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Abstract—In this article, we propose an online 3-D planning
algorithm for a drone to race competitively against a single ad-
versary drone. The algorithm computes an approximation of the
Nash equilibrium in the joint space of trajectories of the two drones
at each time step, and proceeds in a receding horizon fashion. The
algorithm uses a novel sensitivity term, within an iterative best re-
sponse computational scheme, to approximate the amount by which
the adversary will yield to the ego drone to avoid a collision. This
leads to racing trajectories that are more competitive than without
the sensitivity term. We prove that the fixed point of this sensitivity
enhanced iterative best response satisfies the first-order optimality
conditions of a Nash equilibrium. We present results of a simulation
study of races with 2-D and 3-D race courses, showing that our game
theoretic planner significantly outperforms a model predictive con-
trol (MPC) racing algorithm. We also present results of multiple
drone racing experiments on a 3-D track in which drones sense
each others’ relative position with onboard vision. The proposed
game theoretic planner again outperforms the MPC opponent in
these experiments where drones reach speeds up to 1.25 m/s.

Index Terms—Aerial robotics, drone racing, game theory,
motion and path planning, path planning for multiple mobile robot
systems, vision-based pose estimation.

I. INTRODUCTION

N THIS article, we consider two-player autonomous drone
Iracing as a practical scenario to investigate strategies for
robots to engage in noncooperative tasks with other agents.
When a robot is interacting with other agents, the challenge
is not only to avoid collisions, but to do so while optimizing its
own objective, and while accounting for the feedback between
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the robot’s plans and those of the other agents. These issues
are inherently game theoretic, in that one must consider the
objectives and constraints of other agents, while attempting to
optimize one’s own objective subject to one’s own constraints.

Specifically, we propose a real-time receding horizon plan-
ning algorithm for an autonomous drone (called the “ego drone’)
to plan a racing trajectory in competition with another drone. The
algorithm attempts to optimize the ego drone’s progress along
a race course subject to 1) not colliding with its opponent, and
2) staying on the track. In order to do so, the ego drone must
also plan a racing trajectory for its opponent, anticipating that
the opponent is itself trying to win the race. The goal is then to
find a Nash equilibrium in these two planned trajectories, that is,
a point in joint trajectory space in which neither the ego drone
nor the opponent can improve upon its trajectory by itself.

Our key contribution is an algorithm that we call sensi-
tivity enhanced iterative best response (SE-IBR), which uses
a sensitivity term within a sequence of iterated optimization
problems. The sensitivity term seeks to bias the resulting Nash
equilibrium to be more favorable to the ego drone than to the
opponent, by predicting at each iteration the amount to which
the opponent will yield to the ego drone due to its collision
avoidance constraint. We prove that the fixed point condition for
this iterative algorithm is equivalent to the first-order conditions
for a Nash equilibrium in the space of joint trajectories. We
verify the performance of this algorithm in simulation studies
in both 2-D and 3-D race courses, as well as in hardware
experiments with drones in a 3-D race course. The simulations
and experiments show that the ego drone using our SE-IBR
algorithm significantly outperforms an opponent using a model
predictive control (MPC) racing algorithm. Fig. 1 shows a frame
from a typical drone race.

Furthermore, in the experiments, each drone has access to its
own pose from a motion capture system. However, each drone
has to sense the relative position of its opponent using only an
onboard monocular camera. We propose a novel active vision
system that uses the predicted trajectory of the opponent (from
the game theoretic planner) as an input to a Kalman filter to track
the opponent’s relative 3-D position over time. This estimated
opponent position is, in turn, used in the game theoretic planner
to plan the racing trajectory. This closed-loop planner estimator
helps to ensure that the opponent remains in the field of view of
the ego drone’s camera throughout the race.

Although we specifically consider drone racing, we propose
this as a prototype scenario for noncooperative drone autonomy
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Fig. 1.  Drone racing experiment. Two quadrotors follow the 3-D race course
while competing against the opponent quadrotor. The relative position of the
opponent is detected onboard using a camera.

more generally. Drone racing has already attracted significant
interest from the research community as a benchmark for
single drone autonomy. The first autonomous drone racing
competition was held during the 2016 International Conference
on Intelligent Robots and Systems (IROS) [1]. Most of the
past research on autonomous racing (both for drones and
other vehicles) has focused on a time trial style of racing:
a single robot must complete a racing course in the shortest
amount of time. This scenario poses a number of challenges in
terms of dynamic modeling, onboard perception, localization
and mapping, trajectory generation, and optimal control.
Impressive results have been obtained in this context not only
for autonomous unmanned aerial vehicles (UAVs) [2], but
also for a variety of different platforms, such as cars [3]-[5]
motorcycles [6], and even sailboats [7]. However, much less
attention has been devoted to the multiplayer style of racing that
we address in this article, sometimes called rotocross among
drone racing enthusiasts. In addition to the aforementioned
challenges, this kind of race also requires direct competition
with other agents, incorporating strategic blocking, faking, and
opportunistic passing while avoiding collisions. The algorithm
we propose here exhibits all of these competitive behaviors.

A preliminary version of some of the results in this article ap-
peared in the conference paper [8]. This journal version includes
the following advancements beyond the conference version. 1)
We test the algorithm in multiple hardware experiments, in
which the drones sense one another’s relative pose in real time
using onboard monocular vision. Our perception pipeline uses
the predicted trajectory of the opponent to yaw the camera into
position to track the opponent, thereby introducing an element
of active perception. 2) The article compares the SE-IBR to
both a standard MPC, and a game theoretic iterative best re-
sponse (IBR) planner (without our sensitivity enhancement) to
verify that our SE-IBR significantly outperforms both traditional
(MPC), as well as game theoretic (IBR), online planning algo-
rithms. Beyond these main advancements we have also updated
the text and notation throughout, and included several new fig-
ures to give more insight into the performance of the algorithm.

The rest of this article is organized as follows. In Section II,
we review the existing literature. In Section III, we model the
drone racing problem and introduce the associated sensing and
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control constraints. In Section IV, we formulate the problem as
a Nash equilibrium search, describe our SE-IBR algorithm, and
state the main mathematical result: the fixed point is equivalent
to the first-order conditions for a Nash equilibrium. In Section V,
we describe the onboard active-vision algorithm the drone use to
estimate its opponent’s positions. In Section VI, we report sim-
ulation and experimental results. Finally, Section VII concludes
this article.

II. RELATED WORK

In this section, we describe the related literature both for
single-robot and multirobot motion planning. In particular, we
focus our attention on approaches exploiting results from game
theory using either a Stackelberg or a Nash information pattern,
which are more closely related to our work.

A. Single-Robot Planning

A number of effective solutions for motion planning in
presence of both static and dynamic obstacles have been pro-
posed in the past. Some classical works use artificial potential
fields [9], [10], geometric approaches [11] or sampling-based
methods [12], [13]. More recently, also thanks to the availabil-
ity of efficient numerical optimization schemes, a number of
MPC and reinforcement learning approaches have also been
proposed [4], [5], [14]. More specifically to our application, Jung
etal. [2] ranked first in the IROS 2016 drone racing competition
exploiting an optical flow sensor and a direct visual servoing
control scheme.

Most of these works rely on simple “open-loop” models
to predict the obstacle motion. In many situations, however,
obstacles behave in a reactive way. A human, for example, will in
turn actively avoid collision with the controlled robot and, thus,
her/his motion will be strongly affected by that of the robot.
This reactiveness creates a “loop closure” that, if not properly
managed, can induce oscillatory effects sometimes referred to
as reciprocal dances [15].

B. Cooperative Multirobot Control

Impressive results have been obtained by relying on commu-
nication to coordinate multiple robots in a navigation context
or, more in general, to realize a common task [16], [17]. In
other cases, communication is achieved more implicitly by an
exchange of forces [18]. Some works remove the communication
layer but rely on a common (or at least known) set of motion
policies to achieve cooperation among multiple agents [11],
[19]-[22]. In general, communication or coordination is not
realistic in competitive scenarios such as drone racing or mixed
human-robot scenarios like autonomous driving.

C. Game Theoretic Control Using a Stackelberg
Information Pattern

While broadly used in economics and social science, game
theory has not yet attracted, in our opinion, a sufficient interest
from the robotics community, mostly due to the computational
complexity typically associated with these methods.
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Some interesting results have been obtained applying game
theoretic concepts to robust H, optimal control design (see [23]
for a recent review on the topic). The disturbance acting on a
system can be modeled as an antagonistic agent that explicitly
aims at minimizing the system performance thus giving rise to a
zero-sum differential game [24]. Similar models have also been
employed to calculate the so-called reachable set of a system: the
set of states from which there exists at least one control strategy
that brings the system to a desired set in spite of adversarial
disturbances [25]. Finding the reachable sets usually requires
the integration of the so-called Hamilton—Jacobi—Isaacs partial
differential equations, which are typically limited to offline
solutions with a small number of state dimensions (e.g., less than
6). These offline solutions typically yield online policies that are
fast, but not reactive to changing conditions. Some recent work
has focused on scaling these offline methods to higher dimen-
sional systems through suitable approximations [26]-[28].

Another approach to deal with games involving dynamic
agents is the classical differential games approach introduced by
Isaacs [29]. This approach typically uses geometrical analyses to
find Stacklberg solutions for agents modeled in continuous time.
For example, Walrand et al. [30] propose a harbor attack/defense
game that bears some resemblance to the pass/blocking nature of
our drone racing game. This work primarily provides geometric
analysis of hand-designed strategies for a Stackelberg infor-
mation pattern, and also considers Nash equilibria for mixed
(i.e., stochastic) strategies. In contrast, our work considers an
optimization-based approach that generates deterministic strate-
gies online to suit the complex racing circumstances as they
arise.

More recently, similar approaches have also been employed
in the context of autonomous driving. In [31], for example, the
interaction between an autonomous car and a human-driven one
is modeled as a Stackelberg game: the human is assumed to
know in advance what the autonomous car will do and to respond
optimally according to an internal cost function. This results in a
nested optimization problem that can be exploited to control the
human motion [32] or to reconstruct the cost function driving
his/her actions [31].

D. Game Theoretic Control Using a Nash Information Pattern

Giving the other players some information advantage can, in
general, improve the robustness of the system. However, in many
applications such as drone racing and autonomous driving, no
agent would have any information advantage with respect to the
others. For this reason, we believe that Stackelberg information
models could result in overly conservative actions. A more
realistic model is that of Nash equilibria that, instead, assume a
fully symmetric information pattern.

Williams et al. [33] propose an information theoretic MPC
approach for a stochastic racing game. The approach uses an
IBR algorithm, although the objective of the game is for the
two players to collaborate to be robust to the random effects of
noise. In a racing scenario with scale ground vehicles moving
at high speed, they show the algorithm is effective when both
vehicles collaborate over a communication network to maintain

a desired distance relative to one another despite various sources
of noise. In contrast, we consider a deterministic set up in which
the agents compete against one another to win a race, and they
do not communicate over a communication network.

A recent paper [34] proposes a control algorithm for coor-
dinating the motion of multiple cars through an intersection
exploiting generalized Nash equilibria. The numerical resolution
is in the order of several seconds which is close to real time but
still not sufficient for the approach to be used for online control.

In the context of car racing, Liniger and Lygeros [35] in-
vestigate both Stackelberg and Nash equilibria. Computational
performance close to real time, however, can only be obtained
in a simplified scenario in which only one of the two players
avoids collisions. In addition to this, the authors also discuss the
importance of exploiting blocking behaviors. However, while
in our work these behaviors naturally emerge from the use
of sensitivity analysis, in [35] these are hardcoded in the cost
function optimized by the players.

The main limiting factor for applying game theory more
widely to robotic control problems seems to lie in the associ-
ated computational complexity. We believe, however, that game
theory can still be used as an inspiration for guiding the design of
effective and computationally efficient heuristics. The algorithm
we present here represents a step in this direction.

III. PRELIMINARIES

Consider two quadrotor UAVs competing against each other
in a drone racing scenario. To simplify the computational de-
mands of the solution, we assume a low-level trajectory follow-
ing controller is in place, removing the need to include roll and
pitch in the dynamics. Therefore, we seek to plan the trajectory
using simplified holonomic dynamics given by

pi|  |Ri Of |v;
B

where p; € R3 is the robot position in the world frame, R; =
R (¢);) € R®*3 represents the rotation matrix associated to the
robotyaw; € S',andv; € R3 andw; € R are the body-frame
linear velocity and angular rates, which serve as the control
inputs. Given (1), the robot state is x; = (p;,¥;) € R3 x St
and it is assumed locally available, e.g., using onboard GPS and
an inertial measurement unit (IMU).

Due to limitations of onboard actuators, the robots linear
velocities are limited, i.e.,

lvsll = 2]l < 7; € RT.

The race track center line is defined by a twice continuously
differentiable immersed closed curve T (see Fig. 2). For such a
curve, there exists an arc-length parameterization

7 :[0,1,] — R3, with 7(0) = 7(I)

where [ is the total length of the track. Moreover, one can also
define a local signed curvature « and unit tangent, normal, and
binormal vectors (£, n, b, respectively) as follows:

t=r1 ©)
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Fig. 2. Representation of the race track used for the simulations. The track
is parameterized by its center line 7 and its half-width w. Given the current
robot position p;, we can define a local track frame with origin 7; as the closest
point to p; and with ¢ and n being the local tangent and normal vectors to the
track in ;.

nk =T1" (3)
b=txn. 4)

To remain within the boundaries of the track, the robot’s
distance from the track center line must be smaller than the
track width w, € R, i.e.,

|n(511)T[Pi - T(Sq)H < ws

where s; € [0, 1] is the robot position along the track, i.e., the
arc length of the point on the track that is closest to p;

si(p;) = argmin § ||7(s) — py|*. Q)

In order to avoid potential collisions, each robot always main-
tains a minimum distance d; € R™ with respect to its opponent,
ie.,

|p: — pj|| = d. (6)

Note that here, as well as in the rest of this article, we always
use ¢ (=1 or 2) to refer to a generic robot and j (=2 or 1,
respectively) to refer to its opponent.

Each UAV uses onboard sensing to estimate the relative
position of the opponent expressed in their local body frame,
ie.,

Dij = R;’P (p_j - Pi) . (7
Fusing (7) with their ego state estimate, each robot can then
estimate the world frame position of its opponent.

Since the robot cameras have a limited field of view, we
need to impose a visibility constraint for measurement (7) to be
available. We assume that robots are equipped with a spherical
marker for detection with a size such that, even when the two
robots are at a minimum distance d; from each other, a robot
marker is entirely visible by its opponent camera, provided that
the following condition is satisfied:

pi;
P3|

e = ,BiTjel > cos(a) (8)
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where 3, is a relative bearing vector, « is the camera field
of view, and e; = (1,0,0) is the optical axis that is assumed,
without loss of generality, to be aligned with the x-axis of the
robot body frame.

Since we exploit a receding horizon control approach, the
objective for each robot is to have a more advanced position
along the track, with respect to the opponent, at the end of the
planning horizon 7. The final position is given by

d; = N;l+ + Si(pi(t + T))

where NNV, is the number of completed track loops and s; is
computed as in (5). Neglecting the constant terms, the objective
function of player ¢ is then to maximize the difference

fi=si@i(t +T)) = s;(p;(t +T)). ©

Because of the collision avoidance constraints (6), in order
to calculate its optimal trajectory, each robot needs access to its
opponent’s strategy. However, since the robots are competing
against each other, we do not expect them to share/communicate
their plans. Instead, each robot needs to model the opponent
and predict its actions. We believe that game theory [24] is the
correct framework to describe this noncooperative scenario. In
particular, drone racing can be seen as a zero-sum differential
game because clearly from (9) one has f; + fo = 0.

Since the cost function (9) only depends on the robots’ posi-
tions and the constraints on the robot positions and yaw angles
can be separated, we perform the planning for the robots’ posi-
tion and yaw angles separately: first we apply a game theoretic
approach to calculate optimal control inputs for the translational
part of the robot dynamics; then, we calculate the yaw angle
control in such a way that the visibility constraints (8) remain
satisfied at all times given the planned/expected translational
motions.

IV. GAME THEORETIC FORMULATION

In this section, we address the planning problem for the trans-
lational component of the robot state, i.e., the first row of (1).
Since the robots know their relative positions and their state
with respect to the world frame, we can rewrite the optimization
problem in world frame coordinates. By doing this, the robots
dynamics further simplify to p;, = u;.

To make the problem tractable, we discretize the plan-
ning horizon and we assume piecewise constant control in-
puts for both players, i.e., u; (t) = u¥ /6t = const Vt € [to,to +
kdt) where 0t is a constant sampling interval. Defining 6, =

(pl,..., pN,ul,... ulN)andu; = v,0t, the problem can then
be rewritten as

max si(p}') = 5(p]) (10a)

st. pf=ptft 4l (10b)

1P} — P = d; (10¢)

n@h) Pt - Tph)| <we (10d)

[ uf || <. (10e)
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For simplicity of notation, let us rewrite problem (10) in a
more compact and general form

max s;(0;) —s;(0;) (11a)
9:(0;) <0 (11c)
~:(0:,0;) <0 (11d)

where the following conditions hold:

1) h; represents the equality constraints (10b) involving a

single player;

2) g, represents the inequality constraints (10d) and (10e)

involving a single player;

3) ~; represents the inequality constraints (10c) involving

both players.

There are some important details regarding this general
formulation. On one hand, it should be noted that s;(6,)
does not depend on player i’s actions, which means that
arg maxg, s;(0;) — s,;(0;) = arg maxg, s;(0;). On the other
hand, even if we drop s;(6;) from the problem, it is important
to highlight that (11) should not be seen as a two separate
optimization problems for player ¢ and j but as a full differential
game. A peculiarity of (11) is that the two problems are only
coupled through the constraints [namely, the collision avoidance
constraint (10c), (11d)] and not through the cost functions, as
is usually the case in the differential games literature. Define
©; C RV as the space of admissible strategies for player
i, 1.e., strategies that satisfy (11b) and (11d). Note that, due
to (10c), one has ©; = ©,(0,), i.e., the strategy of one player
determines the set of admissible strategies of its opponent and,
as a consequence, can influence the latter’s behavior.

The information required to solve it is reasonable and most
likely available to each robot: the constraints are imposed by the
shape of the race track, which is known, and by the shape and
dynamics of the opponent, which can be guessed with reasonable
accuracy in the context of drone racing; the objective of the
players in a race is obvious: to win the race, which reduces
to (9).

In a game, the concept of an optimal solution loses meaning
because, in general, and especially in a zero-sum game, it is
not possible to find a pair of strategies (61, 62) that maximize
the cost function of both agents simultaneously. On the other
hand, various types of equilibria can be defined depending on
the degree of cooperation between the agents and the information
pattern of the game (see [24] for a complete description of the
possible alternatives). In this work, in particular, we exploit
the concept of Nash equilibria, which, by modeling a perfectly
symmetric information pattern, do not induce overly optimistic
or conservative behaviors.

A Nash equilibrium is a strategy profile (67, 03) € ©1 x O,
such that no player can improve its own outcome by unilaterally
changing its own strategy, i.e.,

(12)

* p—
0; = arg max

i 07' .
eie@i(e;)s( )

An alternative definition of Nash equilibria can be given by
defining a best reply map

Ri(0;) ={6: € ©:(0;) : 5:(0;) = 5;(05)}
where

5;(0;) = 5:(0:)

max
0,c0,(0;)

(13)
is player 4’s best-response return to player j’s strategy 6 ;. One
can show that a Nash equilibrium is a fixed point of the best
reply map, i.e., such that 8; € R;(0;).

Unfortunately, since problem (10) is not convex due to (10c),
in general multiple Nash equilibria may exist (e.g., left versus
right side overtaking). There exist few algorithms in the literature
for finding Nash equilibria for problems such as ours, with
continuous strategy spaces, nonconvex objectives, and state
constraints. Those that do exist for continuous strategy spaces
and state constraints, e.g. [36], require convexity and regularity
conditions not met by our problem, and are too computationally
intensive to be suitable for online implementation. Furthermore,
due to the intractability of computing Nash equilibria in discrete
games (see the celebrated work [37] and the related [38]),
approximating our problem with a discrete set of strategies
also seems ill-suited to online implementation. Therefore, the
following section describes our main algorithmic contribution,
an iterative algorithm that allows to compute an approximation
of the Nash equilibria in real time.

A. Sensitivity Enhanced Iterative Best Response

In order to approximate Nash equilibria in real time, we
propose a variant of an IBR algorithm. Starting from an initial
guess of the Nash equilibrium strategy profile, the ego drone sets
its own strategy as the best response to its opponent’s strategy,
then updates its opponent’s strategy to the best response to its
own, alternating these updates until a convergence condition is
achieved, or a time limit is reached. This is done by solving
a standard optimization problem in which one player strategy
is allowed to change, whereas the opponent’s one is kept con-
stant. Intuitively, if the resulting sequence of strategy profiles
converges, it follows that each player is best responding to
its opponent. If this is the case, then no profitable unilateral
change of strategy exists as required by the Nash equilibrium
definition (12).

Unfortunately, a direct application of IBR to (10) does not
allow to fully capture the implications of the collision avoidance
constraints (10c). As already mentioned, in fact, since player
1 has no direct influence over the final position of player j
(i.e., s;), the second term in (9) can be neglected in (10).
However, since player j is calculating its strategy by solving
an optimization problem similar to (10), due to the presence of
the joint constraints (10c), player i does have an effect on s7(6;)
(see the counterpart of (13) for player j). In other words, while
player 7 does not affect player j’s final position in general, it
does affect it at the Nash equilibrium. To capture these effects,
we would intuitively want to substitute (11a) with the following
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cost function:
5i(0;) — as}(0;)

where o > 0 is a free parameter. However, a closed-form expres-
sion for s7(8;) is difficult to obtain. Instead, inspired by [39], we
can exploit sensitivity analysis to calculate a linear approxima-
tion around the current guess for the Nash equilibrium strategy
profile. As we show in the following, although this modifies
the cost function in each iteration of IBR, the properties of the
fixed point the IBR are preserved. Namely, the fixed point is still
equivalent to the first-order conditions of a Nash equilibrium for
the original game.

Let us assume that, at the /th iteration, a guess 0%‘1 for player
1’s strategy is available to player j. Given this strategy for its op-
ponent, player j can solve the optimal control problem (10) with
0, = 0571 (fixed). This step will result in a new best-responding
strategy for player 7, 9;, with the associated payoff s;‘-(é)ﬁ*l).
Assuming player ¢ is now given the opportunity to modify its
own strategy, we are interested in characterizing the variations
of s3(8;) for 8; in the vicinity of 6'~! using a first-order Taylor
approximation

ds?

(0. ~ s* -1 J
8.7(01) SJ(B’L )+ del o1

(0: =67, (14
Exploiting the Karush—Kuhn—Tucker (KKT) necessary op-
timality conditions associated to player j’s optimal control
problem (11), one can prove the following result.
Lemma 1: If s7 is the optimal value of an optimization prob-
lem obtained from (11) by exchanging subscripts ¢ and j, then

*
dsj

deo;

— 97,
gl-1 J 801

(15)

(6;°",65)

where 0; € Rj(Oéfl) is the best response of player j to 6!
and ué is the row vector of Lagrange multipliers associated to
the joint inequality constraints (11d).

Proof: A full discussion on sensitivity analysis can be found
in [40]. A brief proof, specific to the case at hand, is reported in
Section A. |

Neglecting any term that is constant with respect to 8, we then
propose that the ego vehicle solves the following optimization
problem alternatively for itself and its opponent:

07
891 (94’1,6;)

max s;(0;) + aué 0; (16)

01665

where O! represents the space of strategies 6, that satisfy (11b)
and (11d) with 6; = 6.

Theorem 1: If ~v,(01,62) = v5(01,02) and the iterations
converge to a solution (0", 0%), then the strategy tuple (6, 8%)
satisfies the first-order conditions for a Nash equilibrium.

Proof: See Section B. [ |

We stress two important points about Theorem 1 and what
it implies about the performance of our SE-IBR algorithm. 1)
The first-order conditions for a Nash equilibrium are necessary
conditions (not necessary and sufficient), analogously to how the
KKT conditions are necessary optimality conditions in nonlinear

IEEE TRANSACTIONS ON ROBOTICS

optimization. 2) Furthermore, we have not proved that our SE-
IBR algorithm always converges; only that if it does, the fixed
point is equivalent to the first-order Nash conditions. Although
empirically we find that it does converge, and does so quickly
enough to compute online in a receding horizon loop.

In the drone racing scenario, in particular, using (5) and (6)
after some straightforward calculation, (16) reduces to

N
1 2 kil gk Tk
max argmlan‘r(s)—pﬁvH —i—aZuj’ﬁij py| (A7)
0,c0! s 2 Pt
where
k.l ke l—1
gt Pi TP
TN ki-1]]"
o=

To obtain a more intuitive interpretation of this result, let us
assume that the track is linear and aligned to a unit vector ¢ so that
the first term in (17) can be rewritten as t7 p/¥ (see Section IV-B
for details). Since player ¢ cannot modify the strategy of player
7, the following problem has the same solutions as (17)

N

Kl ok T, Kl .

max t'p) —a Y ui'BE () - pf).  (19)
k=1

0,c0!

We can then notice the following insightful facts. First of
all, if none of the collision avoidance constraints (10c) were
active in the [th instance of problem (10), i.e., if ,uf’l =0,
then (18) reduces to (10). This has an intuitive explanation: if the
collision avoidance constraints are not active, the optimal control
problems for the two players are independent of each other and
the original dynamic game reduces to a pair of classical optimal
control problems. Interestingly, in this case, the only sensible
strategy for a player is to advance as much as possible along the
track.

The problem becomes much more interesting when the col-
lision constraints are active (u?’l > 0). In this case, indeed, the
cost function optimized in (18) contains additional terms with
respect to (10c). By inspecting these terms, one can notice that
they have a positive effect on player ¢’s reward if robot ¢ reduces
its distance from player j’s predicted position (p?’l) along the
direction of ﬂfjl. The intuition behind this is that, when the
collision avoidance constraints are active, player 4 can win the
race by either going faster along the track or by getting in the
way of player j, thus obstructing its motion along the path.

Isolating the last term in the summation in (17), and assuming
once again the track is linear and aligned to a unit vector £, one
can also rewrite (17)

N-1
T T
k,N qk,N k.l ak,l
max (t+aph N BEY) pN +a > 8 Pl (19)
k=1

From this alternative expression, it is clear that, depending on the
value of au?’N, player ¢ might actually find it more convenient

to move its last position in the direction of player j (,BZTN)
rather than along the track (£). One can then also interpret the
free scalar gain « as an aggressiveness factor. Using (10b) one
can also substitute p)¥ = p? + 31, u and draw similar
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initial guess for 2

solve (17) for 1

solve (17) for 2

i

solve (17) for 1

Fig. 3. Flowchart describing the proposed SE-IBR algorithm used by the ego
drone to find an approximation of the Nash equilibrium. Notice that, as part
of SE-IBR algorithm, the ego drone plans its own trajectory, and also plans an
anticipated trajectory for its opponent.

conclusions for any intermediate position p;'. Note that player ¢
can exploit this effect only so long as it does not cause a violation
of its own collision avoidance constraint (10c).

Before concluding this section, we want to stress the fact that,
since the players do not communicate with each other, the ego
drone must independently run the iterative algorithm described
above and alternatively solve the optimization problem (17) for
itself and for its opponent. In order to generate control inputs in
real time, in our implementation we continue the iterations until a
convergence condition is reached, or until a maximum number
of iterations L has been reached. By exploiting the similarity
between the solutions at consecutive time steps, we bootstrap
the algorithm feeding the previous result as an initial guess for
the current computation. This way we are able to obtain near-
optimal solutions while keeping the value of L at a sufficiently
low value to achieve real time performance. Additionally, since
updating the opponent’s strategy is only useful if this is exploited
for recomputing a player’s own strategy, we conclude the ego
drone’s iterations with an extra resolution of'its own optimization
problem. This also ensures that the resulting strategy profile
satisfies the player’s own constraints.

SE-IBR still requires the ego drone to solve a sequence of
challenging optimization problems (17) at each time step (see
the flowchart for SE-IBR in Fig. 3). In the following, we describe
our method for solving these optimization problems.

B. Solution of Each Optimization Iteration

The solution strategy described in Section IV-A relies on
the assumption that, at each iteration /, an optimal solution
to problem (17) can be found given the current guess for the
opponent strategy at the equilibrium.

Note that (17) is a well-posed problem. Indeed, due to the
system dynamic constraints (10b), the input boundedness im-
posed by constraints (10e), and assuming that the sampling time
is finite, the set ©! is bounded. On the other hand ©! is also
never empty because the solution§; = (pY,...,pY,02,...,02)
is always feasible, assuming that the robots do not start from a po-
sition that violates the collision (10c) or track (10d) constraints.

Unfortunately, problem (17) is also nonlinear and nonconvex
and thus we cannot guarantee the uniqueness of an optimal
solution. A source of nonconvexity, in particular, is the reciprocal
collision avoidance constraint (10c). For example, player i can
potentially overtake player j by passing on the left or right side
and, in some situations, these two solutions might even result in
an equivalent payoft.

Because of the aforementioned nonconvexity, local optimiza-
tion strategies will, in general, result in suboptimal solutions. In
this work, however, we must calculate solutions to (17) in a very
limited amount of time for online control. We then opt for a local
optimization strategy thus potentially sacrificing optimality for
the sake of increasing speed.

Assume that player ¢ is at the [th iteration of the Nash
equilibrium search. The predicted strategy for player 7 is then
0lj and it remains fixed while player ¢ is solving problem (17),
again, iteratively. In order to simplify the notation, in this section
we drop the superscript [ that indicates the Nash equilibrium
search iteration and, instead, we use the superscript to indicate
the internal iterations used to solve (17). Moreover, to clarify
the notation even further, we use a - accent to indicate all
quantities that remain constant across all inner iterations used to
solve a single instance of (17). Therefore, assume that player
’s current guess of its optimal strategy is 6. We use 0"
to compute a convex quadratically constrained linear program
(QCLP) approximation of problem (17).

Constraints (10b) and (10e) can be used as they are because
they are either linear or quadratic and convex. The linear approx-
imation of (10c) and (10d) is also straightforward and results in
the following constraints:

Bl B - pl) > @

T
e (ph — )| <,

=k k,m
: k,m p;—Dp;’ km k,m
with 32" = —— o= n(p;

— =k k,mj
Hpj -P;’
k
7(p; ).

The only term that requires some attention is the linear ap-
proximation of the cost function in (16) and, in particular, of
its first term because we do not have a closed-form expression
for s; as a function of pfv . However, since pﬁV is a constant
parameter in the optimization problem that defines s;, we can
exploit sensitivity analysis again to compute the derivative of s;
with respect to pl¥. To this end, let us rewrite

), and TP =

S = argmind(s,p,fv),with d(57p£v) = %HT(S) _p'fv|’2'

Then, as shown in [40] (and summarized in Section C for the
case at hand), the derivative of s; with respect to p¥ can be
calculated as

ds; __<82d>_1 0%d B T
Aol N0 Os0pT | (p )"
20)
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Exploiting the arc-length parameterization and the relations (2)
and (3), we conclude
dSi tT N

= = o(p]
dp}Y l—m(pZN—T)Tn ®)

where ¢, n, and 7 must be computed for s = s;(pY ). Neglecting
any term that does not depend on 8;, the cost function can then
be approximated around 0" as

N T
orpl +a> @B P
k=1
with o = o(pl'™).

The solution 9;”“ to the approximate QCLP problem can
then used to build a new approximation of problem (17). The se-
quential QCLP optimization terminates when either a maximum
number of iterations has been reached or the difference between
two consecutive solutions, 7 = ||@7""! — 7|, is smaller than
a given threshold.

V. OPPONENT POSITION ESTIMATION

The proposed planning strategy requires the ego drone to
know both players positions (p?, p9) at the beginning of each
planning phase. As already mentioned, we assume that each
robot knows its own position from, e.g., GPS and IMU mea-
surements. On the other hand, because of the lack of commu-
nication between the players, the position of the opponent must
be estimated by fusing the visual and inertial measurements
from onboard camera and IMU sensors. In our implementation,
we first exploit the onboard camera and gyro, to estimate the
opponent position expressed in the local body frame of robot ¢,
ie., Dij- Then, we transform the final estimate into the world
reference frame using the available ego state estimates.

The belief over the opponent’s relative state is maintained via
a Kalman filter and the expected value of this belief is used as the
opponent’s state estimate in the final solution to Problem (17). In
order to be robust with respect to altitude control errors and robot
roll and pitch rotations, for estimation purposes, we consider a
3-D dynamical model. We approximate the relative dynamics of
opponent j with respect to ¢ as a second-order kinematic model.
Assuming constant world-frame linear velocities for both robots
(i.e., v; = v; = 0), differentiating (7) we obtain

—S(wi)

D;;
’U,‘j

Dij
Uij

+w. (21

033

In these dynamics, v;; = R} (v; —v;), S(w;) is the skew
symmetric matrix built with the components of robot ¢’s body-
frame rotation rates w,—measured via gyroscope—and w ~
N (06, Q) is additive, zero-mean Gaussian white noise with
covariance matrix Q € R6*6.

As discussed in the following, robot ¢ can measure the oppo-
nent’s relative position using an onboard camera, i.e.,

Y; =D T (22)

where y; € R?, v ~ N(03, R) is additive, zero-mean Gaussian
process noise with covariance matrix R € R3*3. Equations (21)
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and (22) form a time-varying linear system with additive Gaus-
sian input and measurement noise. Standard Kalman filtering
techniques can then be applied to design an estimator.

In practice, we achieve the measurement equation above by
using a blob tracker, and tracking a colored ball mounted atop
each of the drones. Since the size of the ball and its location on
the drone is known before hand, the blob in a camera image can
be used to infer the full relative position of the opponent drone,
including depth.

Specifically, we use the technique detailed in [41] and [42]
to obtain a relative positions estimate by extracting an ellipse
from the image with thresholding. We then use the second-order
moments of the ellipse to estimate the relative position of the
ball, and therefore the opponent drone. We also assume that the
extrinsic and intrinsic camera parameters are calibrated for each
robot, using the pinhole camera model [43].

A key novelty in our perception system is that it uses the
opponent’s planned trajectory computed as part of the SE-IBR
as an input to the Kalman filter. Notice in (21) the relative
velocity v;; between the drones must be known as an input to the
relative dynamics. We use the first two waypoints from the game
theoretic planner to estimate this input as v;; = (pj1 —pl)/st.
This closes the loop between the planner and the perception
system.

Furthermore, we also control the drone’s yaw degree-of-
freedom to keep the opponent within its camera’s field of view
(recall the field of view constraint (8)). A simple, yet effective,
strategy to maintain visibility is to always align the camera axis
to the relative bearing vector 3, j thus maintaining the opponent
in the center of the image. Given the planned (respectively
predicted) trajectory for player ¢ and its opponent, we calculate
the desired yaw angle for player 7 as

k k
el B, with g, = 2L P

k _ atan2(el 3% .
vi = stanies ok — ]

ijo
A desired angular velocity is also be computed by differentiating

: ko vEurt
consecutive samples as wy = “—<1—.

VI. SIMULATIONS AND HARDWARE EXPERIMENTS

We compare the proposed game theoretic planner from
Section IV in both simulations and hardware experiments with
real-time quadrotor perception and control. We denote the game
theoretic planner (or SE-IBR) as GTP in the remainder of this
article. We compare GTP to two baseline control algorithms in
order to assess its effectiveness when racing: 1) an MPC-based
approach and 2) the IBR algorithm (Section IV) that does not
include the novel sensitivity term. The MPC strategy is based on
the realistic, but naive, assumption that player ¢’s opponent will
follow a straight line trajectory at (constant) maximum linear
velocity along the local direction of the track, i.e., 7;t(s(p})).
Based on this assumption, player ¢ can predict player j’s strategy
and solve (10) as a single classical optimal control problem. The
numerical optimization scheme described in Section IV-B can
be used also in this case to efficiently compute a locally optimal
solution. We stress that while this may seem naive compared to
our GTP, nonlinear MPC for online planning is a state-of-the-art
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method, and it is common in the literature to assume that other
agents in the environment are unreactive, and will continue with
their current velocity [21].

A. Simulations

We perform extensive simulations in both 2-D and 3-D. Our
planning algorithm is implemented in C++ and interfaces with
the simulator using the robot operating system. Each receding
horizon trajectory optimization step is solved using Gurobi [44]
for all control approaches. We use a simulation time step of
10 ms, however the planners run at 20 Hz. In simulations, we
do not use the vision-based tracking and estimation method
described in Section V and instead only test the interaction
of the agents under the assumption that they can access their
opponent’s position.

In the 2-D simulations, we compare GTP to the MPC bench-
mark while simulating the full quadrotor dynamics (see Fig. 4)
via the open-source RotorS package [45]. We also use state-
of-the-art nonlinear controllers to drive our quadrotors along
the trajectory resulting from the solution of (17). We refer the
reader to [46] and [47] for further information about the control
pipeline. We set the maximum linear speeds of the two robots
to 0.5 m/s and 0.6 m/s to enforce some interaction between the
robots and always ensure the faster robot starts behind the slower
one. The initial starting positions of the faster robot (starting in
second place) are sampled from a uniform distribution with rect-
angle support defined by [—0.1,1.5] x [—0.7,0.7]. Similarly,
the initial starting position of the slower robot (starting in first
place) is sampled from the rectangle [1.6, 1.7] x [—0.7,0.7]. We
discarded any pair of sampled initial positions that would vio-
late the collision avoidance constraints (6). The two simulated
robots have a radius of 0.3 m and maintain a minimum relative
distance d of 0.8 m from their opponent. The simulated track is
represented in Fig. 2. The track fits into a 15 x 11 m rectangle
and its half-width w, is 1.5 m. We terminated each simulation
as soon as one robot completed an entire track loop and reached
the finish line positioned at x = 2.32 m.

We additionally test on a 3-D racecourse using a similar plan-
ning and simulation setup as in the 2-D case. Along with MPC,
we also compare GTP to IBR. In the 3-D simulations, all robots
plan and execute in 3-D. We also make use of a single integrator
model for simulating the robot motion, which is consistent with
our modeling in (10). These simulations include faster speeds
(1.8 and 2.0 m/s) that match state-of-the-art single drone racing
results in the literature [48], [49]. The 3-D racecourse has richer
elements than the 2-D, such as varying track width, varying
altitude, and space in vertical direction, which allows the robots
to move up and down. The robots are randomly initialized in
a similar manner to the 2-D simulations such that the initial
conditions among different simulation cases are consistent. The
3-D track has varying width ranging from 0.6 to 1.1 and a
constant height of 0.7 (see Fig. 6). The rest of the setup is the
same as in the 2-D case.

In total, we compare the performance of GTP in the following
simulation cases.

Case I: 2-D fast GTP versus slow MPC.

Case Il: 2-D fast MPC versus slow GTP.

1.0 1 I 1 1

- 0.6 -
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4 02} -
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Fig. 4. Results from the 2-D simulation studies. (a) and (b) Race result
histograms of final arc-length differences [as in (9)] in 150 runs of the simulation.
Green indicates a win for the proposed GTP, whereas red is a win for MPC. In
(c) and (d), the trajectories of the two competing robots in all of the simulations
are plotted, with GTP in green and MPC in blue. (a) Case I: fast GTP versus
slow MPC. (b) Case II: fast MPC versus slow GTP. (c) Case I: fast GTP versus
slow MPC. (d) Case II: fast MPC versus slow GTP.
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Fig. 5. Race result histograms for the 3-D simulation studies. These fig-

ures are plotted in the same way as in Fig. 4(a) and (b). (a) and (c) GTP
successfully overtaking MPC and IBR when starting behind. (b) and (d)
GTP successfully blocking MPC and IBR when starting in front. GTP of-
ten passes MPC and IBR early, leading to a win by a large margin [(a)
and (c)]. In comparison, IBR sometimes takes a long time to pass de-
spite the speed advantage (d). (a) Case III: fast GTP versus slow MPC.
(b) Case IV: fast MPC versus slow GTP. (c) Case V: fast GTP versus slow
IBR. (d) Case VI: fast IBR versus slow GTP.

Case Ill: 3-D fast GTP versus slow MPC.
Case IV: 3-D fast MPC versus slow GTP.
Case V: 3-D fast GTP versus slow IBR.

Case VI: 3-D fast IBR versus slow GTP.

We report a race result histogram representation of the final
distance along the track [i.e., the arc-length difference (9)]
between the two robots in Figs. 4(a) and (b) and 5. The distance is
calculated in GTP-focused manner such that it is positive (green)
when the robot controlled using GTP wins the race and negative
(red) when its opponent wins the race. We also report the position
traces of the robots for all of the simulations in Figs. 4(c) and
(d) and 6. The green traces indicate GTP, blue are for MPC, and
red are IBR.
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(a) (b)

Fig. 6.  Simulation trajectory traces for the GTP and MPC 3-D trials. An aerial
view is presented in (a) and an isometric view is presented in (b). Note that the 3-D
track has varying width, height, and elevation. Purple boxes are used to visualize
the swept 3-D volume of the track. Similar overestimation characteristics are
visible in the GTP trajectories as in the 2-D results. (a) Case IV: fast MPC
versus slow GTP. (b) Case IV: fast MPC versus slow GTP.

In the GTP versus MPC cases, both planners are effective
in following the track and differ in the way they interact with
the opponent (in fact, the algorithms are identical when the two
robots do not interact) (see Figs. 4, 5(a) and (b), and 6). In the
cases where GTP is the faster robot [see Figs. 4(a) and 5(a)], GTP
overtakes MPC and wins approximately 30% of the races. When
GTP does win, it wins by a large margin despite starting behind
the MPC robot. A closer look at the simulation trajectories
[see Fig. 4(c)] reveals that GTP often tends to overestimate its
opponent (as it assumes the opponent is using GTP as well). The
consequence of this is that, when attempting to overtake, it ex-
pects the opponent to block its motion and ends up following an
overly cautious trajectory moving sideways along the track more
than necessary. This is evident in oscillatory motion in Fig. 4(c)
immediately after the upper right corner of the track.

In the cases where GTP is the slower robot [see Figs. 4(b) and
5(b)], GTP defends its position and wins approximately 80%
of the races. In the trajectory images (see Figs. 4(d) and 6),
we visualize the strategy adopted by GTP to defend its position,
especially toward the end of the race (the bottom straight section
of the track). GTP clearly moves sideways along the track to
block MPC, thus exploiting the collision avoidance constraint to
its own advantage. MPC cannot adopt a similar strategy because
it does not properly model the reactions of its opponent. On the
contrary, by assuming that the opponent will move straight along
the path MPC is often forced to make room for the opponent
because of its own collision avoidance constraints [see, for
example, the blue traces in the top-right part of Fig. 4(c)].

We compare GTP and IBR because it highlights the advantage
of adding the sensitivity term when racing [see Fig. 5(c) and
(d)]. In Fig. 5(c), GTP manages to win more than 70% of the
races despite starting behind IBR and often wins by a large
margin. It does this because IBR does not include the sensitivity
term for blocking like GTP does. Conversely, in Fig. 5(d),
GTP intelligently blocks IBR approximately 60% of the races
using the collision avoidance constraint in the sensitivity term.
Additionally, GTP is able to accurately predict how IBR will
attempt to pass, and then block accordingly.

We also compare the trajectory estimation results in Fig. 7.
Here, we compute the mean Euclidean estimation error of the
GTP’s prediction of its opponent’s executed trajectory [MPC
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Fig. 7. Trajectory estimation error results for 3-D simulation trials. The
x-axis denotes the trajectory horizon distance (10 total trajectory points). The
y-axis shows the mean trajectory point Euclidean error. The error bars depict one
standard deviation. GTP predicts IBR’s trajectory more accurately than MPC’s
because it assumes its opponent is also using an IBR-like planner. (a) GTP versus
MPC. (b) GTP versus IBR.

in Fig. 7(a) and IBR in Fig. 7(b)] over all simulation trials. The
results indicate the estimation is very accurate at the beginning
of the trajectory and decreases further in planning horizon. The
estimations are more accurate when GTP is competing against
IBR because it assumes the opponent is also using an iterative
response strategy. In general, we expect the trajectory estimate
error to be worst at the end of the horizon, which is approximately
0.3m per unit trajectory length when competing against MPC.

B. Experiments

We also validate our approach by implementing and testing
in hardware experiments with vision-based pose estimation.
Our quadrotors utilize the DJI F330 frame and equipped with
off-the-shelf and custom-made components [see Fig. 9(b)]. The
robots weigh approximately 1.1kg and have a diagonal rotor
distance of 33cm. A PixFalcon open-source autopilot board
running PX4 software provides, among other sensors, an IMU
and a microprocessor for attitude sensing and control. Each
quadrotor carries a forward-facing global shutter RGB camera
and an Odroid XU4 single-board computer that they use to
compute the high-level trajectory control and the vision-based
pose tracking. The GTP for both quadrotors is executed offboard
on a standard laptop computer with an Intel 17-6700HQ CPU.

At each iteration of the GTP, the quadrotors have access
to their own pose from an Optitrack motion capture system
(MOCAP) through a WiFi network. This ego pose is fused
with onboard IMU using an extended Kalman filter for full state
estimation. The opponent pose, in contrast, is estimated using
only the onboard vision system’s filter described in Section V,
by tracking a sphere mounted on the quadrotor [see Fig. 9(b)].
Using both poses, GTP computes the trajectories, defined as a
list of waypoints, for the two quadrotors and sends them to the
Odroids over WiFi. The planned opponent’s trajectory is used
as an additional input for the desired yaw of the quadrotor as
well as to maintain accuracy when the sphere is out of the ego
drone’s field of view. This information is used to compute the full
state low-level controllers exploiting differential flatness [50]
and using Optitrack for onboard feedback. The whole control
pipeline runs at 15Hz.

The 3-D oval race course in our experiment is shown in Figs. 8
and 9(a) and is nearly 10 m long by 6 m wide. It additionally
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Fig. 8.

Snapshots of hardware experiments of our GTP competing against the MPC planner. The large image depicts a birds-eye view of the environment, whereas

the two views from the drone’s onboard cameras are shown below it. Solid lines indicate the current trajectory planned by each robot for itself. The robots’ onboard
images include an overlay of the visual tracking results. We encourage the reader to view the video that includes multiple simulation and experimental trials:

https://youtube/ayPamTiUzvA.

includes two gates to help visualize the different 3-D boundaries
of the track at those locations. The track is about 1 m wide and
0.5m high, though these vary slightly along the track length.

We compare three different cases in our experiments: faster
GTP versus slower MPC, faster MPC versus slow GTP, and
faster GTP versus slower GTP. In all cases, the maximum speed
is 0.6 m/s for the faster robot and 0.5 m/s for the slower robot.
The faster robot is always behind the slower robot initially as
in the simulations. The initial relative yaw angle also ensures
that the two quadrotors can see each other using the front-facing
cameras. Snapshots of the experiment are shown in Fig. 8 but we
highly encourage the reader to see the video' to better appreciate
the robots’ behavior. In the results, we use green and blue
lines to represent the planned trajectory of the GTP and MPC,
respectively.

![online]. Available: https:/youtube/ayPamTiUzvA

TABLE I
STATISTICAL DATA FROM EXPERIMENTS

Fast GTP vs | Fast MPC vs | Fast GTP vs

Slow MPC Slow GTP Slow GTP
Overtake/Total Laps 172 0/7 1/19
Overtake Percentage 50% 0% 5.3%

‘We report the total number of valid laps finished by the two robots, and the number of
laps where there is a successful overtaking. The ratio of these two numbers are reported
as the overtake percentage.

Statistical results of the experiment are summarized in Table 1.
Although we are not able to run as many trials as in the simulation
due to operational limitations, the trend is similar to what was
found in the simulations. The GTP overtakes MPC 50% of the
time when it starts behind and very quickly after the takeoff,
whereas it is never overtaken by MPC when it starts in front. As
a point of comparison, when GTP races against itself, passing is
relatively infrequent, with one pass in 19 runs.
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Fig. 9.
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(b)

Two custom-built quadrotors race along an oval-shaped 3-D race course (a). Two gates are placed in the track to induce richer interactions during the

game. The quadrotors must climb and descend to successfully navigate the gates. The high gate is only narrow enough to allow only one quadrotor through. The
quadrotors are equipped with forward-facing cameras and onboard computers to track the relative pose of the opponent by detecting the blob mounted on the

quadrotor (b). (a) Stanford flight room. (b) Autonomous quadrotors.

We finally emphasize that our autonomous drone racing im-
plementation runs at 0.6 m/s due to the real-time game-theoretic
planning and vision-based opponent pose estimation. Although
this is slower than human-piloted first-person view drones, our
hardware is subject to real-world sensing and communication
delays. However, we also test GTP on quadrotors without on-
board perception to ensure GTP can successfully operate at
real-world race speeds. We compare GTP and MPC at 1.25
and 1.0 m/s as 1.25 m/s is within state-of-the-art speeds for
single-player drone racing experiments [48]. We report that
GTP is successfully able to pass and block MPC (see results
in video®).

VII. CONCLUSION

In this article, we described a novel online motion planning
algorithm for two-player drone racing. By exploiting sensitivity
analysis within an IBR algorithm, our planner can effectively
model an opponent’s reactions in order to gain an advantage in
the race.

From a theoretical point of view, we showed that if the SE-IBR
strategy converges to a solution, then the resulting trajectories
satisfy necessary conditions for a Nash equilibrium in the joint
space of trajectories. Moreover, we demonstrated the effective-
ness of our approach through 2-D and 3-D simulations in which
our GTP competed against a more traditional MPC planner.
Finally, we also presented an active vision-based tracking and
estimation algorithm that uses the opponent’s planned trajectory
to improve the visual tracking performance.

Both our planner and our estimation strategies can run in
real time and their performance was demonstrated through
experimental tests on real hardware, in which the GTP again
outperformed an MPC opponent.

We have several open directions of research. First, we plan
to characterize the convergence properties of our SE-IBR algo-
rithm. We hope to prove that it converges and to analyze the speed
of that convergence. We also intend to apply this game theoretic

planning methodology to other noncooperative problems, for
example, freeway driving and freeway merging autonomous
cars. In addition, we intend to scale up our two-drone racing
algorithm to be suitable for racing against an arbitrary number
of drone opponents. Finally, we plan to investigate algorithms
to learn or adapt to the strategies of opponents on line during a
race.

APPENDIX
A. Proof of Lemma 1

In order to simplify the notation as much as possible, in this
section we consider a streamlined form for the optimization
problem of the form

max s(x)
’ (23)
s.t.y(xz,c) =0

where c is a scalar parameter and s and y are scalar differentiable
functions of their arguments. For each value of ¢, let us indicate
with 2*(¢) the solution of (23) and with s*(¢) = s(z*(c)) the
associated optimal outcome. We want to study how the optimal
cost s* changes when ¢ changes around a point ¢, i.e.,

ds*(c)
de

dz*(c)
de

= 24
de dz 24)

_ ds(z*(c))‘ _ ds(z)

<

@ (@)

Since, forall ¢, 2*(c) is an optimal solution to (23), it must satisfy
the KKT necessary optimality conditions associated to (23), i.e.,

ds(z) ov(x,c)|
dz |, or |, 0 25)
V(" (c),¢) =7"(c) =0 (26)

where p is the Lagrange multiplier associated to the equality
constraint. Isolating the first term in (25) and substituting it
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in (24), we obtain
ds*(c)
de

9v(z, c)

B dz*(c)
- >

dc

27)

z*(c)
Note that, since (26) must remain true for all ¢, its total derivative
w.r.t. ¢ must also be zero, i.c.,

dy'(@) _ 07(e.)| do'(e) | 9.

de Oz de dc

Isolating the first term from (28) and substituting it in (27), we
finally conclude that
ds*(c)

dc

=0.

T+

(28)

x*

9(, c)

dc

c z*(2)

which reduces to (15) forz = 0, ¢ = 0271, and z* = Hé-.

This proof can trivially be extended to problems with multiple
joint constraints or with additional constraints that do not depend
on c (their derivatives with respect to ¢ will simply be null). If
the problem contains inequality constraints, instead, under the
assumption that, in the vicinity of ¢, the set of active constraints
remains the same, the proof can readily be applied by just
considering an equivalent problem in which any active inequality
constraint is transformed into an equality constraints and any
inactive constraint is ignored.

B. Proof of Theorem 1

Applying KKT conditions to (11), one obtains the following
set of necessary conditions for a Nash equilibrium (67, 63) and
the associated Lagrange multipliers:

S (60) i 5 07.0)) (29%)
XS 0) - v 2 0) = 0

hi(0) =0 (29b)

9:(0;) <0 (29¢)

v;g;(0;) =0,v; >0 (29d)

7:(0;,605) <0 (29¢)

pii(67,05) =0, p; > 0. (291)

Now assume that the iterative algorithm described in Sec-
tion IV converges to a solution (8%, %), i.e., 8™ = 8! for both
players. Then, by applying the KKT conditions to problem (16),
(6", 6) must satisfy

0o 00) + 50 01,60) — WO 0L01) 00
NS (0) — v 29 )~ 0

hi(6;) =0 (30b)

g:(0) <0 (30¢)

vigi(6) =0,/ >0 (30d)

v,(65,6%) <0 (30e)

1i7:(67,05) = 0, i > 0.

(30f)
. o, o, .
If one additionally has 5" i Hé) = 8—’(;5(027 Hé) (as it is
the case for our problem), then one can see that (0", 85) satisfy
(29a) and (29¢) with A} = AL, vi=viand u} = pl — O‘i“é‘- In
order to satisfy (29f), however, one also needs to impose that

(5 — onph)y1(61,05) =0 (31a)
ph > o pdh (31b)
(b — aaph )v2(67,85) =0 (31c)
ph > aspd. (31d)

Using (30f), (31a), and (31c¢) reduce to
o pry 71 (81,05) =0

asphy, (0}, 05) = 0.

Exploiting, again, (30f), this condition is satisfied if
~1(0,0%) = ~,(8,8)) for all active constraints and if the sets
of active constraints are the same for both players (i.e., p} >
0 <= pb > 0). Both these conditions are satisfied if, as it
is the case for our application, v, (0", 05) = v,(8%,65). As
for (31b) and (31d), instead, if v;(6;,0;) = v,(0;,6;), one can
enforce it by making «; arbitrarily small.

C. Proof of (20)
Consider the following optimization problem:

mind(s, pl).

We can interpret p¥ as a constant parameter and study how
the solution s; to the above problem changes when p2 changes
around a point p.¥. Under the optimality assumption, for each
value pl¥, the corresponding solution s;(pl) must satisfy the
following necessary condition:

ad(s,pl)

95 =0.

Si(PfV)
Note that the left-hand side of (33) is a function of p only and

it must be zero for all pi\’ . Therefore, its derivative with respect
to p¥ must also be zero

(33)

0= d 8d(s,p£v)
a dpi\/ 88 si(pN)
_ 9Pd(s,p)) dsi(p)) | 9°d(s,p))
9t |y dpY dsopN -

We can, then, conclude that

-1
&*d(s,p))
dp;Y 9s? si(p}) .

dsoplN
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