
  

  

Abstract— A pilot study on tracking changes in tidal volume 
(TV) using ECG signals acquired by a wearable armband is 
presented. The wearable armband provides three ECG 
channels by using three pairs of dry electrodes, resulting in a 
device that is convenient for long-term daily monitoring. An 
additional ECG channel was derived by computing the first 
principal component of the three original channels (by means 
of principal component analysis). Armband and spirometer 
signals were simultaneously recorded from five healthy subjects 
who were instructed to breathe with varying TV. Three 
electrocardiogram derived respiration (EDR) methods based 
on QRS complex morphology were studied: the QRS slopes 
range (SR), the R-wave angle (Փ), and the R-S amplitude (RS). 
The peak-to-peak amplitudes of these EDR signals were 
estimated as surrogates for TV, and their correlations with the 
reference TV (estimated from the spirometer signal) were 
computed. In addition, a multiple linear regression model was 
calculated for each subject, using the peak-to-peak amplitudes 
from the three EDR methods from the four ECG channels. 
Obtained correlations between TV and EDR peak-to-peak 
amplitude ranged from 0.0448 up to 0.8491. For every subject,  
a moderate correlation (>0.5) was obtained for at least one 
EDR method. Furthermore, the correlations obtained for the 
subject-specific multiple linear regression model ranged from 
0.8234 up to 0.9154, and the goodness of fit was 0.73±0.07 
(median ± standard deviation). These results suggest that the 
peak-to-peak amplitudes of the EDR methods are linearly 
related to the TV. opening the possibility of estimating TV 
directly from an armband ECG device. 
 

Clinical Relevance— This opens the door to possible 
continuous monitoring of TV from the armband by using EDR. 
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I. INTRODUCTION 

Long-term continuous cardiorespiratory monitoring can 
be useful in several scenarios, including sleep studies, 
prediction of epileptic seizures, stress assessment, and 
monitoring of chronic respiratory patients [1]. Respiration is 
usually monitored by techniques that require cumbersome 
devices albeit recent advances in sensor technologies have 
made it possible for daily monitoring.  However, they require 
separate respiration sensor and its data acquisition circuit. 
Thus, indirect assessment of respiratory information from 
other biomedical signals, such as electrocardiogram (ECG),  
has been extensively investigated [2]. The great majority of 
these studies are focused on respiratory rate, which is a 
sensitive clinical parameter in a multitude of pulmonary 
diseases [3]. However, tidal volume (TV) (the volume of air 
inhaled or exhaled during the respiratory cycle) is also a 
clinically relevant index, which is especially useful for 
monitoring respiratory issues such as the Cheney-Stokes 
respiration and sleep apnea  [4]. The ideal respiratory monitor 
would provide continuous information on respiratory rate, 
TV, and gas exchange in a non-obtrusive fashion [5]. 

There are scant studies on deriving TV from the ECG 
signal. Some authors reported proportionality between TV  
and an ECG derived respiration (EDR) signal based on R-S 
amplitude [6]. TV was estimated from 10 mechanically-
ventilated Yorkshire swine using an EDR signal based on 
root-mean-square amplitude in  [7]. In [4], TV was estimated 
from EDR signals based on both heart rate and beat 
morphology features during a treadmill test. However, the 
strong relationship between TV and heart rate during exercise 
limits the interpretation of the results, as the method could be 
mainly tracking changes in heart rates and not TV. 

In this paper, a pilot study on how the changes in TV can 
be tracked by an ECG-based wearable device is presented. 
The wearable device is an armband recently developed in our 
lab at the University of Connecticut. This armband is 
designed to be worn on the left upper-arm, and it provides 
three ECG channels using three pairs of dry electrodes. The 
coverage (percentage of time providing usable data) of this 
device is approximately 50% during the non-bed time, and 
95% during the bed time [8]. Furthermore, a previous study 
revealed that the respiratory-related modulations can be 
observed in the ECG signals acquired by the armband [1]. 
Further details are provided about the armband in [8]. 

II. MATERIALS AND METHODS 

A. Signal acquisition 
The armband and spirometer signals were simultaneously 

recorded from five healthy volunteers during a lab-controlled 
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experiment which included an exercise consisting of 
breathing with different TV. Subjects were requested to 
breathe through the spirometer while looking at its output 
signal on a computer screen in order to have a visual 
feedback. The subjects were asked to begin breathe with a 
small TV while maintaining the same volume for three 
consecutive breathing cycles. The subjects were subsequently 
asked to incrementally increase their TV also while 
maintaining this depth for three consecutive cycles, and then 
to their maximum TV again for three consecutive cycles. The 
subjects were then asked to decrement their TV in a similar 
step wise fashion. An example of TV obtained during the 
above described breathing procedures can be observed in the 
panel (e) of Fig. 1. 

B. Signal preprocessing 
Armband-ECG signals were preprocessed as in [8]. This 

includes a bandpass filter with 3 Hz and 25 Hz as the cut-off 
frequencies. In addition, we estimated a new ECG channel 
from the three channels of the armband, by taking the first 
principal component from the spatial principal component 
analysis (PCA). 

R peaks were automatically detected by a technique based 
on variable-frequency-complex-demodulation [9]. Then, the 
Q and S peaks were detected by an automatic delineator 
based on the discrete wavelet transform [10]. 

C. Electrocardiogram derived respiration methods 
Three EDR techniques based on QRS morphology were 

applied to each one of the ECG channels. Thus, a total of 12 
EDR signals were obtained per subject. These three EDR 
techniques are: 

QRS slope range (SR): It exploits the respiration-related 
variations of the QRS slopes. First, the QRS slopes are 
estimated from the first derivative of each QRS complex. 
Subsequently, the SR is defined as the maximum slope minus 
the minimum slope [11]. These SR series are known to be 
oscillating synchronously with respiration. 

R-wave angle (Փ): Similar to the SR, this EDR technique 
exploits the respiration-related modulation of the QRS slopes. 
In this case, the R-wave angle is estimated as the smallest 
angle formed by two lines having an slope equal to the 
estimated QRS slopes [1]. 
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Figure 1. Example of acquired signals: (a), (b), and (c) are the three preprocessed armband-ECG channels x1(n), x2(n), and x3(n), respectively. (d) shows the 
synthetized ECG channel (by means of PCA) xPCA(n). (e) shows the spirometry signal xR(n) and its estimated envelopes (in dashed red and blue lines). (f) 
shows the tidal volume estimated from xR(n) by subtracting its estimated envelopes. (g) shows the EDR signal whose peak-to-peak amplitude provided the 
highest correlation with TV in this subject: RS from x3(n). 
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Figure 2. Flow diagram of the algorithm for estimating the peak-to-peak 
amplitude of an EDR signal. The sampling rate used was 4 Hz. 



  

R-S amplitude (RS): Similarly to the two EDR methods 
described above, this EDR technique exploits the respiration-
related modulation of the QRS morphology. In this case, the 
amplitude of each QRS complex is estimated as the 
amplitude of the R peak with respect to the amplitude of the 
S peak. This parameter is also known to be oscillating 
synchronously with respiration [6]. 

D. Tidal volume tracking 
The hypothesis underlying this work is that the peak-to-

peak amplitude of the EDR signals is related to the depth of 
breathing and thus, to the TV. An evenly sampled version of 
the EDR series (which are measured beat-to-beat) was 
obtained using the cubic-splines interpolation with a 
sampling rate of 4 Hz. Afterwards, a band-pass filter with the 
cut-off frequencies of 0.075 Hz and 1 Hz was applied. This 
processing remains the same from those used in [1] for 
estimating respiratory rate from the armband-ECG signals. 

The peak-to-peak amplitude was then estimated from 
each one of the evenly-sampled EDR signals, by subtracting 
its positive and negative envelopes. These envelopes were 
estimated from the local maxima (positive envelope) and 
local minima (negative envelope) between zero-crossings. A 
flow diagram of the algorithm is shown in Fig. 2. 

The spirometer signal was resampled to the same 
sampling rate of the EDR signals (4 Hz). Furthermore, the 
same band-pass filter (0.075-1 Hz) was applied. The 
reference TV was estimated as the peak-to-peak amplitude of 
the resulting band-pass-filtered spirometer signal and used as 
the gold standard for evaluation of different EDR methods. 
An example of the positive and negative envelopes obtained 
from a spirometer signal is shown in Fig. 1e, and the 
resulting reference TV is shown in Fig. 1f. 

E. Performance measures 
In order to assess the capability of the EDR methods to 

track the changes in TV, the correlation between the 
reference TV (estimated from the spirometer signal) and the 
EDR’s peak-to-peak amplitude was computed. 

In addition, a subject-specific multiple linear regression 
model using the peak-to-peak amplitudes of all EDR signals 
derived from all ECG channels was used to predict TV. An 

example of the TV estimated by the subject-specific multiple 
linear regression model can be observed in Fig. 3. 

III. RESULTS 

Table I shows the obtained correlations between the TV 
and the peak-to-peak amplitude of the different EDR 
methods, for every subject and ECG channel. In addition, 
the correlations obtained from the subject-specific multiple 
linear regression model are also shown in Table I. The 
goodness of fit (R2) for the multiple linear regression were 
0.70, 0.75, 0.84, 0.68, and 0.69, in case of subjects 1, 2, 3, 4, 
and 5, respectively. 

TABLE I.  CORRELATIONS BETWEEN TV AND THE PEAK-TO-PEAK 
AMPLITUDES FOR ALL SUBJECTS.THE ROWS REPRESENT EACH OF THE THREE 

EDR METHODS FOR EACH OF THE FOUR CHANNELS. IN ADDITION, THE 
CORRELATIONS OBTAINED FROM THE ADJUSTMENT OF THE MULTIPLE 

LINEAR REGRESSION IS ALSO SHOWN IN THE BOTTOM ROW. 

 Subjects 
 1 2 3 4 5 

SR1 0.5513 0.5320 0.6882 0.5556 0.3224 
Փ1 0.4534 0.7477 0.7718 0.5933 0.4836 
RS1 0.2805 0.6780 0.8438 0.2038 0.0448 
SR2 0.6178 0.6876 0.6644 0.0091 0.1550 
Փ2 0.5398 0.6708 0.8633 0.1815 0.6086 
RS2 0.5035 0.5938 0.8291 0.1880 0.4064 
SR3 0.4669 0.7046 0.6538 0.3361 0.2103 
Փ3 0.6368 0.4442 0.6302 0.2202 0.3832 
RS3 0.8344 0.4069 0.7274 0.3194 0.2087 

SRPCA 0.6319 0.6571 0.6855 0.1255 0.3195 
ՓPCA 0.5461 0.4369 0.8049 0.2994 0.7415 
RSPCA 0.4942 0.7853 0.8491 0.2658 0.5164 

Regression 0.8371 0.8681 0.9154 0.8234 0.8317 

IV. DISCUSION 

A pilot study on tracking changes in TV from ECG 
signals acquired by a wearable armband has been presented. 
The armband provides three ECG channels by using three 
pairs of dry electrodes, resulting in a device that is very 
convenient for long-term daily monitoring. An additional 
ECG channel created by estimating the first principal 
component of the three original channels (by means of 
PCA). This armband can provide approximately 50% of 
usable data during the non-bed time, and 95% of usable data 
during the bed time [8]. Armband and spirometer signals 
were simultaneously recorded from five healthy subjects in 
which they were requested to breathe with different TV. 

Three EDR methods based on QRS complex morphology 
were studied: SR, Փ, and RS. The features on which SR is 
based (QRS slopes), as well as Փ, were previously used for 
estimating respiratory rate from the armband-ECG signals, 
obtaining a relative error that was lower than 5% [1]. In 
addition, the RS method was also studied because its 
simplicity makes it very interesting for wearable devices. 
The hypothesis underlying this work is that the peak-to-peak 
amplitude of the EDR signals is related to the depth of 
breathing and thus, to the TV. 

The spirometer signal was used as the reference TV for 
evaluating EDR methods. The peak-to-peak amplitude of the 
EDR signals was estimated, and their correlation with the 
reference TV was computed. Obtained correlations ranged 

 
Figure 3. Example of tidal volume estimated by the multiple linear 
regression model (dashed blue line) vs. the tidal volume estimated from the 
spirometer signal (solid black line). In this case, obtained correlation was 
0.8371, and goodness of fit was 0.70. 



  

from 0.0448 up to 0.8491. The SR-based EDR method 
obtained moderate correlation (>0.5) in 12 (of the 20 
possible) cases. The Փ-based EDR method obtained 
moderate correlations in 12 cases, achieving strong 
correlation (>0.7) in 5 of those cases. The RS-based EDR 
method obtained moderate correlations in 10 cases, 
achieving strong correlation in 6 cases. For every subject, 
moderate correlation was obtained for at least one of the 
EDR methods. These results suggest that the peak-to-peak 
amplitude of the studied EDR methods is linearly related to 
the TV. However, no EDR method obtained consistently 
high correlation for all the subjects. Similarly, no ECG 
channel obtained consistently high correlations. These 
results suggest that a final application may require a subject-
specific setup. 

A multiple linear regression model was adjusted for each 
subject, using the peak-to-peak amplitude from the three 
EDR methods from the four ECG channels. Obtained 
correlations were from the lowest of 0.8234 to as high as 
0.9154, demonstrating the linear relationship of the TV with 
the peak-to-peak amplitudes. These results suggest that the 
wearable armband can track the changes in TV, although 
two limitations of this study should be noted. One limitation 
is that the low number of subjects used for this study. 
Another limitation is that the multiple linear regression 
model was not tested with independent data, so the results 
may be biased due to a possible overfitting. Further studies 
are needed, including more subjects and more diverse 
breathing experiments per subject to determine the true 
efficacy of the proposed approach in approximating TV 
from EDR-derived parameters from ECG signals. 

Obtained R2 were slightly lower than those reported in [7] 
for mechanically-ventilated Yorkshire swine (0.73±0.07 vs. 
0.77±0.11 in median ± standard deviation). It should be 
noted that the ECG signals analyzed in this paper are 
recorded by three pairs of electrodes over the left upper-arm 
that are integrated into a wearable armband. This represents 
a more challenging scenario than the conventional ECG 
setup, which is based on wet (hydrogel) electrodes over the 
chest, although the armband is a much more convenient 
device alternative for long-term daily monitoring. 

It should be noted that, the algorithm to estimate the 
amplitude of EDR signals was designed for tracking fast 
changes (as envelopes are estimated peak-to-peak), while an 
estimation of the trend (slower variations, e.g., minute-to-
minute) would be enough for some applications, such as 
daily monitoring of patients with chronic respiratory 
problems. This fact is important because the peak-to-peak 
amplitude of the EDR signals were observed to be noisy, 
while tracking the slower changes was better than the faster 
ones (see Fig. 3 as an example). These observations suggest 
that the armband would be more appropriate for this kind of 
applications. On the contrary, other applications would 
require tracking fast variations, such as sleep apnea 
detection, where periods of 10 seconds (or longer) with 
cessation of breathing have to be detected. The temporal 

resolution of the EDR amplitude estimation should be 
adopted for each application. 

V. CONCLUSION 
The results suggest that the peak-to-peak amplitude of the 

EDR methods derived from the armband ECG is linearly 
related to the TV. This preliminary study suggests a good 
potential for tracking changes in TV directly from the 
armband device, which is a more conducive approach for 
long-term monitoring when compared to a Holter monitor. 
Further studies are needed in order to validate the present 
findings. These studies should include a higher number of 
subjects, and an evaluation of the multiple linear regression 
model with different data rather than the actual source data. 
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