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Abstract
The Schnorr-Stimm dichotomy theorem [31] concerns finite-state gamblers that bet on infinite
sequences of symbols taken from a finite alphabet Σ. The theorem asserts that, for any such sequence
S, the following two things are true.

(1) If S is not normal in the sense of Borel (meaning that every two strings of equal length
appear with equal asymptotic frequency in S), then there is a finite-state gambler that wins money
at an infinitely-often exponential rate betting on S.

(2) If S is normal, then any finite-state gambler betting on S loses money at an exponential rate
betting on S.

In this paper we use the Kullback-Leibler divergence to formulate the lower asymptotic divergence
div(S||α) of a probability measure α on Σ from a sequence S over Σ and the upper asymptotic
divergence Div(S||α) of α from S in such a way that a sequence S is α-normal (meaning that
every string w has asymptotic frequency α(w) in S) if and only if Div(S||α) = 0. We also use the
Kullback-Leibler divergence to quantify the total risk RiskG(w) that a finite-state gambler G takes
when betting along a prefix w of S.

Our main theorem is a strong dichotomy theorem that uses the above notions to quantify the
exponential rates of winning and losing on the two sides of the Schnorr-Stimm dichotomy theorem
(with the latter routinely extended from normality to α-normality). Modulo asymptotic caveats in
the paper, our strong dichotomy theorem says that the following two things hold for prefixes w of S.

(1′) The infinitely-often exponential rate of winning in 1 is 2Div(S||α)|w|.
(2′) The exponential rate of loss in 2 is 2−RiskG(w).
We also use (1′) to show that 1−Div(S||α)/c, where c = log(1/mina∈Σ α(a)), is an upper bound

on the finite-state α-dimension of S and prove the dual fact that 1− div(S||α)/c is an upper bound
on the finite-state strong α-dimension of S.
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1 Introduction

An infinite sequence S over a finite alphabet is normal in the 1909 sense of Borel [7] if every
two strings of equal length appear with equal asymptotic frequency in S. Borel normality
played a central role in the origins of measure-theoretic probability theory [6] and is intuitively
regarded as a weak notion of randomness. For a masterful discussion of this intuition, see
section 3.5 of [22], where Knuth calls normal sequences “∞-distributed sequences.”

The theory of computing was used to make this intuition precise. This took place in three
steps in the 1960s and 1970s. First, Martin-Löf [28] used constructive measure theory to
give the first successful formulation of the randomness of individual infinite binary sequences.
Second, Schnorr [30] gave an equivalent, and more flexible, formulation of Martin-Löf’s
notion in terms of gambling strategies called martingales. In this formulation, an infinite
binary sequences S is random if no lower semicomputable martingale can make unbounded
money betting on the successive bits of S. Third, Schnorr and Stimm [31] proved that an
infinite binary sequence S is normal if and only if no martingale that is computed by a
finite-state automaton can make unbounded money betting on the successive bits of S. That
is, normality is finite-state randomness.

This equivalence was a breakthrough that has already had many consequences (discussed
later in this introduction), but the Schnorr-Stimm result said more. It is a dichotomy theorem
asserting that, for any infinite binary sequence S, the following two things are true.
1. If S is not normal, then there is a finite-state gambler that makes money at an infinitely-

often exponential rate when betting on S.
2. If S is normal, then every finite-state gambler that bets infinitely many times on S loses

money at an exponential rate.

The main contribution of this paper is to quantify the exponential rates of winning and
losing on the two sides (1 and 2 above) of the Schnorr-Stimm dichotomy.

To describe our main theorem in some detail, let Σ be a finite alphabet. It is routine to
extend the above notion of normality to an arbitrary probability measure α on Σ. Specifically,
an infinite sequence S over Σ is α-normal if every finite string w over Σ appears with
asymptotic frequency α|w|(w) in S, where α` is the natural (product) extension of α to
strings of length `. Schnorr and Stimm [31] correctly noted that their dichotomy theorem
extends to α-normal sequences in a straightforward manner, and it is this extension whose
exponential rates we quantify here.

The quantitative tool that drives our approach is the Kullback-Leibler divergence [23],
also known as the relative entropy [12]. If α and β are probability measures on Σ, then the
Kullback-Leibler divergence of β from α is

D(α||β) = Eα log α
β
,
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i.e., the expectation with respect to α of the random variable log α
β : Σ→ R ∪ {∞}, where

the logarithm is base-2. Although the Kullback-Leibler divergence is not a metric on the
space of probability measures on Σ, it does quantify “how different” β is from α, and it has
the crucial property that D(α||β) ≥ 0, with equality if and only if α = β.

Here we use the empirical frequencies of symbols in S to define the asymptotic lower
divergence div(S||α) of α from S and the asymptotic upper divergence Div(S||α) of α from S

in a natural way, so that S is α-normal if and only if Div(S||α) = 0.
The first part of our strong dichotomy theorem says that the infinitely-often exponential

rate that can be achieved in 1 above is essentially at least 2Div(S||α)|w|, where w is the prefix
of S on which the finite-state gambler has bet so far. More precisely, it says the following.

1′. If S is not α-normal, then, for every γ < 1, there is a finite-state gambler G such that,
when G bets on S with payoffs according to α, there are infinitely many prefixes w of S
after which G’s capital exceeds 2γDiv(S||α)|w|.

The second part of our strong dichotomy theorem, like the second part of the Schnorr-
Stimm dichotomy theorem, is complicated by the fact that a finite-state gambler may, in
some states, decline to bet. In this case, its capital after a bet is the same as it was before
the bet, regardless of what symbol actually appears in S. Once again, however, it is the
Kullback-Leibler divergence that clarifies the situation. As explained in section 3 below, in
any particular state q, a finite-state gambler’s betting strategy is a probability measure B(q)
on Σ. If B(q) = α, then the gambler does not bet in state q. We thus define the risk that
the gambler G takes in state q to be

riskG(q) = D(α||B(q)),

i.e., the divergence of B(q) from not betting. We then define the total risk that the gambler
takes along a prefix w of the sequence S on which it is betting to be the sum RiskG(w) of
the risks riskG(q) in the states that G traverses along w. The second part of our strong
dichotomy theorem says that, if S is α-normal and G is a finite-state gambler betting on S,
then after each prefix w of S, the capital of G on prefixes w of S is essentially bounded above
by 2−RiskG(w). In some sense, then, G loses all that it risks. More precisely, the second part
of our strong dichotomy says the following.

2′. If S is α-normal, then, for every finite-state gambler G and every γ < 1, after all but
finitely many prefixes w of S, the gambler G’s capital is less than 2−γ RiskG(w).

A routine ergodic argument, already present in [31], shows that, if a finite-state gambler
G bets on an α-normal sequence S, then every state of G that occurs infinitely often along S
occurs with positive frequency along S. Hence 2 above follows from 2′ above.

Our strong dichotomy theorem has implications for finite-state dimensions. For each
probability measure α on Σ and each sequence S over Σ, the finite-state α-dimension
dimα

FS(S) and the finite-state strong α-dimension Dimα
FS(S) (defined in section 4 below) are

finite-state versions of Billingsley dimension [5, 10] introduced in [26]. When α is the uniform
probability measure on Σ, these are the finite dimension dimFS(S), introduced in [14] as a
finite-state version of Hausdorff dimension [20, 17], and the finite-state strong dimension
DimFS(S), introduced in [2] as a finite-state version of packing dimension [35, 34, 17].
Intuitively, dimα

FS(S) and Dimα
FS(S) measure the lower and upper asymptotic α-densities of

the finite-state information in S.

STACS 2020
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Here we use part 1 of our strong dichotomy theorem to prove that, for every positive
probability measure α on Σ and every sequence S over Σ,

dimα
FS(S) ≤ 1−Div(S||α)/c,

where c = log(1/mina∈Σ α(a)). We also establish the dual result that, for all such α and S,

Dimα
FS(S) ≤ 1− div(S||α)/c.

Research on normal sequences and normal numbers (real numbers whose base-b expansions
are normal sequences for various choices of b) connected the theory of normal numbers so
directly to the theory of computing. Further work along these lines has been continued
in [21, 29, 3, 33]. After the discovery of algorithmic dimensions in the present century
[24, 25, 14, 2], the Schnorr-Stimm dichotomy led to the realization [8] that the finite-state
world, unlike any other known to date, is one in which maximum dimension is not only
necessary, but also sufficient, for randomness. This in turn led to the discovery of nontrivial
extensions of classical theorems on normal numbers [11, 36] to new quantitative theorems
on finite-state dimensions [19, 16], a line of inquiry that will certainly continue. It has
also led to a polynomial-time algorithm [4] that computes real numbers that are provably
absolutely normal (normal in every base) and, via Lempel-Ziv methods, to a nearly linear time
algorithm for this [27]. In parallel with these developments, connections among normality,
Weyl equidistribution theorems, and Diophantine approximation have led to a great deal
of progress surveyed in the books [15, 9]. This paragraph does not begin to do justice to
the breadth and depth of recent and ongoing research on normal numbers and their growing
involvement with the theory of computing. It is to be hoped that our strong dichotomy
theorem and the quantitative methods implicit in it will further accelerate these discoveries.

2 Divergence and normality

This section reviews the discrete Kullback-Leibler divergence, introduces asymptotic ex-
tensions of this divergence, and uses these to give useful characterizations of Borel normal
sequences.

2.1 The Kullback-Leibler divergence
We work in a finite alphabet Σ with 2 ≤ |Σ| < ∞. We write Σ` for the set of strings of
length ` over Σ, Σ∗ =

⋃∞
`=0 Σ` for the set of (finite) strings over Σ, Σω for the set of (infinite)

sequences over Σ, and Σ≤ω = Σ∗ ∪ Σω. We write λ for the empty string, |w| for the length
of a string w ∈ Σ∗, and |S| = ω for the length of a sequence S ∈ Σω. For x ∈ Σ≤ω and
0 ≤ i < |x|, we write x[i] for the i-th symbol in x, noting that x[0] is the leftmost symbol
in x. For x ∈ Σ≤ω and 0 ≤ i ≤ j < |x|, we write x[i..j] for the string consisting of the i-th
through j-th symbols in x. Specially, we write x � n to mean x[0..n− 1]. For x, y ∈ Σ≤ω,
we write x v y if x is a prefix of y. We write x @ y to denote x being a strict prefix of y,
which excludes the case x = y.

A (discrete) probability measure on a nonempty finite set Ω is a function π : Ω→ [0, 1]
satisfying∑

ω∈Ω
π(ω) = 1. (2.1)
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Figure 1 Two views of the simplex ∆({0, 1, 2}).

We write ∆(Ω) for the set of all probability measures on Ω, ∆+(Ω) for the set of all π ∈ ∆(Ω)
that are strictly positive (i.e., π(ω) > 0 for all ω ∈ Ω), ∆Q(Ω) for the set of all π ∈ ∆(Ω) that
are rational-valued, and ∆+

Q (Ω) = ∆+(Ω) ∩∆Q(Ω). In this paper we are most interested in
the case where Ω = Σ` for some ` ∈ Z+.

Intuitively, we identify each probability measure π ∈ ∆(Ω) with the point in R|Ω| whose
coordinates are the probabilities π(ω) for ω ∈ Ω. By (2.1) this implies that ∆(Ω) is the
(|Ω| − 1)-dimensional simplex in R|Ω| whose vertices are the points at 1 on each of the
coordinate axes. (See Figure 1 for an illustration with |Ω|= 3.) For each ω ∈ Ω, the vertex
on axis ω is the degenerate probability measures πω with πω(ω) = 1. The centroid of the
simplex ∆(Ω) is the uniform probability measure on Ω, and the (topological) interior of ∆(Ω)
is ∆+(Ω). We write ∂∆(Ω) = ∆(Ω) r ∆+(Ω) for the boundary of ∆(Ω).

I Definition. ([23]). Let α, β ∈ ∆(Ω), where Ω is a nonempty finite set. The Kullback-Leibler
divergence (or KL-divergence) of β from α is

D(α||β) = Eα log α
β
, (2.2)

where the logarithm is base-2.

Note that the right-hand side of (2.2) is the α-expectation of the random variable

log α
β

: Ω −→ R

defined by(
log α

β

)
(ω) = log α(ω)

β(ω)

for each ω ∈ Ω. Hence (2.2) is a convenient shorthand for

D(α||β) =
∑
ω∈Ω

α(ω) log α(ω)
β(ω) .

Note also that D(α||β) is infinite if and only if α(ω) > 0 = β(ω) the some ω ∈ Ω.

STACS 2020
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The Kullback-Leibler divergence D(α||β) is a useful measure of how different β is from α.
It is not a metric (because it is not symmetric and does not satisfy the triangle inequality),
but it has the crucial property that D(α||β) ≥ 0, with equality if and only if α = β. The two
most central quantities in Shannon information theory, entropy and mutual information, can
both be defined in terms of divergence as follows.
1. Entropy is divergence from certainty. The entropy of a probability measure α ∈ ∆(Ω),

conceived by Shannon [32] as a measure of the uncertainty of α, is

H(α) =
∑
ω∈Ω

α(ω)D(πω||α), (2.3)

i.e., the α-average of the divergences of α from the “certainties” πω.
2. Mutual information is divergence from independence. If α, β ∈ ∆(Ω) have a joint

probability measure γ ∈ ∆(Ω×Ω) (i.e., are the marginal probability measures of γ), then
the mutual information between α and β, conceived by Shannon [32] as a measure of the
information shared by α and β, is

I(α ; β) = D(αβ||γ), (2.4)

i.e., the divergence of γ from the probability measure in which α and β are independent.

Two additional properties of the Kullback-Leibler divergence are useful for our asymptotic
concerns. First, the divergence D(α||β) is continuous on ∆(Ω)2 (as a function into [0,∞]).
Hence, if αn ∈ ∆(Ω) for each n ∈ N and lim

n→∞
αn = α in the sense of the Euclidean metric

on the simplex ∆(Ω), then lim
n→∞

D(αn||α) = lim
n→∞

D(α||αn) = 0. Second, the converse holds.
It is well known [12] that

D(α||β) ≥ 1
2 ln 2‖α− β‖

2
1,

where ‖α− β‖1 =
∑
ω∈Ω|α(ω)− β(ω)| is the L1-norm. Hence, if either lim

n→∞
D(αn||α) = 0

or lim
n→∞

D(α||αn) = 0, then lim
n→∞

αn = α.
More extensive discussions of the Kullback-Leibler divergence appear in [12, 13].

2.2 Asymptotic divergences
For nonempty strings w, x ∈ Σ∗, we write

#�(w, x) =
∣∣∣∣{m ≤ |x||w| − 1

∣∣∣ x[m|w|..(m+ 1)|w| − 1] = w}
∣∣∣∣

for the number of block occurrences of w in x. Note that 0 ≤ #�(w, x) ≤ |x|
|w| .

For each S ∈ Σω, n ∈ Z+, and λ 6= w ∈ Σ∗, the n-th block frequency of w in S is

πS,n(w) = #�(w, S[0..n|w|−1])
n

(2.5)

Note that (2.5) defines, for each S ∈ Σω and n ∈ Z+, a function

πS,n : Σ∗ r {λ} −→ Q.

For each such S and n and each ` ∈ Z+, let π(`)
S,n = πS,n � Σ` be the restriction of the function

πS,n to the set Σ` of strings of length `.
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I Observation 2.1. For each S ∈ Σω and n, ` ∈ Z+,

π
(`)
S,n ∈ ∆Q(Σ`),

i.e., π(`)
S,n is a rational-valued probability measure on Σ`.

We call π(`)
S,n the n-th empirical probability measure on Σ` given by S.

A probability measure α ∈ ∆(Σ) naturally induces, for each ` ∈ Z+, a probability measure
α(`) ∈ ∆(Σ`) defined by

α(`)(w) =
|w|−1∏
i=0

α(w[i]). (2.6)

The empirical probability measures π(`)
S,n provide a natural way to define useful empirical

divergences of probability measures from sequences.

I Definition. Let ` ∈ Z+, S ∈ Σω, and α ∈ ∆(Σ).
1. The lower `-divergence of α from S is div`(S||α) = lim inf

n→∞
D(π(`)

S,n||α
(`)).

2. The upper `-divergence of α from S is Div`(S||α) = lim sup
n→∞

D(π(`)
S,n||α

(`)).

3. The lower divergence of α from S is div(S||α) = sup
`∈Z+

div`(S||α)/`.

4. The upper divergence of α from S is Div(S||α) = sup
`∈Z+

Div`(S||α)/`.

A similar approach gives useful empirical divergences of one sequence from another.

I Definition. Let ` ∈ Z+ and S, T ∈ Σω.
1. The lower `-divergence of T from S is div`(S||T ) = lim inf

n→∞
D(π(`)

S,n||π
(`)
T,n).

2. The upper `-divergence of T from S is Div`(S||T ) = lim sup
n→∞

D(π(`)
S,n||π

(`)
T,n).

3. The lower divergence of T from S is div(S||T ) = sup
`∈Z+

div`(S||T )/`.

4. The upper divergence of T from S is Div(S||T ) = sup
`∈Z+

Div`(S||T )/`.

2.3 Normality
The following notions are essentially due to Borel [7].

I Definition. Let α ∈ ∆(Σ), S ∈ Σω, and ` ∈ Z+.
1. S is α-`-normal if, for all w ∈ Σ`,

lim
n→∞

πS,n(w) = α(`)(w).

2. S is α-normal if, for all ` ∈ Z+, S is α-`-normal.
3. S is `-normal if S is µ-`-normal, where µ is the uniform probability measure on Σ.
4. S is normal if, for all ` ∈ Z+, S is `-normal.

I Lemma 2.2. For all α ∈ ∆(Σ), S ∈ Σω, and ` ∈ Z+, the following four conditions are
equivalent.
(1) S is α-`-normal.
(2) Div`(S||α) = 0.
(3) For every α-`-normal sequence T ∈ Σω, Div`(S||T ) = 0.
(4) There exists an α-`-normal sequence T ∈ Σω such that Div`(S||T ) = 0.

STACS 2020
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Lemma 2.2 (proved in the appendix) immediately implies the following.

I Theorem 2.3 (divergence characterization of normality). For all α ∈ ∆(Σ) and S ∈ Σω, the
following conditions are equivalent.
(1) S is α-normal.
(2) Div(S||α) = 0.
(3) For every α-normal sequence T ∈ Σω, Div(S||T ) = 0.
(4) There exists an α-normal sequence T ∈ Σω such that Div(S||T ) = 0.

3 Strong Dichotomy

This section presents our main theorem, the strong dichotomy theorem for finite-state
gambling. We first review finite-state gamblers.

Fix a finite alphabet Σ with |Σ| ≥ 2.

I Definition ([31, 18, 14]). A finite-state gambler (FSG) is a 4-tuple

G = (Q, δ, s,B),

where Q is a finite set of states, δ : Q× Σ→ Q is the transition function, s ∈ Q is the start
state, and B : Q→ ∆Q(Σ) is the betting function.

The transition structure (Q, δ, s) here works as in any deterministic finite-state automaton.
For w ∈ Σ∗, we write δ(w) for the state reached from s by processing w.

Intuitively, a gambler G = (Q, δ, s,B) bets on the successive symbols of a sequence
S ∈ Σω. The payoffs in the betting are determined by a payoff probability measure α ∈ ∆(Σ).
(We regard α and S as external to the gambler G.) We write dG,α(w) for the gambler G’s
capital (amount of money) after betting on the successive bits of a prefix w v S, and we
assume that the initial capital is dG,α(λ) = 1.

The meaning of the betting function B is as follows. After betting on a prefix w v S, the
gambler is in state δ(w) ∈ Q. The betting function B says that, for each a ∈ Σ, the gambler
bets the fraction B(δ(w))(a) of its current capital dG,α(w) that wa v S, i.e., that the next
symbol of S is an a. If it then turns out to be the case that wa v S, the gambler’s capital
will be

dG,α(wa) = dG,α(w)B(δ(w))(a)
α(a) . (3.1)

(Note: If α(a) = 0 here, we may define dG,α(wa) however we wish.)
The payoffs in (3.1) are fair with respect to α, which means that the conditional α-

expectation∑
a∈Σ

α(a)dG,α(wa)

of dG,α(wa), given that w v S, is exactly dG,α(w). This says that the function dG,α is an
α-martingale.

If δ(w) = q is a state in which B(q) = α, then (3.1) says that, for each a ∈ Σ, dG,α(wa) =
dG,α(w). That is, the condition B(q) = α means that G does not bet in state q. Accordingly,
we define the risk that G takes in a state q ∈ Q to be

riskG(q) = D(α||B(q)).
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i.e., the divergence of B(q) from not betting. We also define the total risk that G takes along
a string w ∈ Σ∗ to be

RiskG(w) =
∑
u@w

riskG (δ(u)).

We now state our main theorem.

I Theorem 3.1 (strong dichotomy theorem). Let α ∈ ∆(Σ), S ∈ Σω, and γ < 1.
1. If S is not α-normal, then there is a finite-state gambler G such that, for infinitely many

prefixes w v S,

dG,α(w) > 2γDiv(S||α)|w|.

2. If S is α-normal, then, for every finite-state gambler G, for all but finitely many prefixes
w v S,

dG,α(w) < 2−γ RiskG(w).

Proof. To prove the first part, let S be a non-normal sequence. Then by Theorem 2.3, we
know that Div(S||α) > 0. Let r < 1 and let ε > 0. By the definition of Div(S||α) there must
exist ` such that

Div`(S||α)/` > rDiv(S||α). (3.2)

That is

lim sup
n→∞

D(π(`)
S,n||α

(`)) > `rDiv(S||α).

We can pick a subsequence of indices nk’s, such that limk→∞D(π(`)
S,nk
||α(`)) = Div`(S||α).

Therefore by inequality (3.2)

D(π(`)
S,nk
||α(`)) > `rDiv(S||α) (3.3)

for sufficiently large k. In particular, by compactness of [0, 1]|Σ`| equipped with L1-norm, we
can further request that

lim
k→∞

π
(`)
S,nk

exists. (3.4)

Let π0 = π0(r,m) ∈ ∆Q(Σ`) be the m-th π
(`)
S,nk

that satisfies (3.3), indexed by k. By the
way we define π0, we have

D(πS,nk ||α(`)) ≥ D(π0||α(`)) > `rDiv(S||α), (3.5)

and

‖π0 − π
(`)
S,nk
‖ → 0, as m→∞ and k →∞, (3.6)

whence D’s continuity in section 2.1 tells us that

D(π(`)
S,nk
||π0)→ 0, as m→∞ and k →∞. (3.7)

Also note that,

lim
m→∞

D(π0||α(`)) = lim
k→∞

D(π(`)
S,nk
||α(`)) = Div`(S||α) > 0. (3.8)
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For a fixed π0 = π0(r,m), by the definition, for any nk sufficiently large, we have

D(π(`)
S,nk
||α(`)) > D(π0||α(`))(1− ε) > 0. (3.9)

By doing the above we pick a probability measure π0 that is “far” away from α(`), we
now hard code π0 in a gambler G = (Q, δ, s,B), where

Q = Σ≤`−1, δ(w, a) =
{
wa if |wa| < `

λ if |wa| = `
, s = λ, and B(w)(a) = π0(a|w),

where π0(a|w) describes the conditional probability (induced by π0) of occurrence of an a
after w ∈ Q, and is defined by π0(a|w) = π0(wa)/π0(w), where for u ∈ Q, the notation π0(u)
is defined recursively by π0(w) =

∑
a∈Σ π0(wa).

Let u = a0 · · · a`−1 be in Σ`. The following observation captures the above intuition:

B(λ)(a0) · · ·B(u[0..`− 2])(a`−1)
α(a0) · · ·α(a`−1) = π0(u)

α(`)(u)
.

Now let w = S � nk for some k. We can view w as

w = u0u1 · · ·un−1un, where |ui| = ` for 0 ≤ i ≤ n− 1 and un = a0 · · · am with m < `.

Then we have

dG,α(w) =
( n−1∏

0

π0(ui)
α(`)(ui)

)B(λ)(a0) · · ·B(un[0..m− 1])(am)
α(a0) · · ·α(am) ≥ C0

n−1∏
0

π0(ui)
α(`)(ui)

, (3.10)

where C0 is the minimum value of B(λ)(a0)···B(un[0..m−1])(am)
α(a0)···α(a`−1) , where un = a0 · · · am ranges

over Σ<`. Taking log on both sides of (3.10) we get

log dG,α(w)− logC0 ≥
n−1∑
i=0

log π0(ui)
α(`)(ui)

=
∑
|u|=`

#�(u,w) log π0(u)
α(`)(u)

,

= n
∑
|u|=`

#�(u,w)
n

log π0(u)
α(`)(u)

= n
∑
|u|=`

π
(`)
S,n(u) log π0(u)

α(`)(u)
,

= n
∑
|u|=`

[
π

(`)
S,n(u) log

π
(`)
S,n(u)
α(`)(u)

− π
(`)
S,n(u) log

π
(`)
S,n(u)
π0(u)

]
= n

(
D(π(`)

S,n||α
(`))−D(π(`)

S,n||π0)
)

(3.11)

Then by (3.9), for w = S � nk long enough, we have

log dG,α(w)− logC0 ≥ n
(
D(π(`)

S,n||α
(`))−D(π(`)

S,n||π0)
)

≥ n
(
D(π0||α(`))(1− ε)−D(π(`)

S,n||π0)
)
≥ |w|

`
D(π0||α(`))(1− 2ε).

Therefore, by (3.5) we have

dG,α(w) ≥ C02
|w|(1−2ε)

` D(π0||α(`)) ≥ 2|w|r(1−2ε) Div(S||α).

Since r and 1− 2ε can be picked arbitrary close to 1, take r(1− 2ε) > γ, then

dG,α(w) ≥ 2γDiv(S||α)|w|

for w = S � nk long enough.
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We now prove the second part of the main theorem.
Let S be a normal number, G an arbitrary finite-state gambler. By Proposition 2.5 of [31],

G = (Q, δ, s,B) will eventually reach a bottom strongly connected component (a component
that has no path to leave) when processing S. A similar argument can also be found in [33].
Without loss of generality, we will therefore assume that every state in G is recurrent in
processing S.

Let w = a0 · · · an−1 v S. Then

dG,α(w) = B(δ(λ))(a0) · · ·B(δ(w[a0..an−2]))(an−1)
α(a0) · · ·α(an−1)

=
∏
q∈Q

∏
a∈Σ

(B(q)(a)
α(a)

)#G,w(q,a)
, (3.12)

where the notation #G,w(q, a) denotes the number of times G lands on state q and the next
symbol is a while processing w. Similarly, we use the notation #G,w(q) to denote the number
of times G lands on q in the same process.

Taking the logarithm of both sides of (3.12), we have

log dG,α(w) =
∑
q∈Q

∑
a∈Σ

#G,w(q, a) log B(q)(a)
α(a)

=
∑
q∈Q

#G,w(q)
∑
a∈Σ

#G,w(q, a)
#G,w(q) log B(q)(a)

α(a) (3.13)

By a result of Agafonov [1], which extends easily to the arbitrary probability measures
considered here, we have that, for every state q, the limit of #G,w(q,a)

#G,w(s) along S exists and
converges to α(a). That is

lim
w→S

#G,w(q, a)
#G,w(s) = α(a), (3.14)

for every state q.
Therefore, by equations (3.13) and (3.14), and the fact that there are finitely many states,

we have

log dG,α(w) ≤
∑
q∈Q

#G,w(q)
∑
a∈Σ

(α(a) + o(1)) log B(q)(a)
α(a)

=
∑
q∈Q
− riskG(q)#G,w(q) +

∑
q∈Q

#G,w(q)
∑
a∈Σ

o(1) log B(q)(a)
α(a)

= −RiskG(w) +
∑
q∈Q

#G,w(q)
∑
a∈Σ

o(1) log B(q)(a)
α(a)

= RiskG(w)(−1 + o(1)).

It follows that

dG,α(w) ≤ 2−(1+o(1)) RiskB(w),

so part 2 of the theorem holds. J
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4 Dimension

Finite-state dimensions give a particularly sharp formulation of part 1 of the strong dichotomy
theorem, along with a dual of this result.

Finite-state dimensions were introduced for the uniform probability measure on Σ in
[14, 2] and extended to arbitrary probability measure on Σ in [26]. For each α ∈ ∆(Σ) and
each S ∈ Σω, define the sets

Gα(S) =
{
s ∈ [0,∞)

∣∣∣ (∃FSG G) lim sup
w→S

α|w|(w)1−sdG,α(w) =∞
}

and

Gαstr(S) =
{
s ∈ [0,∞)

∣∣∣ (∃FSG G) lim inf
w→S

α|w|(w)1−sdG,α(w) =∞
}

The limits superior and inferior here are taken for successively longer prefixes w v S. The
“strong” subscript of Gstr(S) refers to the fact that α|w|(w)1−sdG,α(w) is required to converge
to infinity in a stronger sense than in Gα(S).

I Definition ([26]). Let α ∈ ∆(Σ) and S ∈ Σω.
1. The finite-state α-dimension of S is dimα

FS(S) = inf Gα(S).
2. The finite-state strong α-dimension of S is Dimα

FS(S) = inf Gαstr(S)

It is easy to see that, for all α ∈ ∆+(Σ) and S ∈ Σω, 0 ≤ dimα
FS(S) ≤ Dimα

FS(S) ≤ 1.

I Theorem 4.1. For all α ∈ ∆(Σ) and S ∈ Σω let c = log(1/mina∈Σ α(a)). Then,

dimα
FS(S) ≤ 1−Div(S||α)/c

and

Dimα
FS(S) ≤ 1− div(S||α)/c.

Proof. Let t < Div(S||α)/c, and let s = 1− t. Fix ` such that Div`(S||α)/` > tc, then for
i.o. n, D(π(`)

S,n||α(`)) > `tc. Note that α|w|(w) ≥ (1/2c)|w| for every w ∈ Σ∗.
Define the gambler G be G = (Q, δ, s0, Bn), where Q = Σ≤`−1,

δ(w, a) =
{
wa if |wa| < `

λ if |wa| = `

s0 = λ, and Bn(w)(a) = π
(`)
S,n(a|w), where π

(`)
S,n(a|w) describes the conditional probability

(induced by π
(`)
S,n) of occurrence of an a after w ∈ Q.

Let u = a0 · · · a`−1 be in Σ`.

Bn(λ)(a0) · · ·Bn(u[0..`− 2])(a`−1)
α(a0) · · ·α(a`−1) =

π
(`)
S,n(u)
α(`)(u)

.

Then for z ∈ Σ∗ with z v S and |z|= `n, we have

α|z|(z)1−sdG,α(z) = α|z|(z)tdG,α(z)

= α|z|(z)t
∏
u∈Σ`

(
π

(`)
S,n(u)
α(`)(u)

)nπ(`)
S,n

(u)
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Therefore,

α|z|(z)tdG,α(z) ≥ 1
2c
|z|t

2nD(π(`)
S,n
||α(`))

≥ 2−c|z|t+c|z|t

Since the number of states is fixed, this implies dimα
FS(S) ≤ 1−Div(S||α)/c.

The proof of the other case is similar, where we use the fact that, for a.e. n,

D(π(`)
S,n||α

(`)) > `tc. J
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A Appendix

The following is a proof for Lemma 2.2.

Proof. Let α, S, and ` be as given.
To see that (1) implies (2), assume (1). Then lim

n→∞
π

(`)
S,n = α(`), so the continuity of

KL-divergence tells us that

Div`(S||α) = lim
n→∞

D(π(`)
S,n||α

(`)) = 0,

i.e., that (2) holds.
To see that (2) implies (3), assume (2). Then lim

n→∞
D(π(`)

S,n||α
(`)) = Div`(S||α) = 0,

whence the L1 bound in section 2.1 tells us that lim
n→∞

π
(`)
S,n = α(`). For any α-`-normal

sequence T ∈ Σω, we have lim
n→∞

π
(`)
T,n = α(`), whence the continuity of KL-divergence tells us

that

Div`(S||T ) = lim
n→∞

D(π(`)
S,n||π

(`)
T,n) = D(α(`)||α(`)) = 0,

i.e., that (3) holds.
Since α-`-normal sequences exist, it is trivial that (3) implies (4).

https://doi.org/10.1016/S0890-5401(03)00187-1
http://arxiv.org/abs/1611.05911
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Finally, to see that (4) implies (1), assume that (4) holds. Then we have

lim
n→∞

D(π(`)
S,n||π

(`)
T,n) = Div`(S||T ) = 0,

whence the L1 bound in section 2.1 tells us that

lim
n→∞

‖π(`)
S,n − π

(`)
T,n‖1 = 0. (A.1)

We also have

lim
n→∞

π
(`)
T,n = α(`),

whence

lim
n→∞

‖π(`)
T,n − α

(`)‖1 = 0. (A.2)

By (A.1), (A.2), and the triangle inequality for the L1-norm, we have

lim
n→∞

‖π(`)
S,n − α

(`)‖1 = 0,

whence

lim
n→∞

π
(`)
S,n = α(`),

i.e., (1) holds. J

Lemma 2.2 immediately implies the following.

I Theorem 2.3 (divergence characterization of normality). For all α ∈ ∆(Σ) and S ∈ Σω, the
following conditions are equivalent.
(1) S is α-normal.
(2) Div(S||α) = 0.
(3) For every α-normal sequence T ∈ Σω, Div(S||T ) = 0.
(4) There exists an α-normal sequence T ∈ Σω such that Div(S||T ) = 0.
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