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Abstract. Flexible cooking surfaces, eg. fully active surfaces, have gained lately an increasing importance in the domestic
induction heating. Multi-inverter structures are a cost-efficient solution(to develop this technology. However, they add control
restrictions that can be solved with a power factor corrector (PFC) stage assproposed in this work.

The proposed converter and modulation strategy work with zero voltage switching (ZVS), decreasing the switching losses,
enabling a higher working frequency and, therefore, decreasing the(magnetic devices size. The bus voltage is controllable and
can be increased, easing the load power control and decreasing‘current through load and inverter and, so, the power losses.
Besides, the switching frequency is constant in the mains cycle and can be modified to synchronize the load inverter and the
PFC stage avoiding intermodulation noise. A 3.6 kW prototype has been implemented fulfilling the EMC requirements. The
experimental waveforms and efficiency have been measured to prove the feasibility of this proposal.
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1. Introduction

In recent years, induction heating (IH) technology has become a reality in our homes [1-5]. This
cooking technology has been'developed in depth, and it has revolutionized the cooking way. In comparison
with typical technologies, such as gas, electric or halogen, IH is more efficient, faster, cleaner and safer [6].

Recently, flexible cooking surfaces have taken importance in the domestic IH technology [7]. There are
different types of surfaces with concentric coils or with coils spread along the whole surface, which are
denominated fully active surfaces (Fig. 1). These allow heating several pots, no matter the size or shape
of these.

The coils from a typical IH cooktop are supplied by an inverter, usually a half-bridge, which is the
most common topology in these applications. However, the development of flexible cooking surfaces has
brought an increase of the manufacturing cost due to the increased number of coils and power electronics
devices. In order to achieve a cost-effective implementation, some multi-inverter structures have been
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Fig. 1. Fully active surface [17].

proposed recently [8—10]. However, these structures add control restrictions and complicate the power
control in the induction loads [2].

In order to overcome these restrictions, a power factor corrector (PEC) front-end stage has been
proposed. The PFC stage assures a power factor close to the unity, a low harmonic distortion and generates
a controllable DC voltage bus. This stage allows separating the mains front the multi-inverter structure,
fulfilling EMC requirements [11-16] and making easier the conttoel,of the output power in the pot [17—
19]. Besides, the bus voltage can be increased, decreasing the‘eurrent through IH inverter and IH load,
and, therefore, decreasing losses in these devices.

Furthermore, having into account that induction heating cooktops with fully active surfaces have usually
two isolated electronic board because they are powered. from two mains phases, and in order to reduce
manufacturing cost implementing multi-inverter structures, it is interesting to join both electronic boards.
This idea can be implemented with a front-end PFC to.get a common DC bus. In this way, the total board
size and several components such as DC-DC, relays, digital electronic components or heatsinks can be
reduced.

The paper is structured as follows. The next section presents the topology of the converter and the
operation mode, the control strategy section describes how the converter control is performed. After that
section, the implementation and the experimental results are shown and, finally, the main conclusions of
this work.

2. Converter topology and operation mode
2.1. Converter topology

The proposed PFC converter is shown in Fig. 2. It is based on the boost converter and it is composed of
two half-bridge legs, a and b, which allow short-circuiting the boost inductance, L,, with the mains voltage,
v,e» With a period T, and/or the bus voltage, v,. Each half-bridge is composed of two switching devices,
S, and S,, implemented with IGBTs, T, and T,, and antiparallel diodes, D, and D,. A filter between
the mains and the PFC stage is placed, supplying the medium frequency currents and removing the high
ripple of the boost coil current, .. In the proposed implementation, an inductor, L, and a capacitor, Cy,
are used for filtering. Besides, a capacitor, C,, filters the bus voltage, which powers the IH inverter. The set
is composed of as many half-bridge branches, §,, , and S, ,, as TH loads. Each IH load [20] is composed

of the series equivalent resistance, R and inductance, L and the resonant capacitor, C, ,,.

eq, n> eq, n>
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Fig. 2. PFC IH topology with n IH-loads [19].
2.2. Operation mode

The PFC converter works in full-bridge configuration in order, to get Zero Voltage Switching (ZVS)
and fixed-frequency Continuous Conduction Mode (CCM)sas is shown in Fig. 3. In this way, the T, ,
device and the T, , device are activated simultaneously, and)vice versa. Therefore, the boost voltage, v,
according to the activated devices is

vy = {Uac — Uy Thpo» Dpg> Ty Dy - ON

: ) (D
Uge ¥ Ups 114 Dy Ty o Dy - ON

For each branch, the duty cycle can be defined as

1 Uac 1 Uac

This operation mode has several advantages. Firstly, the zero-crossing distortion of the current is avoided
because the duty cycle is 0.5 when the mains voltage is zero (v, = 0), simplifying the converter control and
fulfilling EMC requirements. Seeondly, this modulation strategy works with ZVS switching, decreasing
the switching losses, enabling ahigher working frequency, and, therefore, decreasing the value of magnetic
devices: the boost inductanee and the filter inductance. Besides, the switching frequency is constant
along the mains cycle and can be modified to synchronize the load inverter and the PFC stage avoiding
intermodulation noise. The main disadvantage is the current through the boost inductance and switching
devices of the PFC converter is higher, increasing conduction losses in these components.

3. Control strategy

The converter control consists on generating a sinusoidal reference current, i, .., in phase with the
mains voltage and with the desired RMS current value, I, .. The regulator adjusts the mains current,
ir, to follow the reference exactly. The main advantage of using the control of the current managing the
duty cycle, D, is the converter can work at constant frequency avoiding intermodulation noise between
IH inverter and PFC stage. This duty cycle must be controlled in order to get a sinusoidal mains current
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Fig. 3. ZVS and fixed-frequency CCM modulation strategy-[17].
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Fig. 4. Control scheme where the calculated action is the-boest inductance voltage, V;, which is used to calculate later the duty
cycle by using the converter parameters [18].

waveform in phase with the mains voltage. In this way, a good power factor and a low total harmonic
distortion of the current is achieved.

In order to control the system and fo eliminate the stationary error, a proportional, K, and integral, K,
regulator is proposed. In typical control schemes, the action calculated by the regulator is directly the duty
cycle, D, applied to the PFC stage. However, this system is difficult to control using this scheme because
its non-linearity which depends strongly on the mains voltage, the bus voltage, and the induction load.

To overcome this issue, using the boost coil average voltage, V;, as controller output action is proposed,
as it is shown in Fig. 4. When the average voltage in an inductance differs from zero, it means a lineal
variation of its average current according to the differential equation that models the boost coil behavior.
Consequently, the V; voltage makes possible to control the boost coil average current, I, linearly and,
therefore, the mains current, i;, can be properly shaped. Keeping in mind Eq. (2), the duty cycle can be
calculated in a second step as

Vv,+V, .-V,
Da — b ac L ,
2V,
where V. and V, are the mains and the bus average voltage in a switching cycle, respectively.

In order to perform this control, the input voltage, v, the input current, if, and the bus voltage, v,, must
be measured.

D,=1-D,, 3)

ac’
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PARAMETER VALUE
Mains voltage, Vac,rms 230 V RMS, 50 Hz
Input power range 750-3600 W

Operating frequency range 20-30 kHz

Filter capacitor, Cr 6,6 uF
Filter coil, Ly 200 uH

Bus capacitor, C» 60 uF
Boost coil, L 150 uH
Resonant capacitor, Cr 536 nF
IH-load equivalent inductance, Leg 170 pH
IH-load equivalent resistancey Req 6Q

(a) (b)

Fig. 5. Experimental prototype (a) and converter design’parameters (b).

@ (b) ©

Fig. 6. Main waveforms of the converter input and, PFC stage delivering (a) 3.600 W, (b) 2.300 W and (c) 750 W: boost coil
current, i, (30 A/div, yellow), mains voltage, v,/ (400 V/div, blue), mains current, if, (10 A/div, purple), bus voltage, vy,
(400 V/div, green), and input power, p;,,, (10(kW/div, brown). Time: 10 ms/div.

4. Implementation and experimental results
4.1. Prototype

In order to prove the feasibility of the proposed topology, a 3.6 kW prototype with one IH load has
been designed and implemented. The operating frequency has been set to be higher than 20 kHz to
avoid acoustic noise. The final prototype is shown in Fig. 5. It is composed of a three-phase module,
FS150R12PT4, with three half-bridges on parallel using 1200-V Infineon IGBTs. A Spartan-6 FPGA
from Xilinx is used to implement the control architecture. Besides, the whole system can be managed
from the PC through a Wi-Fi module and a PC application has been developed using Visual Basic.

The 150 pH boost inductance, L, and the 200 pH filter inductance, L;, have been implemented as 10 cm
diameter air core toroids with 43 and 50 loops, respectively. The current is measured with the CDS4050
magneto-resistive current sensors from Sensitec and the voltage is measured using resistive dividers. The
analog to digital conversion is performed using a 10-bit and 1-MSPS ADCS7477 converter from Texas
Instruments.
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Fig. 7. Detail of the main waveforms of the converter output and PFC stage delivering (a) 3.600 W, (b) 2.300 W and (c) 750
W: boost coil current, i, (30 A/div, yellow), load voltage, Voo (400 V/div, blue), load current, i;, (30 A/div, purple), voltage
between a and b half-bridges, v, 45, (400 V/div, green), and output power, p,,,,;, (50 kW/div, brown). Time: 20 ps/div.

4.2. Experimental results

The experimental results proving the proper operation of the conyérter are shown in Fig. 6 and Fig. 7
at different powers: 3.600 W in (a), 2.300 W in (b) and 750 W in (¢);with a 400-V DC bus voltage. The
main waveforms of the PFC stage are shown in Fig. 6, including,the bus voltage, v,, the mains voltage,
v,.» the boost coil current, i;,, and the mains current, if, whereas a zoomed detail of the load and PFC stage
waveforms are shown in Fig. 7. The ZVS operation can besSeen for both cases.

At maximum power, the converter is working at 20{5kHz achieving a 92.5% efficiency. The EMC
harmonic emissions for A-class devices are below the.maximum limit. The achieved power factor is 99.7%
while the current harmonic distortion, THD1, is 2.9%.

5. Conclusions

In this paper, a PFC front-end stage, its‘operation mode and its control strategy have been proposed to
improve the flexible cooking surfaces~This stage allows controlling and increasing the bus voltage, easing
the output power control and decreasing the power losses in the IH inverter due to the current through the
IH load and inverter is lower.

The proposed operation mode and control strategy work with zero voltage switching (ZVS), decreasing
the switching losses, enabling a higher working frequency and, therefore, decreasing the magnetic devices
size. Besides, the switching frequency is constant in the mains cycle and can be modified to synchronize
the load inverter and the PFC stage avoiding intermodulation noise. Finally, a 3.6 kW prototype has been
implemented fulfilling EMC requirements and proving the feasibility of this proposal.
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