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Abstract

Graphene nanoribbons (GNRs) can be synthesized with atomic precision through

on-surface chemistry of self-assembled organic precursors on metal surfaces. Here we

examine the growth of 7-armchair GNRs (7-AGNRs) on the Au(16 14 15) vicinal sur-

face, namely, a surface vicinal to Au(111) that features kinked steps. During the ther-

mal activation of the polymerization and cyclodehydrogenation processes that produce

the GNRs, the kinked substrate undergoes a strong step-edge reshaping, accompanied

by a massive missing-row reconstruction within (111) terraces that aligns GNRs pref-

erentially along two equivalent [110] directions. Using angle-resolved photoemission we

are able to detect the occupied frontier band of the 7-AGNR at the center of the first

Brillouin zone, as predicted by theoretical calculations. This allows to unambiguously

determine the relevant 7-AGNRs band properties, namely energy and effective mass.

Introduction

Graphene nanoribbons (GNRs), that is, one-dimensional stripes of graphene, are an ideal

class of carbon materials with potential use as devices’ components in the next post-silicon

technology. Thanks to the tunability of their electronic and structural properties, mostly

determined by the atomic structure of their edge, they can be used as active elements in elec-

tronic devices, as field effect transistors,1–3 diodes,4 or as metallic interconnects.5 A break-

through in the bottom-up fabrication of atomically precise GNRs is provided by on-surface

synthesis that allows growing GNRs with armchair, zigzag or chiral edges,6–9 semiconducting

GNRs with different widths and electronic bandgap sizes,10–15 and GNRs with substitutional

dopant heteroatoms16–23 or functional groups.24,25 Specially designed molecular precursors,

once deposited on a metallic substrate, undergo thermally activated polymerization and cy-

clodehydrogenation to form graphene-like ribbons.6 A great attention has been given so far

to the chemical design of precursor monomers that yield high precision in the final struc-

tures, which have been mostly tested on the Au(111) surface. Nevertheless, the use of more
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“exotic” or technologically relevant surface terminations and materials for GNRs growth

remains highly unexplored. The surface is important in several stages of the on-surface syn-

thesis process as in the oligomers activation, stabilization of radicals, monomers diffusion and

polymerization fulfilment. Moreover, step edges, kinks, dislocations, adatoms and defects

can act as catalytic active sites for the initial or guided GNRs growth.26 Vicinal surfaces

(crystals exhibiting step arrays on their surface), for example, allow synthesizing long-range

ordered parallel arrays of GNRs that can be transferred to insulating surfaces maintaining

their orientation, as required in efficient electronic and optoelectronic devices.27,28

The use of vicinal surfaces with a high density of structural kinks may provide additional

flexibility to GNR growth. Atoms at kinks have lower coordination compared to the other

surface neighbors, leading to a reduced thermal excitation energy. This effectively increases

the presence of substrate atoms diffusing along step edges or inside terraces, and therefore

the number of metal atoms readily available as catalysts for the on-surface reaction. In

fact, the presence of kinks has been shown to favor dehalogenation,29 and hence varying

their density might be a good way to control the GNRs length, and favor dense arrays

of GNRs with homogeneous length and orientation. Also, kinked steps can reconstruct or

“roughen” without changing the bonding configuration of the step edge, allowing the step

to freely “bend” on the surface plane,30 such as to conform to a particular GNR topology

(straight, chiral, or zigzag).31 Finally, kinked single crystal surfaces can be chosen to possess

a chiral structure that offers chiral discrimination, as it has been demonstrated for molecular

adsorption of L- and D-cysteine on Au(17 11 9).32 This property could drive the selective

growth of only one type of chiral GNRs among the possible enantiomeric structures.9

Here we test the growth of semiconducting armchair graphene nanoribbons with a width

of 7 carbon atoms (7-AGNRs) on the kinked Au(16 14 15) surface. We find that the presence

of kinked steps leads to a lowering of the dehalogenation temperature with respect to the

flat Au(111) surface, similar to the case of the corrugated Au(110).33 Moreover, long and

well aligned 7-AGNRs form, while the surface undergoes a strong reshaping of the kinked
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step-edges. Besides this macroscopic steps reshaping, we also observe the reconstruction of

(111) terraces into missing row structures, likely due to the presence of Au adatoms that

diffuse away from the kinked steps. The ribbons’ length and alignment comparable to that

obtained on the Au(788) surface, allows to measure in detail the electronic structure of the

7-AGNRs by angle-resolved photoemission (ARPES). ARPES maps show the presence of the

theoretically predicted, but never observed 7-AGNRs’ frontier valence band at the Γ̄ point

in the first Brillouin Zone.34

Methods

Experimental methods

The experiments were performed in two different ultra-high-vacuum (UHV) systems with

base pressures in the low 10−10 mbar range. The first system hosts a commercial Omicron

variable temperature scanning tunneling microscope (VT-STM) and an ARPES setup with a

high-resolution display type hemispherical electron analyzer (Phoibos150). The radiation at

21.2 eV photon energy was provided by a high-intensity monochromatic source. Energy and

angular resolution were set to 40 meV and 0.1◦, respectively. The sample was mounted with

the manipulator and vertical analyzer slit aligned perpendicular to the step direction (i.e.

perpendicular to the nominal [112] direction), allowing us to measure a wide band dispersion

range parallel to the GNR average direction by sample rotation (polar scans by manipulator

rotation). For the s- (p-) polarized light, the electric field vector lies perpendicular (parallel)

to the plane defined by the directions of the light incidence and sample normal, as shown in

the sketch of Fig. S1 in the Supporting Information. The sample was kept at approximately

150 K during ARPES scans. STM experiments were performed at room temperature (RT).

STM images were taken in constant current mode and processed with the WSXM software.35

In the second UHV system, X-ray photoelectron spectroscopy (XPS) experiments were

performed, using a SPECS Phoibos 100 spectrometer equipped with a standard non-monochromatic
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Al Kα X-ray source. Temperature dependent XPS data were acquired in 2 ◦C/5 minute steps

during a 41 hours annealing cycle. Highly resolved spectra were measured in a subsequent

experiment at the relevant sample temperatures determined from the XPS long temperature

scan. XPS peaks were fitted with Doniach Sunjic functions and Shirley background.

The Au(16 14 15) single crystal was prepared by repeated cycles of sputtering (Ar+,

0.8−1.2 keV) and annealing to about 460◦C in UHV, and cleanliness and step array ordering

were monitored by low energy electron diffraction (LEED), STM and ARPES. The Au(16 14

15) plane features (111) terraces and monatomic steps running along the [112] direction, that

is, steps with nominally maximum density of six-fold coordinated kink atoms. Commercially

purchased 10,10’-dibromo-9,9’-bianthracene (DBBA) molecules were sublimated on the clean

crystal in UHV from a Knudsen cell at 170◦C. 7-AGNRs were grown on Au(16 14 15) follow-

ing the recipe from Ref.,6 which consists on depositing DBBA molecules at RT, annealing to

200◦C for 5 min to induce polymerization of the molecular precursors by Ullmann coupling,

and finally raising the temperature to 380◦C (for 30 s) to trigger cyclodehydrogenation, and

hence obtain the 7-AGNRs formation, avoiding their lateral fusion into wider nanoribbons.

Theoretical simulation of ARPES bands

The band structure of individual GNRs and its corresponding ARPES intensity were theoret-

ically determined with the Electron Plane Wave Expansion (EPWE) method. This approach

has been successfully applied to graphene nanostructures with comparable accuracy to results

obtained from DFT calculations.36 We define an inverted honeycomb potential landscape,

where carbon atoms are represented by circles of diameter a=1.42 Å defining regions of

zero potential, while a value of ∼ 23 eV is assigned to the hexagonally warped carbon voids.

The 7-AGNR characteristic unit cell is created and the periodicity along the nanoribbon

axis (y-direction) was set to 3a. Following the supercell approach, we separate ribbons in

the x-direction by distances greater than 15 Å. Good convergence is achieved by terminating

the potential expansion at the maximum 2D reciprocal lattice vector gmax = 20, while the
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number of plane waves used is ∼ gmax
2. We obtained the band structure and photoemission

intensity by solving Schrödinger equation for this defined potential landscape following the

procedures detailed in Ref.36

Results and Discussion

The Au(16 14 15) plane defines a vicinal angle of 3.1o with respect to the high symmetry

(111) surface. It consists of terraces and monatomic steps running along the [112] direc-

tion. Nominally, the steps feature a maximum density of six-fold coordinated kink atoms

and the terraces present weak herring-bone-like discommensuration lines, running quasi-

perpendicular to the step direction. Analysis of STM images taken at room temperature,

such as the one displayed in Fig. 1a, reveals a mean step spacing [(111) terrace size] of

4.2±0.6 nm. A closer view to the step edge of the clean Au(16 14 15) surface indicates that

the nominally straight step featuring six-fold coordinated kink atoms is reconstructed into

periodic 120◦ triangular out-protrusions, likely formed by alternating close-packed {100} and

{111} minifacets (Fig. 1c). Moreover, the fast Fourier transform of STM pictures (as Fig.

1a) show a regular quasi-hexagonal pattern, indicating that such periodic triangular recon-

struction of the step edge is coherent between contiguous steps and extends over the entire

surface.

Upon 7-AGNRs growth, the Au(16 14 15) surface undergoes a strong reshaping forming

triangular protrusions with on average 15±5 nm step-edge segments, as deduced from STM

images as in Fig. 1b (see also Fig. S2). High-quality 7-AGNRs grow with variable length

up to 35 nm, aligned preferentially along the two equivalent [110] close packed substrate

directions parallel to the triangular step segments (as demonstrated in Fig. S2). STM

images acquired for ribbon coverage below the full layer allow one to identify a further

surface reconstruction at (111) terraces in Fig. 1d. In-between individual 7-AGNRs one can

observe chains of atoms along the [110] in-plane direction, arranged in a missing row fashion.
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9.7nm 9.7nm

3.0nm
{100} step
{111} step

4.3 Å

0.51{1/nm}

FFT

a) b)

c) d)

[110]

[112]

Au
GNR

4.92 Å

5.0 Å

Figure 1: (a) STM image of the kinked Au(16 14 15) surface showing a coherent pattern of
reconstructed steps along the [112] direction, as deduced from the hexagonal pattern in the
fast Fourier transform shown in the inset. (b) Kinked surface covered by almost one single
layer of 7-AGNRs. (c) On the left, model of unreconstructed (left edge) and reconstructed
(right edge) steps on the kinked Au(16 14 15). The latter define 120◦ triangular protrusions,
formed with alternating {100}- and {111}-like minifacets (red square and blue triangle,
respectively). On the right, model of the atomic-row (2×1) reconstruction at (111) terraces,
observed after 7-AGNRs formation. The adsorption configuration of the ribbon is shown
overlaid. (d) STM image of a sample preparation with 7-AGNRs coverage lower than in (b),
where the atomic row reconstruction of (111) terraces is visible in-between 7-AGNRs.

The distance between the rows is 0.48±0.03 nm (see also see Fig. S3), which corresponds to

the (2×1) terrace reconstruction schematically plotted in Fig. 1c (also observed in LEED

images, Fig. S4). We identify the atomic species as Au atoms that have likely diffused away

from the kinked step edges due to the relatively high temperature needed to synthesize the

ribbons.
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Figure 2: (a) Evolution with annealing temperature of the Br 3p3/2 and the C 1s core levels
intensity for one layer of DBBA molecules deposited at RT on Au(16 14 15) up to 500◦C. Blue
and red indicate high peak intensity and intensity minimum, respectively. (b) Br 3p spectra
(left) and C 1s spectra (right) with their corresponding fits taken at RT, after annealing to
80◦C and after annealing to 180◦C. All the spectra were recorded at RT. The vertical black
line shows the C 1s peak position at RT resulting from the fit. Data taken in (a) is noisier
than the one shown in (b) due to the necessary limitation to a single sweep per temperature
scan.

To exclude that the (2×1) atomic row reconstruction arises due to trapped Br atoms, as

observed in the case of polymeric chains on Au(111),37 we performed temperature desorption

XPS. In Fig. 2a we show the temperature-dependent evolution of the Br 3p3/2 and the C

1s core level peaks for one layer of DBBA molecules, deposited at RT, and slowly annealed

up to 500◦C. The binding energy of the Br 3p peak at RT (Fig. 2b) corresponds to the
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one found for DBBA on the Au(111) surface, demonstrating that the molecules adsorb

intact and homogeneously on the substrate (single Br component). By 80◦C the Br 3p peak

splits into two components (Fig. 2b): the metal bound peak and the organic peak (with

a 2 eV higher binding energy), which suggests a partial dehalogenation of our precursor

molecules. At higher temperature (180◦C as shown in Fig. 2b) only isolated Br atoms

may survive, indicating that all our precursor molecules have lost their Br, thereby forming

a polymeric chain. The complete dehalogenation occurs at a temperature lower than in

Au(111) (≈207◦C), but similar to that of the more reactive corrugated Au(110) surface

(≈177◦C),33 indicating an enhanced Br detachment process at the kinked surface. Above

250◦C no Br atoms remain on the surface. This finding assures that the atoms trapped

between GNRs are not Br but Au, since 7-AGNRs were formed on this surface upon annealing

to 380◦C. Note that such (2×1) reconstruction must be related in part to the kinked nature

of the steps, since it was not observed in the case of GNRs grown on Au(788). The behavior

of the C 1s peak follows the trend of the analogous peak during the formation of 7-AGNRs on

Au(111).33 As can be observed in Fig. 2a, at the dehalogenation temperature, the C 1s peak

shifts from the RT position to lower binding energies due to the formation of the polyanthryl

precursor,6 and it moves to higher binding energies when the cyclodehydrogenation occurs.

The length and relatively good alignment of the 7-AGNRs grown on the kinked Au sur-

face allows one to investigate their electronic structure by ARPES. In fact, the 7-AGNRs’

length is sufficiently large to develop a band structure (in contrast to the Au(110) case38)

and the 7-AGNRs preferential alignment along equivalent [110] directions is comparable to

the order obtained on the Au(788) surface. Previous ARPES experiments were done on

7-AGNRs grown on the vicinal Au(788) plane, which exhibited a high ribbon density within

its narrow ≈3.8 nm terraces with excellent alignment along the [110] direction, leading to

large domains of equally oriented 7-AGNRs.39 Angle-resolved photoemission bands acquired

along the ribbon axis (ky axis in the present paper) identified downward dispersing bands,40

and among them, the apparent frontier valence band of the 7-AGNR, with band maximum
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at EV B1=-0.7 eV and ky = 1.47 Å−1 (ky =2π/a with a=4.26 Å), that is, at the center

of the GNR’s second Brillouin zone. Notably, the electron effective mass extracted from

this band dispersion, m∗= 0.21 me (where me is the electron mass), largely departed from

the value found in Fourier-transformed scanning tunneling spectroscopy (FT-STS) measure-

ments, m∗= 0.41 me.
41 In a recent work, Senkovskiy and coworkers solved this discrepancy,34

assigning the band at -0.7 eV to the VB2 state of the fused 7-AGNRs. As it occurs in other

nanostructured systems with laterally-confined 1D electronic states,42 the spectral density

probed in ARPES has a characteristic modulation for each quantum state in the confinement

direction, which in the present case of GNRs is the perpendicular direction to the nanoribbon

axis (kx axis). In practice, Senkovskiy et al. showed that for a proper band labeling of GNR

bands it is convenient to compare a full ARPES mapping of the 2D (ky, kx) momentum space

with photoemission calculations.34 By doing so, they proved that close to the (ky = 1.5 Å−1,

kx= 0) point, where most of the previous data were acquired, VB2 dominates and shades

VB1, although strictly at kx= 0 the emission from VB2 is mostly suppressed. In contrast,

the true frontier VB1 band (the first valence band) exhibits its maximum spectral density,

and it is best resolved with respect to the other 7-AGNR bands, around the (ky=0, kx=1.5

Å−1) point of the 2D spectral distribution. After correctly identifying VB1, they determined

its maximum EV B1=-0.87 eV and effective mass m∗= 0.4 me, in agreement with FT-STS

experiments.

ARPES measurements were carried out in the 7-AGNR-covered Au(16 14 15) surface.

The results displayed in Fig. 3 correspond to experiments performed with fixed ky= 0 in Fig.

3a and kx= 0 in Fig. 3b. Besides the band at the Γ̄ point in the second Brillouin zone of

the 7-AGNR (ky=1.5 Å−1) with a maximum at EV B1=-1 eV (see Fig. S5), we unexpectedly

detect another band feature dispersing downward around ky=0, under some remnant surface

state intensity. For the latter, the position of the band edge and its effective mass is obtained

by line-fitting individual electron distribution curves. The parabolic line follows the resulting

E(ky) data, shown in Fig. 3c, renders EV B1 = -0.89 eV and m*≈0.4 me, that is, values close

10
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Figure 3: ARPES electronic band structure and EPWE simulations of 7-AGNRs. Band
structure of the 7-AGNRs grown on Au(16 14 15) perpendicular (a, ky=0) and parallel (b,
kx=0) to the average axis direction of the nanoribbons. The Fermi background has been
subtracted from the raw data to improve visualization. In (b) one can observe the signature
of VB1 dispersing down from kx=0, below the Shockley state. (c) Simulated dispersion
of the VB1 electronic band for two different effective mass values: m∗= 0.2 me and m∗=
0.4 me. The superimposed experimental data resulting from the line-fitting of individual
photoemission intensity spectra lie on the band with m∗= 0.4 me. The spectral intensities in
(a) and (b) coincide with the simulated VB1 electronic bands of the 7-AGNRs in (d) and (e)
respectively. (f) Simulated constant energy cut (kx vs ky at E = -1.5 eV and E = -1.1 eV),
which highlights the modulation of the photoemission intensity of the VB1 in the Fourier
space.

to those expected for the VB1 band.34 Therefore, energies and effective masses for the band

features of Fig. 3 point to the presence of the VB1 band in the 7-AGNRs’ first Brillouin

zone. Such assignment is in fact corroborated in Figs. 3d-f, where we display the theoretical

simulation of the photoemission intensity from free standing 7-AGNRs, as determined from

our electron plane wave expansion (EPWE) method.36 The simulation proves that, at kx=
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Figure 4: ARPES spectral maps measured on a single layer of 7-AGNRs grown on Au(111)
(a), vicinal Au(788) (b) and kinked Au(16 14 15) (c), along the dominant GNR axis ky.
In all cases a downward dispersing GNR-related band is detected around kx= 0, below the
Shockley state. We attribute this band to the first occupied GNR band (VB1), which agrees
with our EPWE simulations. In (a) a broad VB1 dispersion occurs because the GNRs are
randomly oriented on the surface. The growth on stepped (b) and kinked (c) surfaces allows
a preferential unidirectional ribbon alignment on a macroscopic scale, thus a well-defined
VB1 can be observed.

0 the photoemission spectra is solely determined by the first and second Brillouin zone VB1

umklapps (see also Fig. S5).

In order to discard that the VB1 band at kx=ky= 0 arises due to the particular geometry

of the kinked Au(16 14 15) substrate (these effects are discussed in detail in the Supporting

Information, Fig. S6), we test its presence in other Au surfaces. Figure 4 shows the ARPES

ky-dispersion maps measured at kx= 0 and in the same experimental conditions on Au(111),

Au(788) and Au(16 14 15), all covered with one layer of 7-AGNRs. In all cases a downwards

dispersing feature is detected around ky=0, right below the Shockley state, which we assign to

VB1, according to our simulations. In Au(111) (Fig. 4a) the VB1 feature appears fuzzy and

broad, as expected from randomly oriented GNRs. The improved unidirectional alignment

of the nanoribbons for Au(788) and Au(16 15 14) results in better-defined VB1 dispersions

of Figs. 4b and 4c, respectively.

Our experimental observations are in agreement with both EPWE and DFT calculations34
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(see Fig. S7). The predicted VB1 features at normal emission are quite faint in both cases, so

their spectral weight is expected to be very limited compared to other positions in momentum

space, e.g. (kx, ky)=(1.5, 0) Å−1. Thus, experimental observation of this band must require

controlled sample quality (growth perfection and high surface coverage), use of low photon

energy (to enhance the carbon 2p orbital cross-section), and proper selection of the set-up

geometry (light incidence and polarization).43

The question arises why this band has never been observed in previous ARPES experiments

performed on Au(788) using similar experimental acquisition geometries. The most plausible

reason behind this difference is in the use of different photon energies, beam incidence or light

polarization conditions for the ARPES acquisition. Such difference suggests that a significant

energy dependent cross section must be present for these GNRs. Data shown in Figs. 3 and 4

were acquired with a photon energy of 21.2 eV and 88% p-polarized light using a laboratory

source, while previous measurements were undertaken with energies between 32 eV and 50

eV with mainly horizontal polarization conditions at synchrotron radiation facilities.34,40,44,45

We infer that it is a sum of factors where the photon energy and light polarization vectors

favors the observation of the inherently weak band at Γ̄. Such photoemission matrix element

effects most likely dim its intensity at higher photon energies, which could be the reason why

it has not been reported so far.

Conclusions

In summary, we have synthesized 7-AGNRs on the Au(16 14 15) kinked surface. Due to the

high temperature ribbons growth, which likely favours Au adatoms diffusion away from the

kinked steps, the surface undergoes a nanoscale step-edge reshaping, and an atomic-scale

missing row reconstruction within terraces. The catalytic activity of the surface lowers the

dehalogenation temperature with respect to the flat Au(111). The preferential alignment

of the 7-AGNRs on the reconstructed Au(16 14 15) along the two equivalent close packed
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directions allows for well-resolved standard ARPES measurements using laboratory sources.

The low photon energy and the measuring geometry employed, results in the observation

of the occupied frontier band of the 7-AGNRs at the Γ̄ point in their first Brillouin zone,

which in turn permits the unambiguous determination of the band maximum and the carrier

effective mass, that agree with results published elsewhere.

Supporting Information

The Supporting Information includes: a sketch of the ARPES setup used in our experiments;

an analysis of the orientation and length distribution of 7-AGNRs on the Au(16 14 15)

surface; STM image line profile of the (2×1) Au terrace reconstruction; the comparison of

LEED patterns of clean and 7-AGNRs covered Au(16 14 15); the explanation of the extended

band structure of the 7-AGNRs grown on Au(16 14 15) in the direction parallel to the axis

of the nanoribbons; the discussion of the origin of the appearance of the band in Γ̄ and

comparison of DFT and EPWE simulations of (kx vs ky) maps at -1.1 eV.
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Bottom-up Fabrication of Graphene Nanoribbons. Nature 2010, 466, 470–473.

(7) Talirz, L.; Ruffieux, P.; Fasel, R. On-Surface Synthesis of Atomically Precise Graphene

Nanoribbons. Advanced Materials 2016, 28, 6222–6231.

(8) Ruffieux, P.; Wang, S.; Yang, B.; Sánchez-Sánchez, C.; Liu, J.; Dienel, T.; Talirz, L.;

Shinde, P.; Pignedoli, C. A.; Passerone, D. et al. On-Surface Synthesis of Graphene

Nanoribbons with Zigzag Edge Topology. Nature 2016, 531, 489 – 492.

15

Page 15 of 22

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



(9) de Oteyza, D. G.; Garc̀ıa-Lekue, A.; Vilas-Varela, M.; Merino-Dı̀ez, N.; Carbonell-
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Electron Wave Functions and Confining Potentials via Photoemission. Phys. Rev. B

2003, 67, 081404.
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