
The Serializable and Incremental Semantic
Reasoner fuzzyDL

Ignacio Huitzil
University of Zaragoza

Zaragoza, Spain
ihuitzil@unizar.es

Umberto Straccia
ISTI-CNR
Pisa, Italy

straccia@isti.cnr.it

Carlos Bobed
everis/NTT Data

Univ. Zaragoza, Spain
cbobed@unizar.es

Eduardo Mena
I3A, University of Zaragoza

Zaragoza, Spain
emena@unizar.es

Fernando Bobillo
I3A, University of Zaragoza

Zaragoza, Spain
fbobillo@unizar.es

Abstract—Serializable and incremental semantic reasoners
make it easier to reason on a mobile device with limited
resources, as they allow the reuse of previous inferences computed
by another device without starting from scratch. This paper
describes an extension of the fuzzy ontology reasoner fuzzyDL to
make it the first serializable and incremental semantic reasoner.
We empirically show that the size of the serialized files is smaller
than in another serializable semantic reasoner (JFact), and that
there is a significant decrease in the reasoning time.

Index Terms—fuzzy ontologies, semantic reasoning, incremen-
tal reasoning, mobile computing

I. INTRODUCTION

In the last years there is an increasing interest in the use
of semantic reasoners in mobile devices [1], [2]. Seman-
tic reasoners are software tools that can answer queries or
compute inferences from logical knowledge bases represented
using ontologies. An ontology is an explicit and formal
specification of concepts, individuals, and relationships of
the application domain at hand [3], [4]. Ontologies, encoded
using the standard language OWL 2 [5], are nowadays widely
used for knowledge representation favoring, among others,
also information integration, the reuse of components, or
discovering implicit knowledge.

We recall that, in the context of semantic reasoning on
mobile devices, some reasoning strategies have been proposed
so far: namely, local reasoning (all the reasoning is done on
the device), external reasoning (the reasoning is done on an
another device, such as a fast dedicated server, and sending
the results to the mobile device), or hybrid reasoning (doing a
part of the reasoning externally, and a part locally) [6]. Hybrid
reasoning seems to be as a promising trade-off between the
other options: on the one hand, it can benefit from the speed of
an external device to preprocess the ontology (recall that mo-
bile devices typically have limitations in terms of CPU power,
memory, connectivity, etc.), and on the other hand it can also
add new sensitive information without compromising it (the
information is added in the user’s device without disclosing
it). Moreover, this approach does not require to communicate
with the server too many times (typically, only to download

I. Huitzil was partially funded by Universidad de Zaragoza - Santander
Universidades (Ayudas de Movilidad para Latinoamericanos - Estudios de
Doctorado). I. Huitzil, C. Bobed, E.Mena, and F. Bobillo were partially
supported by the projects TIN2016-78011-C4-3-R and JIUZ-2018-TEC-02,
and by DGA/FEDER.

the preprocessed ontology). This latter aspect is interesting
because in mobile computing environments connectivity is
often unreliable and additionally battery consuming.

To support hybrid reasoning, serializable incremental se-
mantic reasoners are needed. Unfortunately, although there are
some serializable and some incremental semantic reasoners,
there are no semantic reasoners yet that are both serializable
and incremental. The objective of this paper is to discuss an
extension of the fuzzyDL reasoner [7] to fill this gap, making
it the first serializable and incremental semantic reasoner.

While ontologies have proved to be very useful in many
applications, in many real world domains knowledge is im-
precise or vague. In such scenarios, fuzzy ontologies (fuzzy
extensions of the ontologies with elements of fuzzy logic
and fuzzy set theory [8], [9]) have been proposed [10]. The
fuzzyDL reasoner is able to provide reasoning services over
fuzzy ontologies and, because classical ontologies are a spe-
cial case, also over classical ontologies. Managing imprecise
information on mobile devices seems also very promising, but
it has not been deeply studied (with some exceptions such as
the fuzzy ontology-based recommender systems [11], [12]).
Having a serializable and incremental fuzzy ontology reasoner
might also be beneficial to increase the support for imprecise
knowledge on mobile devices.

The remainder of the paper is organized as follows. Sec-
tion II provides some background on serializable and incre-
mental reasoners, and about the reasoner fuzzyDL. Section III
describes the extension of the fuzzyDL reasoner to make
it serializable and incremental. Next, Section IV reports an
empirical evaluation of the size of the serialized files, the
times to serialize and deserialize a reasoner, and the reasoning
time. Finally, Section V compares our approach with related
work and Section VI addresses conclusions and some ideas
for future research.

II. BACKGROUND

A. Serializable Incremental Reasoners

This section recalls main definitions and discussions in [6].
A serializable semantic reasoner can clone the data struc-

tures that represent its internal object state, obtaining two or
more independent instances of the reasoner that can evolve
in parallel. We will also assume that they can be written into
a file. Typically, the file can be computed by a server and

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio Universidad de Zaragoza

https://core.ac.uk/display/478826742?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


downloaded by a mobile device using hybrid reasoning. An
example of serializable semantic reasoner is JFact.1

Serializable reasoners depend on the version of the reasoner:
Small changes in the code of the reasoner could require
changes in the serialization. They also require a common seri-
alization strategy (e.g., a Java virtual machine –on the server–
does not serialize data in the same way as a Dalvik/ART virtual
machine –on an Android device).

A less restrictive concept is that of persistent semantic rea-
soner. A persistent semantic reasoner can save its internal state
together with some precomputed inferences and reload it (for a
given ontology). If it receives as input a previously considered
ontology, it reuses previously computed calculations, avoiding
the repetition of such calculations. For example, it can store the
inferred class hierarchy obtained in a ontology classification.

On the other hand, a semantic reasoner is incremental if
it can manage changes in the ontology without restarting
the reasoning from scratch: that is, avoiding reloading the
ontology and repeating computations (such as reclassifying
the ontology). Incremental reasoners are useful, for example,
when we want to submit several queries to the same ontology.

To implement hybrid reasoning on mobile devices, four
strategies have been proposed:

1) The server can send an expanded ontology (with all the
inferences explicitly represented) back.

2) If the mobile device has a copy of the ontology, the
server can send only a list of the inferences and the
axioms can be integrated on the mobile device.

3) If the reasoner is serializable, the external server can
send instead a copy of the reasoner. The mobile device
avoids the cost of loading and preprocessing the ontol-
ogy, but requires that both devices (the server and the
mobile) use the same reasoner and version.

4) If the mobile device has a copy of the ontology, the
external server can provide a serialized version of the
reasoner but not including the original ontology, which
will be locally integrated. This requires some additional
time to add the axioms but reduces the transmission size.

We will assume the third case. If the reasoner is incremental,
we can add new axioms to it reusing the previous inferences.

B. fuzzyDL reasoner

In this section we recap the main concepts and definitions
in [7]. We assume the reader is familiar with Description Log-
ics (DLs) [4] and the standard ontology language OWL 2 [5].

The fuzzy ontology reasoner fuzzyDL is publicly available.2

It supports a very expressive language: a fuzzy extension of a
fragment of the language OWL 2 extended with some unique
features and capabilities of fuzzy logic. It supports different
fuzzy logical operators (Łukasiewicz, Gödel, and Zadeh fuzzy
logics, see Table I), but is backwards compatible and can also
be used as a crisp ontology reasoner.

1http://jfact.sourceforge.net
2http://www.umbertostraccia.it/cs/software/fuzzyDL/fuzzyDL.html

Gödel Łukasiewicz Zadeh
Conjunction α⊗ β min(α, β) max(α+ β − 1, 0) min(α, β)
Disjunction α⊕ β max(α, β) min(α+ β, 1) max(α, β)

Implication α⇒ β

{
1 if α ≤ β
β otherwise

min(1− α+ β, 1) max{1− α, β}

Negation 	α
{
1 if α = 0

0 otherwise
1− α 1− α

TABLE I
COMBINATION FUNCTIONS SUPPORTED BY FUZZYDL

The reasoning algorithm combines an extension of classical
tableau algorithms with mathematical optimization. In partic-
ular, reasoning is reduced to a Mixed Integer Linear Program-
ming (MILP) problem: the minimization/maximization of a
[0, 1]-variable given a set of inequation constraints. In the
classical semantics, all [0, 1]-variables are forced to take a
value in {0, 1}. To solve the MILP problems, fuzzyDL uses
Gurobi mathematical optimization solver.3

Regarding the language, it supports an extension of the
fuzzy Description Logic SHIF(D). Supported OWL 2 con-
cepts include atomic concepts, top concept, bottom concept,
conjunction, disjunction, negation, and existential restrictions,
universal restrictions, object-data value restrictions, and local
reflexivity concepts. There are also some specific fuzzy con-
cepts, such as the combination via aggregated operators.

Supported axioms include concept/role assertions, General
Concept Inclusions (GCIs), role inclusions, role transitivity,
role functionality, inverse roles, inverse role functionality, role
symmetry, role reflexivity, and data property range axioms.
GCIs include concept equivalences, concept disjointness, dis-
joint union of concepts, domain axioms, and object property
range axioms. The main difference to the crisp variant is that
now it is possible to state than an axiom holds to some degree
of truth.

However, one of the main features of fuzzy ontologies
are fuzzy datatypes, that make it possible to represent fuzzy
sets using their membership function. Among others, fuzzyDL
supports trapezoidal (Figure 1.a), triangular (Figure 1.b), left-
shoulder (Figure 1.c), and right-shoulder (Figure 1.d) mem-
bership functions.

Regarding the traditional reasoning tasks, it supports ontol-
ogy consistency, concept satisfiability, concept subsumption,
entailment, and instance retrieval. There are also some tasks
specific to the fuzzy case such as best entailment degree
of an axiom, best satisfiability degree of a concept, variable
maximization/minimization and defuzzification.

III. SERIALIZABLE INCREMENTAL FUZZYDL

In this section we will give some details about the fuzzy ontol-
ogy reasoner fuzzyDL. Firstly, we detail how we converted it
into a serializable reasoner. Secondly, we discuss how turned
it into an incremental reasoner.

3http://www.gurobi.com



(a) (b) (c) (d)
Fig. 1. (a) Trapezoidal; (b) Triangular; (c) Left-shoulder; (d) Right shoulder functions.

A. Serializable fuzzyDL

In Java applications, to make a class serializable it has to
implement an interface called Serializable. Furthermore, all
other classes used by a serializable class must be serializable
as well. This can be a problem if an application uses third-
party libraries such that the source cannot be modified to
implement the serializable class. Furthermore, serialization
converts objects into bytes, but it does not affect class variable
(static variables in Java).

fuzzyDL’s main class KnowledgeBase encodes a reasoner
state and a fuzzy ontology, not only with the original axioms
but also with some inferred ones. In the serializable version
there are two new methods:

• writeToFile makes it possible to save a KnowledgeBase
object into a binary file.

• readFromFile obtains a KnowledgeBase object from a
serialized binary file.

To make fuzzyDL serializable we needed to revise the code
allowing to do three things:

• Ensure that all necessary classes (KnowledgeBase and
the classes that it uses, e.g., class Individual) implement
the Serializable interface.

• Encode class variables as object variables.
• Store the data using our own classes rather than Gurobi

classes, acting as a wrapper. Thus, we have all the
required data to create Gurobi objects when needed.

B. Incremental fuzzyDL

fuzzyDL applies some preprocessing that transforms a given
fuzzy ontology O into an expanded version that can be reused
to answer different queries. For simplicity, we will describe
here the preprocessing when behaving like a classical semantic
reasoner (i.e., without managing fuzzy logic operators or
degrees of truth), and it includes the following tasks (for more
details, see [10], [7]):

1) Determine the language of the fuzzy ontology, e.g.,
ALC. This is useful to know which inference optimiza-
tions methods can be applied.

2) Convert strings into integers. For each data property
assertion of the form T (i, s) where s is a string, replace
s with an integer number. Integers are assigned in such
a way that the lexicographic order of all strings in the

ontology is preserved. This is needed in order to deal
with string based operators within MILP.

3) Solve inverse roles. For each object property assertion
of the form R(i1, i2), it adds an assertion RI(i1, i2) if
RI is an inverse role of R.

4) Compute the property hierarchy. For example, if R1 is
a sub-property if R2 and R2 is a sub-property of R3,
add that R1 is a sub-property of R3.

5) Solve object property assertions. For example, for each
object property assertion of the form R1(i1, i2) and for
each super property R2 of R1, we add an assertion
R(i1, i2). Furthermore, if there is a pair of assertions of
the form R1(i1, i2) and R1(i2, i3) for a transitive role
R, we add an assertion R1(i1, i3).

6) Solve reflexive roles. For each reflexive role R and each
individual i in the ontology, add an assertion R(i, i).

7) Solve functional roles. If there is a pair of assertions of
the form R1(i1, i2) and R1(i1, i3) for a functional role
R, then state that i2 and i3 must be the same individual.

8) Preprocess TBox. In the current version, there is an
absorption algorithm that splits the TBox into an acyclic
part and a general part [13]. In the acyclic part, it is
possible to reason using an optimization called lazy
unfolding. The intuitive idea is that TBox axioms are not
applied to every individual but only to those individuals
that are known to belong to some classes, decreasing the
number of applications of the rules. In the general part,
harder reasoning rules are needed and even simple TBox
axioms (where the left side of the axiom is a named
concept) are represented as GCIs. In the future, we plan
to implement a classification algorithm to expand the
class hierarchy (see [10] for a preliminary version).

9) Compute blocking type. Depending on the language
of the fuzzy ontology, different blocking strategies are
needed: subset (of labels), simple equality (of labels),
simple pairwise, anywhere subset, anywhere equality,
and anywhere pairwise [14]. Of course, one wants to
use the simplest strategy that provides correct results
for a given language.

10) Solve concept assertions. For each concept assertion
C(a) in the ontology, we apply some tableau rules to
decompose C into simpler concepts.



Once the preprocessing has been done, to solve a query, the
reasoner reuses the expanded version of the fuzzy ontology,
but creates a local copy. For instance, to check if an ontology
entails a concept assertion of the form C(a), fuzzyDL adds a
new assertion of the form (¬C)(a). Since this new assertion is
added to the local copy, it will not affect other future queries.

IV. EVALUATION

In this section, we address the evaluation of the extension of
fuzzyDL described in this paper. We will firstly discuss the
datasets and the setup. Then, we will describe two different
types of experiments: a comparison of the size of the serialized
ontologies computed by fuzzyDL and JFact, and an evaluation
of the reasoning time after reusing already computed infer-
ences. We only compare ourselves with JFact because it is the
only serializable semantic reasoner.

A. Experimental setup

To perform our evaluation we used various datasets:
• Firstly, we consider Fuzzy Beer, a fuzzy ontology with in-

formation about beers used in GimmeHop, a knowledge-
based recommender system for mobile devices [12].
Fuzzy Beer ontology is able to represent concepts (e.g.,
beer types or breweries), object properties (e.g., between
beers and breweries), data properties (e.g., alcohol level
ABV, color, or bitterness), instances (e.g., beers and
countries), and fuzzy datatypes. In particular, Fuzzy Beer
has 15317 beer individuals.

• Secondly, we consider the 51 ontologies in the Absorption
dataset developed in [13]. The idea of the dataset is to
consider a fuzzy ontology (Fuzzy Wine) developed by
humans, and other fuzzy ontologies randomly generated.
For each crisp ontology, there are several fuzzy versions
with different semantics and percentage of fuzzy axioms.
In this paper, we will consider the original crisp ontolo-
gies and Fuzzy Wine.

• Finally, we consider the 36 large OWL 2 DL ontologies
in the ORE 2013 dataset [15]. ORE 2013 dataset contains
200 ontologies per profile (i.e., OWL 2 EL, OWL 2
RL, and OWL 2 DL) from the NCBO BioPortal4, the
Oxford Ontology Library5, and the Manchester Ontology
Repository6. Ontologies are classified according to their
number of logical axioms as small (≤ 500), medium
(between 500 and 4999), and large ontologies (≥ 5000).

We compare fuzzyDL with the crisp ontology reasoner JFact.
Therefore, in this section fuzzyDL assumes a semantics based
on classical logic. While fuzzyDL computes the preprocessing
discussed in Section III-B, JFact uses the method precom-
puteInferences to compute the following axioms: class asser-
tions, class hierarchy, object property assertions, data property
assertions, object property hierarchy, data property hierarchy,
same individuals, different individuals, and disjoint classes.

4http://bioportal.bioontology.org
5http://www.cs.ox.ac.uk/isg/ontologies
6http://rpc295.cs.man.ac.uk:8080/repository

During our experiments, we set a timeout of two hours to solve
the required tasks. Experiments were repeated 5 times and we
took the standard average of the computed values.

All experiments were performed on a laptop computer with
Intel Core i7-8550U 1.8 GHz, 16 GB RAM under Windows
7 64-bits. The versions of the software were Java 1.8, JFact
4.0.4, OWL API 4.2.7, and Gurobi 8.1.0 build V8.1.0rc1
(Academic License); these are the versions of JFact and
OWL API that were used in a comparison between JFact
serialization and Fact++ persistence [6].

B. Serialized Files: Size and Time

In this part of the evaluation, for each ontology in the datasets,
we preprocess it, we serialize the reasoner (including the
expanded fuzzy ontology) into a file, and we deserialize it. We
compare fuzzyDL with JFact, the only serializable reasoner
that we are aware of.

The results are shown in Table II for those ontologies
that were successfully processed by both JFact anf fuzzyDL
(datasets are separated using horizontal lines). For both rea-
soners we show three values:

• SeriSize: size in MB of the serialized reasoner (including
the fuzzy ontology) after preprocessing the ontology.

• SaveTime: time in seconds needed to obtain a serialized
version of the reasoner and to save it into a file.

• LoadTime: time in seconds needed to restore a version of
the reasoner from a serialized file.

As we can see, fuzzyDL always computes smaller files.
The differences are significant for (Fuzzy) Beer and for the
Absorption dataset, but are quite impressive for OWL 2013.
For example, while JFact requires 100.4 MB to serialize
ontology 000004, fuzzyDL only uses 2 MB. It is worth to
recall, however, that JFact does include some information that
fuzzyDL does not (inferred class hierarchy).

Regarding the times, we can see that deserialization is
slightly slower than serialization. As both reasoners use the
Java serialization strategy, and because fuzzyDL manages
smaller files, it is not surprising that fuzzyDL is always faster.
The differences can also be very important; for the example
discussed in the previous paragraph, fuzzyDL requires 0.64 s
to serialize and 1.28 s to restore, whereas JFact requires 62.78
s and 86.26 s, respectively.

It is also worth noting that there were 66 ontologies (75 %)
where at least one of the two reasoners failed, 31 in the
Absorption dataset (61 % of the dataset) and 35 in the
ORE 2013 dataset (97 % of the dataset). In particular, JFact
failed in 53 and fuzzyDL in 40. Focusing on fuzzyDL, we
found the following problems:

• 21 timeouts,
• 12 ontologies included OWL 2 elements that are not

currently supported by fuzzyDL, e.g., object property
chains, cardinality restrictions, enumerations, or universal
data property restrictions.

• 2 parsing errors when importing the ontologies (for
example, because of a non-ASCII character “á”), and

• 5 null pointer exceptions, requiring further investigation.



JFact FuzzyDL
Ontology SeriSize (MB) SaveTime (s) LoadTime (s) SeriSize (MB) SaveTime (s) LoadTime (s)

Beer 120.89 65.96 91.88 18.95 7.46 11.47
amino-acid 0.22 0.25 0.30 0.04 0.03 0.04
cancer my 0.31 0.32 0.40 0.04 0.04 0.05
chemical 0.16 0.22 0.27 0.02 0.03 0.02

EMAP.obo 26.41 8.67 12.72 2.85 1.34 2.14
FMA 1079.97 104.26 150.88 43.71 25.13 34.71

FuzzyWine 1.24 0.88 1.17 0.17 0.17 0.23
galen-ians-full-doctored 6.67 3.57 5.5 1.35 0.42 0.74
gene ontology edit.obo 6.67 3.54 5.19 4.97 2.59 3.83

goslim 0.30 0.18 0.27 0.05 0.06 0.06
lubm 8.66 4.76 6.86 3.83 3.02 3.90

matchmaking 0.27 0.30 0.37 0.03 0.03 0.03
pathway.obo 0.82 0.54 0.72 0.09 0.07 0.09

people.fd 0.25 0.53 0.65 0.04 0.04 0.05
pizza 0.38 0.40 0.45 0.05 0.08 0.12

po 0.86 0.56 0.74 0.06 0.08 0.08
SIGKDD-EKAW 0.34 0.33 0.42 0.03 0.03 0.04

so-xp.obo 2.64 1.39 2.01 0.31 0.17 0.24
spatial.obo 0.26 0.28 0.36 0.05 0.03 0.05

teleost taxonomy.obo 33.58 19.37 27.90 4.84 2.63 3.81
worm phenotype xp.obo 2.90 1.38 2.20 0.46 0.18 0.30

teleost-taxonomy.1081 27.60 23.11 27.83 5.20 3.22 5.31

TABLE II
SERIALIZATION OF THE FUZZY BEER AND ABSORPTION ONTOLOGIES USING JFact AND FuzzyDL.

C. Evaluation of the Reasoning Time

In this part of the evaluation, we focus on the reasoning time
of the serialized incremental version of fuzzyDL. We do not
compare fuzzyDL with JFact because it is not incremental (see
Section V for a discussion). For each of the 48 ontologies
where fuzzyDL did not fail, Table III shows several values:

• LoadTime: time to load the ontology from a text file.
This value is used to compare with the non-incremental
version of the reasoner.

• CloneTime: time to obtain a copy of an object repre-
senting the reasoner. This value is used to compare with
the time needed to load the state of a reasoner from its
serialization.

• PreprocessTime: time to preprocess the ontology, com-
puting all the inferences that can be shared when solving
any query.

• SubTime: time to solve a concept subsumption query, as-
suming that the ontology has already been preprocessed.
This query considers two randomly selected named con-
cepts in the ontology.

• SatTime: time to solve a concept satisfiability query, as-
suming that the ontology has already been preprocessed.
This query considers a randomly selected named concept
in the ontology.

• EntTime: time to solve an entailment query, assuming that
the ontology has already been preprocessed. In particular,
we consider the entailment of a concept assertion axiom
involving an individual and a named concept in the
ontology, both randomly selected.

Based on these values, Table IV shows the following times:7

7Note that, while TimeR and TimeD are independent of the query type,
TimeO and TimeQ have to be considered for each query type (concept
subsumption, concept satisfiability, and entailment of a concept assertion).

• TimeR (restore): Time to prepare incremental and serial-
izable reasoning, i.e., time to deserialize the reasoner.

• TimeO (old): Time to solve a query without incremental
reasoning. This includes the time to load the ontology
from a text file, the time to preprocess it, and the time to
solve the query.

• TimeD (download): Time to obtain a remote serialized
file and to prepare incremental and serializable reasoning.
This includes the time to download the file, and the
time to deserialize the reasoner. The time to download
the file is estimated by dividing the size file (shown in
Table II) by the data transfer speed. The data transfer
speed depends on the technology (e.g., WiFi, mobile
broadband, . . . ) and is typically rather variable; we have
assumed 17.6 Mbps, as it was the global (after analyzing
87 countries) average mobile connection in 2019 [16].

• TimeQ (query): Time to solve the queries using incremen-
tal and serializable reasoning: time to clone the restored
version of the reasoner plus time to solve the query.

Being incremental clearly decreases the reasoning time: to
answer the first query, the reasoning time is the same (because
both need to expand the ontology and solve the query), but
for the next queries, it is possible to save the PreprocessTime.
Instead, one need to compute a local copy of the reasoner
(CloneTime), which is much faster. We can indeed see that
TimeQ is always smaller than TimeO, for all query types. The
decrease in the reasoning time is modest for easy ontologies,
but can be quite significant for relatively complex ones. For
example, in Fuzzy Beer, the incremental version requires 0.06s
instead of 12.89s. However, there are also ontologies where
PreprocessTime is much smaller than the query time (e.g.,
subsumption in Pizza), so in this case the decrease of the
reasoning time in the incremental version is very small.



Ontology LoadTime (s) CloneTime (s) PreprocessTime (s) SubTime (s) SatTime (s) EntTime (s)
Beer 0.95 0.040 11.91 0.02 2247.33 2250.22

amino-acid 0.02 0.0004 0.003 0.87 0.27 Timeout
atom-common 0.01 0.0004 0.001 0.02 0.008 Timeout

cancer my 0.01 0.001 0.003 0.11 2.75 2.65
chebi 3.36 1.823 0.55 0.09 0.01 Timeout

chemical 0.01 0.0004 0.002 5.00 4.59 Timeout
cton 0.17 0.005 0.10 0.03 0.007 Timeout

earthrealm 0.05 0.003 0.02 0.39 0.36 0.34
Economy 0.01 0.003 0.02 0.01 0.07 0.06

EMAP.obo 0.11 0.005 0.05 0.02 0.006 Timeout
FuzzyWine 0.09 0.001 0.02 0.02 284.51 272.19

fmaOwlDlComponent 1 4 0 0.44 0.007 0.09 0.07 Timeout Timeout
FMA 0.96 0.167 0.33 0.12 0.029 Timeout

galen-ians-full-doctored 0.08 0.007 0.04 Timeout 0.008 Timeout
gene ontology edit.obo 0.21 0.012 0.09 0.02 0.009 Timeout

goslim 0.01 0.001 0.001 0.004 0.02 0.02
lubm 0.38 0.007 2.31 0.003 495.16 516.7

matchmaking 0.01 0.0004 0.001 0.03 0.002 Timeout
mygrid-moby-service 0.04 0.0006 0.01 0.02 0.002 Timeout

NCI 0.25 0.011 0.13 0.04 0.02 Timeout
pathway.obo 0.02 0.0004 0.006 0.01 0.002 Timeout

people.fd 0.01 0.001 0.002 0.01 0.85 0.85
periodic-table-complex 0.01 0.0002 0.004 0.07 0.03 Timeout

pizza 0.04 0.000 0.01 163.51 0.01 0.01
po 0.01 0.001 0.003 0.81 0.84 0.81

process 0.07 0.003 0.02 0.44 0.37 0.40
propreo 0.03 0.001 0.01 Timeout 394.95 Timeout

relative-places 0.01 0.0002 0.001 0.10 0.06 Timeout
SIGKDD-EKAW 0.02 0.0004 0.002 0.41 0.002 Timeout

so-xp.obo 0.04 0.001 0.02 0.02 0.002 Timeout
spatial.obo 0.02 0.0002 0.006 0.06 0.002 Timeout

subatomic-particle-complex 0.02 0.0004 0.003 0.10 0.06 Timeout
teleost taxonomy.obo 0.17 0.017 0.08 0.03 0.01 Timeout

thesaurus 0.67 0.031 0.37 0.40 0.19 0.20
Transportation 0.01 0.001 0.004 0.01 0.03 0.03

worm phenotype xp.obo 0.05 0.002 0.01 0.01 0.003 Timeout
00035 0.13 0.003 0.11 Timeout 0.01 Timeout
00368 0.40 0.216 0.15 0.02 0.01 305.19
00371 0.48 0.167 0.30 Timeout 0.01 346.26
00374 0.66 0.166 0.43 0.03 0.01 388.31
00386 0.50 0.192 0.30 Timeout 0.01 343.11
00390 0.41 0.170 0.29 Timeout 0.01 304.40
00398 0.46 0.165 0.28 Timeout 0.01 346.48
00400 0.43 0.163 0.36 Timeout 0.01 421.10

290113a0-5a1b-4f85-a716-ced96a6499e9 links 0.22 0.013 0.10 0.01 Timeout 5.15
d0e20d33-6bfa-4115-aba4-3a3f4ba8d586 mplied 0.21 0.007 0.16 0.02 0.01 Timeout

d5c7f91d-b5eb-4af1-9293-d90e7ff63b1e 1070 0.30 0.011 0.14 0.06 0.01 Timeout
teleost-taxonomy.1081 0.26 0.021 0.13 0.05 0.02 Timeout

TABLE III
EVALUATION OF DIFFERENT PARTS OF THE REASONING IN FUZZYDL.

The time to restore the ontology (TimeR) can be significant,
even higher than TimeO, but the advantage is that only needs
to be computed once for a given ontology. If we also need to
download the serialized version of the reasoner (TimeD), the
time slightly increases but because it is only done once, the
decrease in the reasoning time makes it worth.

V. RELATED WORK

There are several semantic reasoners that are serializable or
incremental but none of them is serializable and incremental.

• JFact is serializable in the versions 3.5.* and 4.0.*. It also
takes advantage of the Java mechanisms for serialization
and is able to save a binary file. However, incremental

reasoning is not implemented in those versions, so if one
adds new axioms it is necessary to start from scratch8.

• FaCT++n [17]9 is claimed to be incremental (only in
the non-buffered mode10) and persistent, although not
serializable. Indeed, it is able to save a text file with a
representation of the ontology (with some changes, e.g.,
URIs are encoded as integers), the reasoner state, etc.
Being persistent could be acceptable sometimes, but we
have checked that incremental reasoning using a restored
version of the reasoner over a serialized ontology does
not always give the correct results.

8Personal communication with Ignazio Palmisano (current main developer).
9http://owl.man.ac.uk/factplusplus
10Personal communication Dmitry Tsarkov (current main developer).



Subsumption Satisfiability Entailment
Ontology TimeR TimeD (s) TimeO (s) TimeQ (s) TimeO (s) TimeQ (s) TimeO (s) TimeQ (s)

Beer 11.47 20.08 12.89 0.06 2260.19 2247.37 2263.09 2250.26
amino-acid 0.04 0.06 0.89 0.87 0.28 0.27 Timeout Timeout

atom-common 0.02 0.02 0.03 0.02 0.02 0.01 Timeout Timeout
cancer my 0.05 0.07 0.12 0.11 2.76 2.76 2.66 2.65

chebi 157.46 223.07 4.00 1.91 3.92 1.83 Timeout Timeout
chemical 0.02 0.03 5.01 5.00 4.60 4.59 Timeout Timeout

cton 2.15 3.51 0.31 0.04 0.28 0.01 Timeout Timeout
earthrealm 0.80 1.11 0.45 0.39 0.43 0.36 0.40 0.34
EMAP.obo 2.14 3.44 0.18 0.02 0.17 0.01 Timeout Timeout
Economy 0.47 0.72 0.03 0.01 0.09 0.07 0.09 0.07

FuzzyWine 0.23 0.30 0.13 0.02 284.62 284.52 272.3 272.19
fmaOwlDlComponent 1 4 0 2.26 3.45 0.60 0.08 Timeout Timeout Timeout Timeout

FMA 34.71 54.58 1.41 0.29 1.31 0.20 Timeout Timeout
galen-ians-full-doctored 0.74 1.36 Timeout Timeout 0.13 0.01 Timeout Timeout
gene ontology edit.obo 3.83 6.09 0.33 0.04 0.31 0.02 Timeout Timeout

goslim 0.06 0.09 0.01 0.01 0.03 0.02 0.03 0.02
lubm 3.90 5.64 2.69 0.01 497.85 495.17 519.39 516.71

matchmaking 0.03 0.05 0.04 0.03 0.02 0.003 Timeout Timeout
mygrid-moby-service 0.12 0.19 0.08 0.02 0.05 0.003 Timeout Timeout

NCI 4.36 7.73 0.43 0.05 0.40 0.03 Timeout Timeout
pathway.obo 0.09 0.13 0.03 0.01 0.03 0.003 Timeout Timeout

people.fd 0.05 0.07 0.02 0.02 0.85 0.85 0.85 0.85
periodic-table-complex 0.05 0.07 0.08 0.07 0.05 0.03 Timeout Timeout

pizza 0.12 0.15 163.56 163.51 0.06 0.01 0.06 0.01
po 0.08 0.11 0.82 0.81 0.85 0.84 0.82 0.81

process 0.98 1.30 0.53 0.45 0.46 0.37 0.49 0.40
propreo 0.10 0.16 Timeout Timeout 394.99 394.95 Timeout Timeout

relative-places 0.02 0.03 0.11 0.10 0.08 0.06 Timeout Timeout
SIGKDD-EKAW 0.04 0.05 0.42 0.41 0.02 0.003 Timeout Timeout

so-xp.obo 0.24 0.38 0.08 0.02 0.06 0.002 Timeout Timeout
spatial.obo 0.05 0.07 0.08 0.06 0.02 0.003 Timeout Timeout

subatomic-particle-complex 0.05 0.07 0.12 0.10 0.08 0.06 Timeout Timeout
teleost taxonomy.obo 3.81 6.01 0.28 0.04 0.27 0.02 Timeout Timeout

thesaurus 11.47 21.04 1.44 0.43 1.23 0.22 1.24 0.23
Transportation 0.21 0.28 0.02 0.01 0.05 0.03 0.04 0.03

worm phenotype xp.obo 0.30 0.51 0.07 0.01 0.06 0.01 Timeout Timeout
00035 2.09 3.98 Timeout Timeout 0.25 0.01 Timeout Timeout
00368 21.36 33.84 0.57 0.24 0.55 0.22 305.73 305.40
00371 20.87 33.39 Timeout Timeout 0.78 0.18 347.03 346.42
00374 28.93 41.45 1.12 0.20 1.10 0.17 389.40 388.47
00386 27.02 39.56 Timeout Timeout 0.80 0.20 343.90 343.30
00390 20.7 32.53 Timeout Timeout 0.71 0.18 305.10 304.57
00398 21.06 33.25 Timeout Timeout 0.75 0.17 347.22 346.65
00400 22.59 35.61 Timeout Timeout 0.81 0.17 421.89 421.26

290113a0-5a1b-4f85-a716-ced96a6499e9 links 3.99 6.33 0.35 0.04 0.33 0.02 Timeout Timeout
d0e20d33-6bfa-4115-aba4-3a3f4ba8d586 mplied 3.06 4.95 0.39 0.03 0.38 0.01 Timeout Timeout

d5c7f91d-b5eb-4af1-9293-d90e7ff63b1e 1070 6.10 7.99 0.51 0.07 0.46 0.02 Timeout Timeout
teleost-taxonomy.1081 5.46 7.82 0.45 0.07 0.41 0.04 Timeout Timeout

TABLE IV
REASONING TIMES OF THE CLASSICAL VERSION AND THE SERIALIZABLE VERSION OF FUZZYDL.

• Pellet is incremental and persistent [18].11 As in Fact++,
it uses Java serialization to save a binary file with the
reasoner state. It is also worth to remark that in Pellet 2.2
the incremental version of the reasoner does not support
datatypes [19], and the situation seems similar in the most
recent version 2.3. Unfortunately, datatypes are crucial
in mobile and dynamic scenarios, as well as in fuzzy
ontologies (see, e.g. [10], [20]).

• Finally, other semantic reasoners, such as CEL [21]12,
ELK [22]13, and SnoRocket [23]14, implement some kind

11http://clarkparsia.com/pellet
12https://tu-dresden.de/ing/informatik/thi/lat/forschung/software/cel
13http://liveontologies.github.io/elk-reasoner
14http://github.com/aehrc/snorocket

of incremental reasoning but, to the best of our knowl-
edge, do not support serialization.

It is also worth to note that the support for incremental
reasoning is usually restricted to the non-buffered mode. In
the buffered mode, ontology changes are stored in a buffer
and are only taken into account when the user invokes a
flushing method. In the non-buffered mode, ontology changes
are processed as soon as they are received. Currently, fuzzyDL
does not implement a buffered mode.

The advantages of having semantic reasoners that are serial-
izable or incremental has previously discussed in [6]. Another
possible application is the implementation of a semantic
reasoner managing volatile information. The idea was not to
develop a new reasoner from scratch, but to build a metarea-



soner using a serializable and incremental semantic reasoner.
In particular, the authors discuss a Java implementation using
the OWL API [24]15 that would be able to use any serializable
and incremental ontology reasoner accessible via the OWL
API. Currently, fuzzyDL does not implement the OWL API.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we have presented a new version of the fuzzy
ontology reasoner fuzzyDL to make it the first semantic rea-
soner that is both serializable and incremental. Such features
are particularly interesting for devices with limited resources,
such as some mobile devices.

fuzzyDL can expand a fuzzy ontology with some inferences
that can be reused when answering different queries. More-
over, it is possible to serialize the Java object that represents
the reasoner and save it into a file. Classical ontologies are a
special case of fuzzy ontologies, and fuzzyDL supports a very
important fragment of the standard ontology language OWL 2.

Our experiments show that fuzzyDL computes smaller se-
rialized files than JFact, the only other semantic reasoner that
is serializable. fuzzyDL is also faster at both serializing and
deserializing. While being incremental is helpful at decreasing
the reasoning time, being also serializable slightly increases
the cost of the first query because it is necessary to restore
the serialized version of the file. We have also estimated the
cost of downloading the file from a remote server before
restoring the reasoner and it seems acceptable. Therefore, the
idea of reusing from a mobile device a fuzzy ontology that
was previously expanded in a different place (e.g., in a fast
dedicated server) seems promising.

Future work might include developing a version of fuzzyDL
working on mobile devices. Because it is implemented in Java,
it seems easier to develop an Android version. So far, the only
problem is that it uses a third-party library (Gurobi) for which
currently there is no Android version. A possibility could be
to replace Gurobi for another library solving mathematical
optimization problems (in particular, Mixed Integer Linear
Programming problems) completely developed in the fragment
of Java compatible with Android.

With this Android version, one could investigate whether in
mobile devices with limited resources the time to expand a
fuzzy ontology, which is expected to be higher, will be higher
than the deserialization time more often than in our evaluation.

Another obvious idea is the development of a new version
of fuzzyDL supporting the OWL API, so that it is possible to
manage volatile information as proposed in [6]. Fortunately,
to make the communication between the metareasoner and
fuzzyDL possible, it might be possible to implement only a
very small fragment of the OWL API.

Last but not least, fuzzyDL parser to load OWL 2 ontolo-
gies could be improved (we found some bugs in ontologies
encoded in the fragment of OWL 2 that fuzzyDL supports)
and fuzzyDL preprocessing could be extended (e.g., with class
classification [10]) in order to reduce the query time.

15http://owlapi.sourceforge.net

REFERENCES

[1] R. Yus and P. Pappachan, “Are apps going semantic? A systematic
review of semantic mobile applications,” in Proceedings of the 1st
International Workshop on Mobile Deployment of Semantic Technologies
(MoDeST 2015), CEUR Workshop Proceedings 1506, 2015, pp. 2–13.

[2] C. Bobed, R. Yus, F. Bobillo, and E. Mena, “Semantic reasoning on
mobile devices: Do androids dream of efficient reasoners?” Journal of
Web Semantics, vol. 35, no. 4, pp. 167–183, 2015.

[3] S. Staab and R. Studer, Eds., Handbook on Ontologies, ser. International
Handbooks on Information Systems, 2004.

[4] M. Krötzsch, F. Simančı́k, and I. Horrocks, “Description logics,” IEEE
Intelligent Systems, vol. 29, no. 1, pp. 12–19, 2014.

[5] B. Cuenca-Grau, I. Horrocks, B. Motik, B. Parsia, P. F. Patel-Schneider,
and U. Sattler, “OWL 2: The next step for OWL,” Journal of Web
Semantics, vol. 6, no. 4, pp. 309–322, 2008.

[6] C. Bobed, F. Bobillo, E. Mena, and J. Z. Pan, “On serializable in-
cremental semantic reasoners,” in Proceedings of the 9th International
Conference on Knowledge Capture (K-CAP 2017). ACM, December
2017, pp. 187–190.

[7] F. Bobillo and U. Straccia, “The fuzzy ontology reasoner fuzzyDL,”
Knowledge-Based Systems, vol. 95, pp. 12–34, 2016.

[8] L. A. Zadeh, “Fuzzy sets,” Information and Control, vol. 8, pp. 338–353,
1965.

[9] G. J. Klir and B. Yuan, Fuzzy sets and fuzzy logic: theory and
applications. Prentice-Hall, Inc., 1995.

[10] U. Straccia, Foundations of Fuzzy Logic and Semantic Web Languages,
ser. CRC Studies in Informatics Series. Chapman & Hall, 2013.

[11] J. A. Morente-Molinera, R. Wikström, E. Herrera-Viedma, and C. Carls-
son, “A linguistic mobile decision support system based on fuzzy on-
tology to facilitate knowledge mobilization,” Decision Support Systems,
vol. 81, pp. 66–75, 2016.

[12] I. Huitzil, F. Alegre, and F. Bobillo, “GimmeHop: A recommender
system for mobile devices using ontology reasoners and fuzzy logic,”
Fuzzy Sets and Systems, 2020.

[13] F. Bobillo and U. Straccia, “Optimising fuzzy description logic reasoners
with general concept inclusions absorption,” Fuzzy Sets and Systems, vol.
292, pp. 98–129, 2016.

[14] B. Glimm, I. Horrocks, B. Motik, G. Stoilos, and Z. Wang, “HermiT:
An OWL 2 reasoner,” Journal of Automated Reasoning, vol. 53, no. 3,
pp. 245–269, 2014.

[15] R. S. Gonçalves, S. Bail, E. Jiménez-Ruiz, N. Matentzoglu, B. Parsia,
B. Glimm, and Y. Kazakov, “OWL Reasoner Evaluation (ORE) work-
shop 2013 results: Short report,” in Proceedings of the 2nd International
Workshop on OWL Reasoner Evaluation (ORE 2013). CEUR Workshop
Proceedings 1015, 2013, pp. 1–18.

[16] P. Boyland, “The state of mobile network experience -
Benchmarking mobile on the eve of the 5G revolution,” 2019,
http://www.opensignal.com/sites/opensignal-com/files/data/reports/
global/data-2019-05/the state of mobile experience may 2019 0.pdf.

[17] D. Tsarkov, “Incremental and persistent reasoning in FaCT++,” in
Proceedings of the 3rd Internat. Workshop on OWL Reasoner Evaluation
(ORE 2014). CEUR Workshop Proceedings 1207, 2014, pp. 16–22.

[18] E. Sirin, B. Parsia, B. Cuenca-Grau, A. Kalyanpur, and Y. Katz, “Pellet:
A practical OWL-DL reasoner,” Journal of Web Semantics, vol. 5, no. 2,
pp. 51–53, 2007.

[19] C. Bobed, F. Bobillo, S. Ilarri, and E. Mena, “Answering continuous
description logic queries: Managing static and volatile knowledge in
ontologies,” International Journal on Semantic Web and Information
Systems, vol. 10, no. 3, pp. 1–44, 2014.

[20] F. Bobillo and U. Straccia, “Fuzzy ontology representation using OWL
2,” International Journal of Approximate Reasoning, vol. 52, pp. 1073–
1094, 2011.

[21] F. Baader, C. Lutz, and B. Suntisrivaraporn, “CEL – A polynomial-
time reasoner for life science ontologies,” in Proceedings of the 3rd
International Joint Conference on Automated Reasoning (IJCAR 2006),
Lecture Notes in Artificial Intelligence 4130,2006, pp. 287–291.

[22] Y. Kazakov, M. Krötzsch, and F. Simančı́k, “The incredible ELK,”
Journal of Automated Reasoning, vol. 53, pp. 1–61, 2014.

[23] M. Lawley and C. Bousquet, “Fast classification in Protégé: Snorocket
as an OWL 2 EL reasoner,” in Proceedings of the Australasian Ontology
Workshop 2010 (AOW 2010), 2010, pp. 45–50.

[24] M. Horridge and S. Bechhofer, “The OWL API: A Java API for OWL
ontologies,” Semantic Web Journal, vol. 2, no. 1, pp. 11–21, 2011.


