal Cys⁹-Trp¹⁰ dipeptide (Tables 6). Importantly, gene deletion of any of the upstream components of the F. oxysporum pheromone signalling pathways did not affect the activity of this extracellular protease as α-pheromone samples treated with the exudates of αΔ, aΔ, αΔaΔ, *Ste2*Δ and *Ste2*Δ*Ste3*Δ mutant strains produced the same peptide fragments (M/Z 1322, 1033, 308 and 205; Table 7).

Table 7. Identified M/Z ratios from α -pheromone samples incubated with the germling exudates from the indicated *F.oxysporum* strains.

Exudate	W	Т	α	Δ	a	Δ	αΔ	a∆	Ste	2Δ	Ste2∆	Ste3∆
M/Z	+P	-P	+P	-P	+P	-P	+P	-P	+P	-P	+P	-P
1322	+	-	+	-	+	-	+	-	+	-	+	-
1136	-	-	-	-	-	-	-	-	-	-	-	-
1033	+	-	+	-	+	-	+	-	+	-	+	-
936	-	-	I	-	I	-	I	-	-	-	-	-
932	-	-	I	-	I	-	I	-	-	-	-	-
808	-	-	-	-	-	-	I	-	-	-	-	-
751	-	-	-	-	-	-	1	-	-	-	-	-
746	-	-	-	-	-	-	1	-	-	-	-	-
595	-	-	-	-	-	-	1	-	-	-	-	-
590	-	-	-	-	-	-	1	-	-	-	-	-
533	-	-	-	-	-	-	1	-	-	-	-	-
409	-	-	-	-	-	-	1	-	-	-	-	-
405	-	-	-	-	-	-	-	-	-	-	-	-
308	+	-	+	-	+	-	+	-	+	-	+	-
205	+	-	+	-	+	-	+	-	+	-	+	-

P, treated with α -pheromone; -P, no treated.

To further understand if the extracellular protease found in *F. oxysporum* exudates specifically cleaves the Trp-Cys peptide at the N- or the C-terminus of

or at both, we incubated an N-terminally FITC-labelled version of α -pheromone (Figure 11) with fungal exudates from the wt strain.

Figure 11. Representation of the N-terminally FITC-labelled version of *F. oxysporum* α -pheromone (FITC+Ahx+Peptide).

The obtained M/Z peaks correspond to the entire FITC+Ahx+Peptide and the FITC+Ahx fluorophore alone (M/Z 913 and 504), and two complementary fragments (M/Z 1033 and 811) matching respectively the M/Z values of FITC+Ahx+Trp¹-Cys² and of the remaining C-terminal peptide TWRGQPCW (Tables 8-9). Differently from the experiments performed with the unlabelled version of the α -pheromone, cleavage at Trp¹ was not observed, likely as a result of the bulky FITC+Ahx conjugating molecule which might prevent appropriate interaction between the peptide N-terminus and the cleaving protease.

Altogether these results indicate that *F. oxysporum* cells secrete a specific protease cleaving off the Trp¹-Cys² dipeptide from the α -pheromone N-terminus. Because Trp¹-Cys² have been previously shown to regulate the growth inhibitory effect of *F. oxysporum* α -pheromone in a Ste2-independent manner (Vitale, Partida-Hanon, et al. 2016), fungal regulation of Trp¹-Cys² cleavage might represent a novel signalling mechanism used by filamentous fungi to modulate their growth at high cell densities.

Table 8. Potential cleavage products of the FITC-labelled version of *F. oxysporum* α -pheromone. M/Z ratios were calculated by using the Compute pl/Mw tool of the ExPasy software.

Sequence	M/Z	Sequence	M/Z
WCTWRGQPCW	913 (Z=2)	FITC+Ahx ()	504
*WCTWRGQPC-	1639	-W	205
*WCTWRGQP-	1536	-CW	308
*WCTWRGQ-	1439	-PCW	405
*WCTWRG-	1311	-QPCW	533
*WCTWR-	1254	-GQPCW	590
*WCTW-	1098	-RGQPCW	746
*WCT-	911	-WRGQPCW	932
*WC-	811	-TWRGQPCW	1033
*W-	708	-CTWRGQPCW	1136

Table 9. Identified M/Z ratios from the FITC-labelled version of *F. oxysporum* α -pheromone sample incubated with the germling exudates from the wt F.oxysporum strain.

WT Exudate							
M/Z	+P	-P	M/Z	+P	-P		
913	+	-	504	+	-		
1639	-	-	205	-	-		
1536	-	-	308	-	-		
1439	-	-	405	-	-		
1311	-	-	533	-	-		
1254	-	-	590	-	-		
1098	-	-	746	-	-		
911	-	-	932	-	-		
811	+	-	1033	+	-		
708	-	-	1036	-	-		

P, treated with α-pheromone; -P, no treated.

BIOINFORMATICS ANALYSIS OF BAR1 PROTEASE IN DIFFERENT FUNGAL SPECIES

Since HPLC-Q-TOF analysis of α -pheromone samples treated with fungal exudates did not allow for potential Bar1 cleavage site identification, we questioned whether Bar1 from *F. oxysporum* and other filamentous fungi could be not secreted in contrast to yeast (*S. cerevisiae*) or yeast-like (*C. albicans*) fungi. To this aim we performed an *in silico* analysis of Bar1 orthologues from different plant pathogenic, human pathogenic and non-pathogenic fungal species (Table 4) in order to identify potential transmembrane domain (Figure 12).

Figure 12. In silico prediction of potential transmembrane domains in Bar1 orthologues from the indicated fungal species.

In all studied human pathogens, the Bar1 protein is predicted to be secreted, in contrast to all analysed plant pathogenic fungi, except for *F. solani*, where the presence of a C-terminal transmembrane domain was identified to be slightly

probable. In the case of Bar1 from non-pathogenic fungi a potential C-terminal transmembrane domain was identified in all of them except *S. cerevisiae*. Interestingly, while all filamenting fungi appeared to have a predicted C-terminal transmembrane domain in their Bar1 orthologue, yeast growing fungi (*i.e. Saccharomyces* spp, *Candida* spp, *Cryptococcus* spp.) did not.

To further corroborate the obtained results, a phylogenetic tree of Bar1 orthologues from the different fungal species was generated confirming that the presence of transmembrane domains coincides with the distance and branching of the phylogenetic tree (Figure 13).

Figure 13. Phylogenetic tree of Bar1 proteins from different fungal species.

1.

IDENTIFICATION OF α-PHEROMONE PROTEOLYTIC ACTIVITY ON <u>F.OXYSPORUM CULTURES</u>

Because Bar1 from F. oxysporum and other filamentous fungi was predicted to harbour a transmembrane domain, we decided to incubate the α -pheromone peptide directly with fungal propagules rather than with their exudates to identify potential Bar1 cleavage sites. HPLC-Q-TOF analysis showed that α-pheromone incubation with fungal germlings from the wt strain yielded an M/Z ratio corresponding to two non-complementary fragments (1033 and 409) (Tables 5, 10), however not to the entire pheromone sequence (M/Z 1322). To understand if at least one of the obtained fragments could derive from Bar1 activity we incubated the *F. oxysporum* α -pheromone peptide with fungal germlings from a Bar1 Δ mutant or its complemented strain Bar1 Δ +Bar1. Interestingly, HPLC-Q-TOF analysis of these samples showed the presence of the 1033 but not of the 409 M/Z fragment. In addition to this, one (M/Z 205) and two (M/Z 205 and 308) peptide fragments were also detected in samples treated with exudates of the Bar1 Δ and Bar1 Δ +Bar1 strains, respectively (Table 10). While the latter two fragments were also detected upon α -pheromone treatment with fungal exudates and thus correspond to the cleavage products of an extracellular protease, the N-terminal tripeptide WCT (M/Z 409) might represent a specific sub product of Bar1 activity. Further experiments will be needed to corroborate this hypothesis and to understand why the same fragment is not detectable upon α -pheromone treatment with the fungal germlings from the $Bar1\Delta+Bar1$ strain.

Table 10. Identified M/Z ratios from α -pheromone samples incubated with fungal germling from the indicated *F. oxysporum* strains.

Germling	W	T	Bar	Bar1∆		Bar1∆+Bar1	
M/Z	+P	-P	+P	-P	+P	-P	
1322	-	-	-	-	-	-	
1136	-	-	-	-	-	-	
1033	+	-	+	-	+	-	
936	-	-	-	-	-	-	
932	-	-	-	-	-	-	
808	-	-	-	-	-	-	
751	-	-	-	-	-	-	
746	-	-	-	-	-	-	
595	-	-	-	-	-	-	
590	-	-	-	-	-	-	
533	-	-	-	-	-	-	
409	+	-	-	-	-	-	
405	-	-	-	-	-	-	
308	-	-	-	-	+	-	
205	-	-	+	-	+	-	

P, treated with α-pheromone; -P, no treated

5. CONCLUSIONS

F. oxysporum secretes an α -pheromone specific, yet unknown, protease cleaving the Trp1-Cys2 dipeptide from the α -pheromone N-terminus (Figure 14A).

The activity of this extracellular protease is independent of *F. oxysporum* pheromone signalling pathway activation.

Trp1-Cys2 cleavage might represent a novel signalling mechanism used by filamentous fungi to modulate their growth at high cell densities.

Bar1 from *F. oxysporum* and other filamentous fungi have a predicted C-terminal transmembrane domain, in contrast to yeast growing fungi.

The N-terminal tripeptide WCT might represent a cleavage product of Bar1 activity (Figure 14B). Further experiments are required to corroborate this hypothesis.

Figure 14. α -pheromone aminoacidic sequence and potential protease cleavage sites.

6. **BIBLIOGRAPHY**

Agilent. "1260 Infinity II LC System." Santa Clara, 2020.

Agrios G.N. Plant Pathology. Academic Press, 2005.

- Alby K., D. Schaefer and R. J. Bennett. "Homothallic and heterothallic mating in the opportunistic pathogen Candida albicans." *Nature 460* (Nature 460), 2009.
- Almagro José Juan et al. SignalP 5.0 improves signal peptide predictions using deep neural networks. Nature Biotechnology, 2019.
- Ballensiefen and Schmitt. Periplasmic Bar1 protease of Saccharomyces cerevisiae is active before reaching its extracellular destination. Eur J. Biochem, 1997.
- Ballensiefen and Schmitt. Periplasmic Barl protease of Saccharomyces cerevisiae is active before reaching its extracellular destination. European Journal of Biochemistry, 2004.
- Bennett Richard J. and Gary M. Dunny. *Analogous Telesensing pathways regulate mating and virulence in two opportunistic human pathogens.* mBio, 2010.
- Bjellqvist B. et al. The focusing positions of polypeptides in immobilized pH gradients can be predicted from their amino acid sequences. Electrophoresis, 1993.
- Ciejek Elena and Jeremy Thorner. "Recovery of S. cerevisiae a cells from G1 arrest by α factor pheromone requires endopeptidase action." 1979.
- Creative proteomics. "Agilent 6540 UHD Quadrupole Time-of-Flight Accurate-Mass Mass Spectrometer." 2015.
- Dean R. et al. Te top 10 fungal pathogens in molecular plant pathology. Plant Pathol., 2012.
- Dereeper A., S. Audic, J.M. Claverie and G. Blanc. *BLAST-EXPLORER helps you building datasets for phylogenetic analysis.* BMC Evol Biol, 2010.
- Di Pietro Antonio and M. I Roncero. "Cloning, expression, and role in pathogenicity of pg1 encoding the major extracellular endopolygalacturonase of the vascular wilt pathogen Fusarium oxysporum. Molecular plant-microbe interactions : MPMI." 1998.
- Di Pietro Antonio, Fe I García-Maceira, Emese Méglecz and M. Isabel G. Roncero. A MAP kinase of the vascular wilt fungus Fusariumoxysporum is essential for root penetration andpathogenesis. Molecular Microbiology- Uniersidad de Córdoba, 2001.
- Doğaner B. A., L. K. Q. Yan and H. Youk. *Autocrine signaling and quorum sensing: extreme ends of a common spectrum.* Trends Cell Biol, 2016.
- Fravel D., C. Oliviain and C. Alabouvette. Fusarium oxysporum and its biocontrol. New phytologist, 2002.
- Jones Stephen K., Starlynn C. Clarke, Charles S. Craik and Richard J. Bennett. Evolutionary Selection on Barrier Activity: Bar1 Is an Aspartyl Protease with Novel Substrate Specificity. Department of Molecular Microbiology and Immunology, Brown University, San Francisco, 2015.
- Juárez-Becerra G.P., M.E. Sosa-Morales and A. López-Malo. Hongos fitopatógenos de alta importancia económica: descripción y métodos de control. Temas selectos de ingeniería de los alimentos, 2010.
- Käll Lukas, Anders Krogh and Erik L. L. Sonnhammer. Advantages of combined transmembrane topology and signal peptide prediction--the Phobius web server. Nucleic Acids Res, 2007.
- Kistler H.C. Genetic diversity in the plant pathogenic fungus Fusarium Oxysporum. Phytopathology, 1997.

Lee S. C., M. Ni, W. Li, C. Shertz and J. Heitman. *Te evolution of sex: a perspective from the fungal kingdom.* Microbiol, 2010.

Martín Sophie G. Quorum sensing with pheromones. Nature Microbiology, 2019.

- Moukadiri I, L Jaafar and J Zueco. *Identification of two mannoproteins released from cell walls of a* Saccharomyces cerevisiae mnn1 mnn9 double mutant by reducing agents. J. Bacteriol, 1999.
- Naider Fred and Jeffrey M. Becker. *The* α*-factor mating pheromone of Saccharomyces cerevisiae: a model for studying the interaction of peptide hormones and G protein-coupled receptors.* Elsevier, 2003.
- Partida-Hanon Angélica *et al. Structure of Fungal α Mating Pheromone in Membrane mimetics suggests a* possible role for regulation at the water-membrane interface. Frontiers in MIcrobiology, 2020.
- Pérez-Nadales Elena and Antonio Di Pietro. *The Membrane mucin Msb2 regulates invasive growth and plant infection in Fusarium oxysporum.* American Society of Plant Biologists, 2011.
- Pérez-Nadales Elena and Antonio Di Pietro. *The transmembrane protein Sho1 cooperates with the mucin Msb2 to regulate invasive growth and plant infection in Fusarium oxysporum.* Molecular Plant Pathology, 2014.
- Plaza Verónica, Evelyn Silva Moreno and Luis Castillo. *Cell Wall and Glycoproteins and their Crucial Role in the Phytopathogenic Fungi Infection.* Benthan Science, 2020.
- Rivera María Eugenia and Juan Carlos Codina. *Mecanismos de infección de los hongos fitopatógenos.* Investigación en el Departamento de Microbiología UMA, 1997.
- Schäfer Katja. Role of urease in pH modulation and virulence of Fusarium Oxysporum. Universidad de Córdoba, 2014.
- Sievers Fabian and Desmond G. Higgins. *Clustal Omega for making accurate alignments of many protein* sequences. The protein society, 2017.
- Turrá David and Antonio Di Pietro. Chemotropic sensing in fungus-plant interactions. ScienceDirect-Elsevier, 2015.
- Turr, David, Antonio Di Pietro, M. El Ghalid and F. Rossi. *Fungal pathogen uses sex pheromone receptor for chemotropic sensing of host plant signals.* Nature, 2015.
- Vitale Stefania, Antonio Di Pletro and David Turrá. *Autocrine pheromone signalling regulates community* behaviour in the fungal pathogen Fusarium oxysporum. Nature microbiology, 2019.
- Vitale Stefania *et al. Structure-activity relationship of mating pheromone from the fungal pathogen Fusarium oxysporum.* The journal of biological chemistry, 2016.
- Wang Yuqi and Henrik G. Dohlman. *Pheromone Signaling mechanisms in yeast: a prototypical sex machine.* Science, 2004.

7. SUPPLEMENTS

BAR1 PROTEIN SEQUENCES

Signalling peptide highlighted in green, transmembrane domains highlighted in yellow and signalling peptide and transmembrane domains highlighted in blue.

Human pathogens

Aspergillus fumigatus

>XP_747542.1 Aspartic-type endopeptidase (OpsB), putative [Aspergillus fumigatus Af293] MRHIFSLLSIVCLMVKHGACLTLHQRDVPAVVSLDIKRSIVSDPVVRDRVRRKRDKTIGQTLDNAETLYFCNVTL GTPGQALRLVLDTGSSDLWCNAANSTLCSDSNDSCNISGSYDPSSSSTYAYVSSDFNISYADGTGAVGDYAT DILHIGGSTLRNLQFGIGYSSTSSEGVLGIGYPSNEVQVGQYGKDTYPNLPRAMVDQGLINSNAYSLWLNDLES NTGSILFGGVNTGKYLGELQTLPIQKVNGRYSEFVIALTGVAFDSESHHKTYSSDALPAAVLLDSGSSLTYLPDS IVENIYRDLNVAYEPSSGVGYLPCKLAGNNINITYTFSSPNITVMIDELLLDAGDLRFRDGARACIFGIVPAGDSTA VLGDTFLRSAYVVYDIANNEISIANTNFNSTEDNILEIGVGPDSVPSATQVSHPVTSVVADGSGARIGAPTGASS TTVPSISSAGALSAGVARADKQYLAIALIAVWFVLGL

Candida glabrata

>QNG14967.1 BAR1 [[Candida] glabrata]

MIQFINCYFIFNLVTVVNCLRLTIEKRIVSSHASLSKRSAVDLQFRRFNNLYYESVLEFGTPPQSIPLVLDTGSSDL WVTLIGNPLCYNKGSGKPPKGLIDCSGLVFYDMDKSQTFDYLKNVTFKIGYADTTYTSGIWIVDIITLPEGHLKDL QFGMAFATNATFSGVLGIGFPAMESVNGYEFAPGKFYPNFPLALKNAGFTNIAAYSIEYNDESKKGSILFGSIDT SRFIGPLYTFPMINEFPGIADEPSTLSLTLDGIGIDGSCEQWVISNTKLPALLDTGSTLIELPHPITQSIASYLNATW SDDHGLFVLACPSDDFLTTTDLAFTFGELHMKIPLRSFILLPDEESNGLCGLGITSSKGRVILGDSFLTHVYTVFD LDNYMISLAPMAKSSLPGKVIEIPANGLIENAVISKSEKWTHFNDITVNEYGFRNYCDGELQDIHSYSSKLNSSSL VYSSNFSSDEEQNSSESVSPSIFNTDSSIKEIYPSLSQKEHLSALLTTISTSEIHKPVTATITDSITTTIRVTKILTVL QCAT

Cryptococcus neoformans

>OXB39612.1Ssaccharopepsin [Cryptococcus neoformans var. grubii]

MKTSAILIAALSAAASVEAGIHRMKLEKQAPPSTSLTGAFSPPPELEAKWLASKYLGQEYTEQMPFGGFGGAG KKFKSGNKHTKHPEQEDEDRYWAQMVDQTAHSQMIDVLKGGHGVPLSNFMNAQYFTTVELGTPFQTFKVVL DTGSSNLWVPSVKCTSIACFLHNKYDSSQSSTYKANGSDFEIHYGSGSLEGFISQDTLSIGDLVVKKQDFAEAT KEPGLAFAFGKFDGILGLGYDTISVNHIVPPFYNMLNQHLLDEPVFSFRLGSSDENGGEAIFGGIDDSAYSGKLA YVPVRRKGYWEVELESISFGDEELELENTGAAIDTGTSLIVMPTDVAELLNKEIGAEKSWNGQYTVDCNTVSSLP KLAFTFGGKDYTLSADDYILNAGGTCISSFTGMDIPAPIGPLWIVGDVFLRKYYTVYDLGRNAVGFAESK

Candida albicans

>orf19.2082|SAP30 COORDS:Ca21chr2_C_albicans_SC5314:69105-70412W, Translated using codon table 12 (435 amino acids)

MLFTILSLLVPSLAV AVSNTGGAVKLDLTISDEHMYYIENLALGTPPQFISNVIVDSGSSDLMIVDSIYNFSASSSF YNSNQTAIMKYGYGGQFPVYFINETIRSNDWKLSNLSMGLANISDMDSFSGILGIGFTRQELFKTNYSNFPYLLK DQGYTKSVLFSFNGQDQNPSIIFGGIITNIIDGPLVRAPFIKVISFINQLDYWLMPTFTVNQIKLGDTIVSNQKTLYQ IDSGTNGFVPPTPVLNNILKILGDDYIQDDNGNIYFDIKYIEGLNITFSVQGYDIGFQLVDIVGDTIERNSTTFVALN VASCDIGYNAYEGLLPNLIFKYHYAIFDYDNAQIYFGKYKNSNGEANVVAVENGYQLPVPTVDVPDVEDTYSVIY IAESETTVTVAPTEVQSTYSSFSISEGTSSNLTSGSTSDDKITSVTSNPQYC*

Plants pathogens

Fusarium oxysporum

>XP_018246670.1 Hypothetical protein FOXG_09428 [Fusarium oxysporum f. sp. lycopersici 4287] MDELDRSTYKVSIMKSIQLSSLLLSLLSLTEGISLNKRDNGLEPRVMSVEIQRRTISDPISNDRIRLRKRDGTIDIGI DNEQSLYFLNASLGTPPQDFRLHLDTGSSDLWVNAQGSKLCSTHANICSESGLYSPNKSSTYEYLNSDFNISY ADGSGASGDYATETFRMGSVKLEDLQFGIGYVTSDNEGVLGIGYKSNEAQVGQLNRDAYDNLPAKLASKGLIA SNAYSLYLNDLESATGTILFGGVDQEQYTGDLVTLPINKINGEFAELSITLQSVSADSETIADNLDLAVILDSGST LSYLPATLTSDIYDIVGAQYEEGESVAYVPCDLGNDSGNLTFKFKDPAEISVPLSELVLDFTDVTGRQLSFDNGQ AACTFGIAPTTGDISILGDTFLRSAYVVFDLENNEISLAQSNFDATKSHILEIGTGKHPVPTATGSGSSDNKENAA A<mark>SLAPLGGDAAISMVAGAFALGFAWMLI</mark>

Fusarium verticilloides

>XP_018752852.1 Hypothetical protein FVEG_07058 [Fusarium verticillioides 7600] MKSIQLSSLLLSLLPLTQAISLNKRDNGLEPRVMSVEIQRRTISDPISNDRRRLRRRDGTVDIDIDNEQSLYFLNA SLGTPAQDFRLHLDTGSSDLWVNAEGSKLCSTHANICSESGLYSPNKSSTYEYLNSDFNISYADGSGASGDY ATETFRMGSVKLEDLQFGIGYVTSDNEGVLGIGYKSNEAQVGQLNRDAYDNLPAKLASKGLIASNAYSLYLNDL ESATGTILFGGVDQEQYIGDLVTLSINKINGGYSEFSITLQSVSADSETIVDNLDLTVILDSGSTLSYLPASLTSDIY DIVGAQYEEGQSVAYVPCDIGNDSGNFTFKFKDSAEISVSLSEMVLDFTDVTGNQLSFDNGQAACTFGIAPTTG DFSILGDTFLRSAYVVFDLDNNEISLAQSNFNATKSHILEIGTGKNAVPTVTGSGSSDNKENAAASLSPLGGDAA VSMVAGAFALGFAWMLI

<u>Fusarium solani</u>

MKATRLFYAILSLASATG AISLHKRQDGLEPRVLALDLQRSTIRDPVGNDRKRLARRSGSINVGIDNLQSLYFFN ASLGTPAQDFRLHLDTGSSDLWVNSNNSTLCSTPADVCATSGLYNASNSSTYKFVSSEFNITYADGSGSAGD YATETFRVGKTVIKELQFGIGYESSSDQGVLGIGYSSNEAQVAEFGGEPYDNLPAKMAADGLIASNAYSLWLND LDAASGTILFGGVDRKRYTGDLITVPVQKFGGRFSQFYITLTGLSVGSDTVDDSLALGVILDSGSTLTYLPTSLA EAVFEIVGADYEEGASTAYVPCDLANTSGNLTFSFSSPAEITVPLSELVLDFTDVTGRRLRFDDGEPACMFGIAP SPSGTNILGDTFLRSAYVVFDLGNNEVSLAQSNFDADGSDIVEIGSGDGAVPAATSADEPVTASGVAVSSANG AGSLSPLGKDRAASLFVGALTLGFVWPLV

Verticillium dahliae

>RXG46419.1 Hypothetical protein VDGE_05848 [Verticillium dahliae]
MRTIPIWVLSSLLLSSTGEAVALRKRDGSPARVIGFDLESKIIQAPNDKNGMRRRNTVTASLDNLQTLYFVNATL
GNPPQQFRLHLDTGSSDLWVNTANSQLCQEVPNPCALSGMYAANQSSSYNYLGSYFNISYVDGSGATGDYV
TDDFNIGGTVLTDFQFGIGYESSAAQGILGVGYPMNEVQVGRAGMDPYDNIAAKMKAQGLIQSNAFSLYLNSL
SASTGSILFGGVDTEHFVGELQTLPIQMHADIHSEFLVTLTDVTLGSTTMGSDLAIAVLLDSGSSLSYLPDAMVK
EIYSMVGAVYQEEQAVAFVPCALRQSPANMTFTFSKPKITVPISELVLDLFKITGRQPTFSNGAPACLFGLAPAG
AGTHVLGDTFMRSAYIVYDMENNEISLAQTRFNATRSNILEIGTGRSSVPSAITVAEPVAATHGLRGGGAAAAH
STAH
VLTPLAGPFLAGVISGILGFVSFFI

Magnaporthe grisea

>XP_030978115.1 Uncharacterized protein PgNI_09918 [Pyricularia grisea]

MRLIASLALLASLASSVTNGSSIPRRDSSAPAALRVVSMPMERQHISNPLERDRLRRRSSITATLDNEETLYFINV SIGTPAQKLRLHLDTGSSDLWVNSPDSKLCSVSSQPCKYAGTYSANSSSTYQYVSSVFNISYVDGSGAQGDY VSDTISLGNTKIDSLQFGIGYTSSSTQGILGVGYEANEVQVGRAGLKAYRNLPSRMVELGLIASNAYSLYLNDLQ SNKGSILFGGVDTEQYTGTLQTVPIQANGGRMAEFLITLTSVTLTSASIGGDNLALAVLLDSGSSLTYLPDDIVK STYSAVDAQYDSNEGAAYVPCSLANDQSKKMTFTFSGIKIDVSMNELVLDLVTSSGRRPSFRNGASACLFGIA PAGKGTNVLGDTFLRSAYVVYDLDNNAISLAQTSFNATKTNVKEIGKGSNSVPGAVAVSSPVAATSGLSLSSS GKSGSGASAPAIPMLLLVAGLFSGSLLVLL

Non-pathogenic

Neurospora crassa

>XP_957809.3 Aspartic proteinase [Neurospora crassa OR74A]

MKRTTIWEWILTASLLSTTE AFAIRQKQDADTPKMVSLQTERLSVPKPAARDKLQRRGMNDVALDNVIGGYYV NVTIGTPGRNLSLHLDTGSSDTWVNSPSSILCQDEDKPCEYSGTYLANDSSTYEYISNHFDIKYVDGSGARGDY ASDTFTIGNTKLNRLQFGIGYSSTNAQGLLGIGYTLSEVQTRAGLPAYNNLPAQMVADGLINSNAYSIWLNDLD ALTGTILFGGVDAAKYEGDLLTLPVQTPEKGTYKNLMVTMTGLSLSQSQSSSSDKGNGDDTTQISKDNLALAV LLDTGSTLSYLPSELVKPLYDAIGIEYITDPDGKVDGYAPCHLMSSSQSVMFSFSSPLQIAVPMNELIVNRTFHG KLPRMPDGVTDACIFGIQERNGTGANTLGDTFLRSAYVVFDLDNNEISMAQTRFNATATDLKEIKKGKGGVPGA KAVENPVEATSGLSGNEGGIYVNGAACELNVGMGMAWGLLVGATMVVLGL

Sordaria macrospora

>XP_003351945.1 Uncharacterized protein SMAC_00494 [Sordaria macrospora k-hell] MKGCTPSALFLGPVLFSQLALAQQAPSGVVQWDIQKRPVPNVAPNRLLRRAGSTYQQIIQNEQARGGYFATC EMGTPGQKVTLQLDTGSSDVWVPDSTASVCNQGACDLGSFDTSRSKTYKVVGKNEFDISYVDGSSSKGDYF TDVFKIGGATVTNLTMGLGAKTDIAYGLVGVGYANNEAIVSNAQSLDAQYPNLPVTMVDDGLINTIAYSLWLND LDSSEGNILFGGIDTKKYKGDLTRIKIYPSNNGYYFSFIVAMTQLQAISPSGNDTLTSDEFPIPVVLDSGTTLSYLP QDLVEQVWHEVGADYSSRLQLAVIPCSKKTSKGYFSFQFAGPDGPRINVRMDELVLDLTSGNPPKYTSGPHK GQDVCEFGIQNFTSAPYLLGDTFLRSAYVVYDLVNNEIALAETDFNSTQSNIVAFASMSAPIPSATQAPNQAAV TNRPAVTSPAFSASPGFSDGSGNGGEDENASQGMPRAFGVAQMSVMAVSMVV<mark>AMIGSGIFALL</mark>

Trichoderma harzianum

>KKP01949.1 Aspartic proteinase [Trichoderma harzianum]

MKASPLAVAGVVLASAAQAQVVQFDIEKRHDAPRLRKRDATIDATLSNQKVQGGYFINVEVGTPGQNITLQLD TGSSDVWVPASTAAICTQTSQRNPGCTFGSFNSDDSSTFEVVGENLFDITYVDGSSSKGDYIEDTFRINGINIHN LTMGLGLDTSIANGLVGVGYINDEASLGTTRQTYPNLPVVLQQQKLINTVAFSLWLNDLDASTGSILFGGIDTEK YHGDLTRINIISPNGGKTFTEFAVNLYQVQASSPSGTDTLSTSQETLTAVLDSGTTLTYLPQDMAEQAWNEVG ATFSDELGIAVVPCSVGNINGHFAFTFAGADGPTINVTLSELVLDLFSGGPPPQFSSGPNKGQSICEFGIQNTTD APYLLGDTFLRSAFVAYDLVNNEIGIAPTNFNSTQTNVVAFASSGAPIPSSTSAPNQSNTGHSSSTQSGMSAA SGFHDGGDDNAASLTGAFSGPGMIVVGLTICYTLLGSAVFGVGWL

Saccharomyces cerevisiae

>BAR1 YIL015W SGDID:S000001277 Sccaromices

MSAINHLCLKLILASFAIINTIT ALTNDGTGHLEFLLQHEEEMYYATTLDIGTPSQSLTVLFDTGSADFWVMDSSN PFCLPNSNTSSYSNATYNGEEVKPSIDCRSMSTYNEHRSSTYQYLENGRFYITYADGTFADGSWGTETVSINGI DIPNIQFGVAKYATTPVSGVLGIGFPRRESVKGYEGAPNEYYPNFPQILKSEKIIDVVAYSLFLNSPDSGTGSIVFG AIDESKFSGDLFTFPMVNEYPTIVDAPATLAMTIQGLGAQNKSSCEHETFTTTKYPVLLDSGTSLLNAPKVIADK MASFVNASYSEEEGIYILDCPVSVGDVEYNFDFGDLQISVPLSSLILSPETEGSYCGFAVQPTNDSMVLGDVFL SSAYVVFDLDNYKISLAQANWNASEVSKKLVNIQTDGSISGAKIATAEPWSTNEPFTVTSDIYSSTGCKSRPFLQ SSTASSLIAETNVQSRNCSTKMPGTRSTTVLSKPTQNSAMHQSTGAVTQTSNETKLELSSTMANSGSVSLPT SNSIDKEFEHSKSQTTSDPSVAEHSTFNQTFVHETKYRPTHKTVITETVTKYSTVLINVCKPTY*

BAR1 HOMOLOGOUS PROTEIN ALIGNMENTS

Figure 15. Fusarium alignments of Bar1.

F.solani F.oxysporum F.verticillioides	MKATRLFYAILSLASATGAISLHKRQDGLEPRVLALDLQRSTIRDPV MDELDRSTYKVSIMKSIQLSSLLLSLLSLTEGISLNKRDNGLEPRVMSVEIQRRTISDPI MKSIQLSSLLLSLLPLTQAISLNKRDNGLEPRVMSVEIQRRTISDPI **: :* :*** * .***:**:*****************	47 60 47
F.solani F.oxysporum F.verticillioides	GNDRKRLARRSGSINVGIDNLQSLYFFNASLGTPAQDFRLHLDTGSSDLWVNSNNSTLCS SNDRIRLRKRDGTIDIGIDNEQSLYFLNASLGTPPQDFRLHLDTGSSDLWVNAQGSKLCS SNDRRRLRRRDGTVDIDIDNEQSLYFLNASLGTPAQDFRLHLDTGSSDLWVNAEGSKLCS .*** ** :*.*:::.*** *****:*************	107 120 107
F.solani F.oxysporum F.verticillioides	TPADVCATSGLYNASNSSTYKFVSSEFNITYADGSGSAGDYATETFRVGKTVIKELQFGI THANICSESGLYSPNKSSTYEYLNSDFNISYADGSGASGDYATETFRMGSVKLEDLQFGI THANICSESGLYSPNKSSTYEYLNSDFNISYADGSGASGDYATETFRMGSVKLEDLQFGI * *::*: ****:****::****	167 180 167
F.solani F.oxysporum F.verticillioides	GYESSSDQGVLGIGYSSNEAQVAEFGGEPYDNLPAKMAADGLIASNAYSLWLNDLDAASG GYVTSDNEGVLGIGYKSNEAQVGQLNRDAYDNLPAKLASKGLIASNAYSLYLNDLESATG GYVTSDNEGVLGIGYKSNEAQVGQLNRDAYDNLPAKLASKGLIASNAYSLYLNDLESATG ** :*:::*******.***********************	227 240 227
F.solani F.oxysporum F.verticillioides	TILFGGVDRKRYTGDLITVPVQKFGGRFSQFYITLTGLSVGSDTVDDSLALGVILDSGST TILFGGVDQEQYTGDLVTLPINKINGEFAELSITLQSVSADSETIADNLDLAVILDSGST TILFGGVDQEQYIGDLVTLSINKINGGYSEFSITLQSVSADSETIVDNLDLTVILDSGST ***********************************	287 300 287
F.solani F.oxysporum F.verticillioides	LTYLPTSLAEAVFEIVGADYEEGASTAYVPCDLANTSGNLTFSFSSPAEITVPLSELVLD LSYLPATLTSDIYDIVGAQYEEGESVAYVPCDLGNDSGNLTFKFKDPAEISVPLSELVLD LSYLPASLTSDIYDIVGAQYEEGQSVAYVPCDIGNDSGNFTFKFKDSAEISVSLSEMVLD *:***::*:. :::****:**** *.*****:.* ***:**.*.	347 360 347
F.solani F.oxysporum F.verticillioides	FTDVTGRRLRFDDGEPACMFGIAPSPSGTNILGDTFLRSAYVVFDLGNNEVSLAQSNFDA FTDVTGRQLSFDNGQAACTFGIAPTTGDISILGDTFLRSAYVVFDLENNEISLAQSNFDA FTDVTGNQLSFDNGQAACTFGIAPTTGDFSILGDTFLRSAYVVFDLDNNEISLAQSNFNA ******.:* **:*: ** *****:	407 420 407
F.solani F.oxysporum F.verticillioides	DGSDIVEIGSGDGAVPAATSADEPVTASGVAVSSANGAGSLSPLGKDRAASLFVGALTLG TKSHILEIGTGKHPVPTATGSGSSDNKENAAASLAPLGGDAAISMVAGAFALG TKSHILEIGTGKNAVPTVTGSGSSDNKENAAASLSPLGGDAAVSMVAGAFALG *.*:***:*. **:.*: * :*.*:*** * * :**:	467 473 460
F.solani	FWIPLV 473	

F.oxysporum	FAWMLI	479
F.verticillioides	FAWMLI	466
	. *:	

Figure 16. S. cerevisiae, T. harzianum, V. dahliae and M. grisea aligments of Bar1

protease.

protodoor		
S.cerevisiae	MSAINHLCLKDGT	30
T.harzianum	MKASPLAVAGPRLRKRDA	40
V dahliao	NOTTOTIAL COLLECTION AL DEDC CONDUCTOR EXECTION ON DESCRIPTION	EG
v.uaniiae	MRTIPIWVESSEESSIGEAVAERKRDGSPARVIGPDEESKIIQAPNDKNGMRRR-N	50
M.grisea	MKLIASLALLASLASSVINGSSIPKKDSSAPAALKVVSMPMERQMISNPLERDKEKKK-S	28
	* :::	
5 consulation	CHI FELLOWERENWATTI DICIDICAL THEEDICS ADELDINGS SUBJECT DISATES YOU	00
5.cereviside	GHEEFELQHEEEMYYATTEDIGTPSQSETVEFDIGSADFWVMDSSNPFCEPMSNISSYSN	30
T.harzianum	TIDATLSNQKVQGGYFINVEVGTPGQNITLQLDTGSSDVWVPASTAAICTQTSQR	95
V.dahliae	TVTASLDNLQTLYFVNATLGNPPQQFRLHLDTGSSDLWVNTANSQLCQEVPN	108
M.grisea	SITATLDNEETLYFINVSIGTPAQKLRLHLDTGSSDLWVNSPDSKLCSVSSQ	111
	* .: : * . :*.* *.: : :****:*.** :* :	
e		450
5.cerevisiae	ATYNGEEVKPSIDCKSMSTYNEHKSSTYQYLENGKFYITYADGTFADGSWGTETVSINGI	150
T.harzianum	NPGCTFGSFNSDDSSTFEVVGENLFDITYVDGSSSKGDYIEDTFRINGI	144
V.dahliae	PCALSGMYAANQSSSYNYLG-SYFNISYVDGSGATGDYVTDDFNIGGT	155
M.grisea	PCKYAGTYSANSSSTYQYVS-SVFNISYVDGSGAQGDYVSDTISLGNT	158
-	** * *.*.** *	
S.cerevisiae	DIPNIOFGVAKYATTPVSGVLGIGFPRRESVKGYEGAPNEYYPNFPOILKSEKIIDVVAY	210
T.harzianum	NIHNLTMGLG-LDTSIANGLVGVGVINDEASLGTTROTYPNLPVVLOOOKLINTVAF	200
V.dabliae	VETDEOEGTG-VESSAA0GTLGVGVPMNEVOVGRAGMDPVDNTAAKNKA0GLTOSNAE	212
M grises	KTDSLOEGTG-VTSSSTOGTLGVGVEANEVONGDAGLVAVDNLDSDNVELGLTASNAV	215
n.grisea	KIDSEQFGIG-TISSSIQUEGVGTEAREVQVGKAGEKATKREFSKHVEEGEIASRAT	215
S.cerevisiae	SLFLNSPDSGTGSIVFGAIDESKFSGDLFTFPMVNEYPTIVDAPATLAMTIOGLGAONKS	270
T.harzianum	SLWENDEDASTGSTEEGGEDTEKYNGDETRINTISPNGGKTETEFAVNLYOVOASSPS	258
V.dabliae	SEVENSE SASTOSTE EGOVOTENEVGELOTERTOWNADTHSEELVTETOVTEG	265
M grafican		200
m.grisea	SETENDEQSNAGSTEFGGVDTEQTIGTEQTVFTQANGGRMAEFETTETSVTET	208
S.cerevisiae	SCENETETTTK/VPVLLDSGTSLLNAPK/TADKMASEVNAS/SEEEGT/TLDCP/SVG-DV	329
Tharzianum	GTDTI STSOETI TAVI DSGTTI TVI PODMAEOAUNEVGATESDEI GTAV/PCSVCNT-NG	317
V dahlian	STTNC SDLATAVLLDSSSSLEVLDDANUVETVSNUSAVVDEEDAVAEVDCALDOS DA	327
v.dahilae	-STING-SULAIAVELUSGSSESTEPDANVKEITSNVGAVTQEEQAVAFVPCAEKQS-PA	322
M.grisea	-SASIGGDNLALAVEEDSGSSETYEPDDIVKSTYSAVDAQYDSNEGAAYVPCSEANDQSK	327
	.:*****:*******************************	
S. cerevisiae	EVNEDEGDLOTSVPLSSLTLSPETEGSVCGEAVOPTND-SMVL	371
T. harzianum	HEAFTEAGADGPTTNVTI SELVI DI ESG-GPPDOESSGPNKGOSTCEEGTONTTDAPVI I	376
V dahlian	NATETES VOLTUPISELVEDERSG-GEPPVESSGENKGQSTEERGLADAGAGTUV	376
v.dahilae	NATE TEST A CHARGE AND A CHARGE	3/3
M.grisea	KMTETESGIKIDVSMNELVLDLVTSSGRRPSERNGASACLEGIAPAGKGINVL	380
S. cerevisiae	GOVELSSAVVVEDLDNVKTSLAGANWNASEVSKKLVNTOTDGSTSGAKTATAEPWSTNEP	431
T. harzianur	GDTEL RSAEVAVDLVNNETGTAPTNENSTOTNA/AEASCGADTDCCTCADNOSHTOHS	434
V dahlian	ODTENDENTITIE ANTIONNELINETEL ANTIONNELE TOTODESCUDEATTIVAEDUAATUE	434
v.daniide M.golcoo	ODTEL DEAVIDATED DUNATED ACTERNATION FOR THE STOLEN CONCURSES OF SALLVAEPVAATHU	433
m.grisea	GDTFLKSAYVVYDLDNNAISLAQISENAIKTNVKEIGKGSNSVPGAVAVSSPVAATSG	438
	**.*: **::.:*: * *.:* : :*::	
S.cerevisiae	FTVTSDIYSSTGCKSRPFLQSSTASSLIAETNVOSRNCSTKMPGTRSTTVLSKPT	486
T.harzianum	SSTOSGMSAASGFHDGGDDNAASLTGAFSGPGMTVVGLTICVTLLGS	481
V.dahliae	LRGGGAAAAHSTAHVLTPLAGPELAGVTSGTLGEVSEE	471
M. grises		474
in grised	Lacaaanadaamammetricctymacradallyt-t	4/4

.

Figure 17. F. oxysporum, S. cerevisiae and C. glabrata aligments of Bar1 protease.

F.oxysporum S.cerevisiae C.glabrata	MDELDRSTYKVSIMKSIQLSSLLLSLLSLTEGISLNKRDNGLEPRVMSVEIQRRTISDPI 	60 22 32
F.oxysporum S.cerevisiae C.glabrata	SNDRIRLRKRDGTIDIGIDNEQSLYF-LNASLGTPPQDFRLHLDTGSSDLWVNAQGSKLC TALTNDGTGHLEFLLQHEEEMYYATTLDIGTPSQSLTVLFDTGSADFWVMDSSNPFC ASLSKRSAVDLQFRRFNNLYYESVLEFGTPPQSIPLVLDTGSSDLWVTLIGNPLC . ::::::::::::::::::::::::::::::::::::	119 79 87
F.oxysporum S.cerevisiae C.glabrata	STHANICSESGLYSPNKSSTYEYLN-SDFNISYADGSGASGD LPNSNTSSYSNATYNGEEVKPSIDCRSMSTYNEHRSSTYQYLENGRFYITYADGTFADGS YNKGSGKPPKGLIDCSGLVFYDMDKSQTFDYLKNVTFKIGYADTTYTSGI :. * ***.*::**: * * *** : :.*	160 139 137
F.oxysporum S.cerevisiae C.glabrata	YATETFRMGSVKLEDLQFGIGYV-TSDNEGVLGIGYKSNEAQVGQLNRDAYDNLPAKL WGTETVSINGIDIPNIQFGVAKYATTPVSGVLGIGFPRRESVKGYEGAPNEYYPNFPQIL WIVDIITLPEGHLKDLQFGMAFATNATFSGVLGIGFPAMESVNGYEFAPGKFYPNFPLAL : .: .: .: .: .: .: .: .: .: .: .: .: .:	217 199 197
F.oxysporum S.cerevisiae C.glabrata	ASKGLIASNAYSLYLNDLESATGTILFGGVDQEQYTGDLVTLPINKINGEFAELSI KSEKIIDVVAYSLFLNSPDSGTGSIVFGAIDESKFSGDLFTFPMVNEYPTIVDAPATLAM KNAGFTNIAAYSIEYND-ESKKGSILFGSIDTSRFIGPLYTFPMINEFPGIADEPSTLSL . : ***: *. :* .*:*:**.:* .:: * * ::: * . : *::	273 259 256
F.oxysporum S.cerevisiae C.glabrata	TLQSVSADSETIADNLDLAVILDSGSTLSYLPATLTSDIYDIVGAQYEEGESVAY TIQGLGAQNKSSCEHETFTTTKYPVLLDSGTSLLNAPKVIADKMASFVNASYSEEEGIYI TLDGIGIDGSCEQWVISNTKLPALLDTGSTLIELPHPITQSIASYLNATWSDDHGLFV *:: : : : : : : : : : : : : : : : : :	328 319 314
F.oxysporum S.cerevisiae C.glabrata	VPCDLGNDSGNLTFKFK-DPAEISVPLSELVLDFTDVTGRQLSFDNGQAACTFGIAPTTG LDCPVSVGDVEYNFDFGDLQISVPLSSLILSPETEGSYCGFAVQPTND LACPSDDFLTTTDLAFTFGELHMKIPLRSFILLPDEESNGLCGLGITSSKG : * . * . *	387 367 365
F.oxysporum S.cerevisiae C.glabrata	DISILGDTFLRSAYVVFDLENNEISLAQSNFDATKSHILEIGTGKHPVPTATGSGSSD S-MVLGDVFLSSAYVVFDLDNYKISLAQANWNASEVSKKLVNIQTDGSIS R-VILGDSFLTHVYTVFDLDNYMISLAPMAKSSLPGKVIEIPANGLIE :*** ** .*.***:* **** :. :::*:	445 416 412
F.oxysporum S.cerevisiae C.glabrata	NKENAAASLAPLGGDAAISMVAGAFALGFAWMLIGAKIATAEPWSTNEPFTVTSDIYSSTGCKSRPFLQSSTASSLIAETNVQSRNC NAVISKSEKWTHFNDITVNEYGFRN-YCDGELQDIHSYSSKLNSSSLVYSSNFSSDEE - : : : : : : : : : : : : : : : : : : :	479 469 469
F.oxysporum S.cerevisiae C.glabrata	STKMPGTRSTTVLSKPTQNSAMHQSTGAVTQTSNETKLELSSTMANSGSVSLPTSNSI QNSS-ESVSPSIFNTDSSIKEIYPSLSQKEHLSALLTTISTSEIHKPVTATI	479 527 520