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Epidemiological traits of host–parasite associations depend on the effects of
the host, the parasite and their interaction. Parasites evolve mechanisms to
infect and exploit their hosts, whereas hosts evolve mechanisms to prevent
infection and limit detrimental effects. The reasons why and how these
traits differ across populations still remain unclear. Using experimental
cross-infection of three-spined stickleback Gasterosteus aculeatus and their
species-specific cestode parasites Schistocephalus solidus from Alaskan and
European populations, we disentangled host, parasite and interaction effects
on epidemiological traits at different geographical scales. We hypothesized
that host and parasite main effects would dominate both within and
across continents, although interaction effects would show geographical
variation of natural selection within and across continents. We found that
mechanisms preventing infection (qualitative resistance) occurred only in a
combination of hosts and parasites from different continents, while mechan-
isms limiting parasite burden (quantitative resistance) and reducing
detrimental effects of infection (tolerance) were host-population specific.
We conclude that evolution favours distinct defence mechanisms on differ-
ent geographical scales and that it is important to distinguish concepts of
qualitative resistance, quantitative resistance and tolerance in studies of
macroparasite infections.
1. Background
Epidemiological traits characterize the interaction and distribution of hosts and
parasites and are shaped through the effects of the host, the parasite, their inter-
action and their environment [1–4]. Although host and parasite genotypes and
allele frequencies change over evolutionary timescales, the response of an indi-
vidual to different environmental conditions (known as ‘reaction norm’) is
plastic. Understanding evolutionary dynamics and variation in host and para-
site genetic and plastic effects on infection outcomes is crucial in basic science
and clinical settings [5,6].

Parasites rely on host resources and evolve mechanisms increasing their
ability to infect and to exploit their hosts [7]. Natural selection favours parasite
traits that increase their fitness through trade-offs involving infectivity, growth
and transmission. In response, hosts evolve defence mechanisms to resist and to
tolerate parasites. Resistance reduces the likelihood of infection (qualitative
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resistance) or limits parasite replication or growth (quantitat-
ive resistance), whereas tolerance limits the negative effects of
a given parasite burden without reducing parasite replication
or growth [4,8–11]. Resistance and tolerance are not mutually
exclusive but have different ecological and evolutionary con-
sequences [8,12,13]. For example, parasite prevalence is
expected to decrease if hosts evolve resistance, whereas para-
site prevalence may increase if hosts evolve tolerance [14,15].
The differences between resistance and tolerance have long
been recognized in plant research but only recently came
into focus for zoologists and clinicians [9,10,12,16]. Here,
we show that the distinction between qualitative resistance,
quantitative resistance and tolerance is of central importance
in macroparasite infections. We focus on vertebrate defence
mechanisms against helminths—parasitic worms that infect
about two billion people worldwide, often establish long-
lasting infections and cause substantial morbidity, mortality
and economic loss [17–19]. We propose that suppression of
the parasite’s growth is a particularly important hitherto
understudied form of quantitative resistance.

In this regard, the three-spined stickleback (Gasterosteus
aculeatus; hereafter ‘stickleback’) and its species-specific ces-
tode parasite Schisocephalus solidus provide an outstanding
model to study host and parasite effects on epidemiological
traits during the infection process [20–22]. Sticklebacks are
distributed across the Northern Hemisphere where they
have adapted to a wide range of habitats [23]. Stickleback
populations differ in phenotypic and genotypic traits includ-
ing morphology, behaviour and immunity. Local adaptation,
divergent selection and genomic differentiation have been
linked to abiotic factors, such as marine–freshwater diver-
gence, and biotic factors, such as parasites [24–27].
Moreover, stickleback immune gene frequencies and levels
of immunological activation differ among environments
[28–30], with genetic adaptation and phenotypic plasticity
contributing significantly to the stickleback’s immune
response [31–33].

Throughout their geographical range, freshwater stickle-
back are frequently infected by S. solidus. This trophically
transmitted cestode penetrates the intestinal wall and enters
the body cavity of the fish where it undergoes most of its
somatic growth within weeks or months [22,34]. The relative
weight of S. solidus in the fish, the parasite index (PI) [35], is a
measure of parasite fitness [36,37], virulence [35,38,39] and
host resistance [40]. The life cycle of S. solidus begins anew
following transmission to the definitive host, mostly birds,
when the eggs are defaecated into the water. The definitive
host can be replaced by an in vitro breeding system, facilitating
controlled experimental infections [41,42].
(a) Approach and aim
To investigate genotypic and phenotypically plastic effects on
different epidemiological traits, we used Alaskan and Euro-
pean hosts and parasites from geographically distant and
adjacent populations in experimental cross-infections
(figure 1a). We determined (i) the infection rates as a measure
of parasite infectivity and host qualitative resistance, (ii) para-
site size as a measure of virulence, transmission potential and
host quantitative resistance, (iii) proxies of host body con-
dition as measures of tolerance and costs of resistance and
(iv) host immunological parameters including regulatory
and immune gene expression as measures of the molecular
host–parasite interplay. We hypothesized (i) baseline differ-
ences between host populations within and across continents
(indicating host genotype effects) (ii) parasite–strain-specific
responses to infection within and across continents (indicating
parasite genotype effects and phenotypically plastic host
responses) and (iii) different interaction effects at different
geographical scales.
2. Results
We distinguish between qualitative resistance (infection suc-
cess), quantitative resistance (parasite growth) and tolerance
(strength of infection effects) to disentangle host, parasite
and interaction effects on epidemiological traits during the
infection process.
(a) Qualitative resistance is combination specific
whereas quantitative resistance is mainly
determined by host effects

Host qualitative resistance and parasite infectivity were deter-
mined via S. solidus infection rates. The infection rates in
copepods (first intermediate hosts) neither differed signifi-
cantly between rounds nor between parasite populations
(electronic supplementary material, SI.1). The infection rates
in stickleback were significantly affected by an interaction
between host and parasite populations (generalized linear
mixed-effects models (GLMM); p = 0.006). Among continents,
Alaskan S. solidus from both Wolf and Walby infected Euro-
pean DE stickleback, but European NO parasites failed to
infect stickleback from Wolf. Infection rates of geographically
adjacent populations were higher in sympatric than in
allopatric combinations (x21 ¼ 5:6504; p = 0.0175).

PIs, approximations of host quantitative resistance, differed
between, but not within host populations. All S. solidus strains
grew largest in European DE stickleback (LMMs; each p < 0.01;
electronic supplementary material, SI.2: figure 2). Whether the
Alaskan combinations were sympatric or allopatric had no
significant influence on the PI (x21 ¼ 0:0283; p = 0.866).
(b) Body condition and immunological parameters
differ between stickleback populations and in
response to infection

Stickleback body condition was assessed through the con-
dition factor (CF) and the hepatosomatic index (HSI)
[43,44]. Fish condition (excepting the HSI between DE and
Wolf) differed significantly between controls from the differ-
ent populations. Wolf stickleback had the lowest condition,
DE stickleback had the highest condition (electronic sup-
plementary material, table S3 and figure S2). DE stickleback
had larger head kidneys and spleens than stickleback from
both Alaskan populations (GLMMs; each p < 0.001), but
spleen size did not differ significantly between DE and
Walby controls (electronic supplementary material, table S3
and figure S3). Differences between the populations remained
if fish were exposed to S. solidus but uninfected (electronic
supplementary material, table S4). The CF of DE stickleback
and the HSI of Walby stickleback differed significantly
between controls and exposed individuals, suggesting an
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effect of parasite exposure (electronic supplementary
material, tables S6 and S7).

Infection with Walby and NO S. solidus caused a significant
decrease of the CF of DE hosts; Wolf infection was linked to a
condition decrease in Walby and Wolf stickleback (electronic
supplementary material, table S6). We detected a host-popu-
lation-specific relation between host CF and infection
intensity (PI) in Walby and Wolf infections (host population–
PI interaction in Walby infections: F2,21.7 = 9.37, p= 0.0012;
host population–PI interaction in Wolf infections: F2,17.5 = 4.02,
p= 0.037). Although the CF decreased with increasing PI in
Walby and DE fish, Wolf condition was not affected by PI
(figure 3). HSIs were significantly lower in all infected fish,
regardless of host and parasite origin and PI; effects did not
differ between parasite origins within host populations
(electronic supplementary material, table S7 and figure S2).

In each host population, S. solidus infection resulted in
similar immunological parameters as inferred from the relative
weight of the two major immune organs (splenosomatic index,
SSI, head kidney index, HKI) (electronic supplementary
material, table S5 and figure S3). The SSI generally increased
upon infection. The effects were pronounced in specific combi-
nations: Wolf and NO S. solidus in DE hosts, Walby and Wolf
S. solidus in Wolf hosts, and Walby S. solidus in Walby hosts
(electronic supplementary material, table S8 and figure S3).
Head kidneys were larger in infected Alaskan stickleback;
head kidneys of DE hosts were not significantly affected
(electronic supplementary material, table S9 and figure S3).
(c) Baseline regulatory and immune gene expression
differs between stickleback populations

In order to test whether augmented sizes of the major
immune organs indicated increased immunological acti-
vation in specific host–parasite combinations, total head
kidney RNA was extracted from 84 controls, 101 exposed
but uninfected fish (exposed) and 80 infected stickleback.
We used a multivariate approach (i) grouping data from 25
targets (total) and (ii) grouping data according to functional
groups: 11 innate immune genes (innate), eight adaptive
immune genes (adaptive), three complement component
genes (complement) and three regulatory genes (regulatory).

Stickleback population (PERMANOVAtotal: F2,264 = 5.96,
p < 0.001) and infection status (PERMANOVAtotal: F2,264 =
3.41, p < 0.001) significantly affected total expression profiles;
interactions were not significant (electronic supplementary
material, table S10).

Gene expression profiles of controls differed between the
Alaskan populations (PERMANOVAtotal: F1,52= 2.60, p=0.003;
PERMANOVAcomplement: F1,52= 4.81, p=0.007) and between DE
and Wolf stickleback (PERMANOVAtotal: F1,54= 3.57, p=0.007;
PERMANOVAinnate: F1,54= 2.72, p=0.026; PERMANOVAcomplement:
F1,54= 2.77, p=0.023; PERMANOVAregulatory: F1,54= 5.77, p=0.013).
Total expression profiles did not differ significantly between
DE and Walby stickleback. However, multivariate analyses
of functional groups indicated significantly different
regulatory gene expression between DE and Walby controls



DEWolfWalby

Alaska

pa
ra

si
te

 in
de

x

Europe

control Walby Wolf NO control Walby Wolf NO control Walby Wolf NO

parasite population

host population

30

20

10

0

Figure 2. Schistocephalus solidus parasite indices in three different stickleback hosts. Alaskan (Walby and Wolf ) and European (DE) stickleback were exposed to
Alaskan (Walby and Wolf ) and European (NO) S. solidus. The infection success and the parasite index (relative weight of the parasite in the host [35]) were
determined after nine weeks. (Online version in colour.)

royalsocietypublishing.org/journal/rspb
Proc.R.Soc.B

288:20211758

4

(PERMANOVAregulatory: F1,59 = 2.57, p = 0.012) (electronic sup-
plementary material, SI.4.1: figure S4 and tables S12–S14).
Hierarchical clustering on Euclidean distances indicated the
highest divergence of Wolf profiles (figure 4a). A posteriori
analyses identified differential expression of seven out of
25 genes (figure 4a; electronic supplementary material,
table S15).

(d) Differences between stickleback populations remain
if fish are exposed but converge upon infection
Host population differences remained if fish were exposed to
S. solidus but uninfected (host effect: PERMANOVAtotal: F2,101=
2.75, p= 0.0002; parasite effect: PERMANOVAtotal: F2,101= 0.5,
p= 0.096; host–parasite interaction: PERMANOVAtotal: F2,101=
1.05, p= 0.428). To understand the host effect in more detail,
we used host population as explanatory and found gene
expression profiles differing especially upon exposure to Wolf
and NO S. solidus (Wolf exposure: PERMANOVAtotal: F2,31=
2.1, p= 0.005; PERMANOVAadaptive: F2,31= 3.42, p< 0.001; NO
exposure: PERMANOVAadaptive: F2,36= 4.75, p< 0.001; electronic
supplementary material, tables S16–S18). Gene expression
profiles were not significantly affected by S. solidus strain
within host populations (electronic supplementary material,
SI 4.2: figure S5 and tables S16–S21).

Using LMMs to test which genes were differently
expressed, we found that Wolf exposed Walby stickleback
showed higher expression of five adaptive genes in compari-
son to Wolf or DE stickleback (figure 4b; electronic
supplementary material, table S22). NO S. solidus exposed
stickleback showed differential expression of four adaptive
genes, of which three genes were more highly expressed in
Walby than in Wolf (figure 4b; electronic supplementary
material, table S23).
Focusing on infected individuals (n = 80), we found that
gene expression profiles mostly converged upon infection
(electronic supplementary material, SI.4.3: figure S6 and
tables S24–S29). Only NO infection caused different adaptive
gene expression profiles in Walby versus DE stickleback
(PERMANOVAadaptive: F1,21 = 6.64, p < 0.001; figure 4c;
electronic supplementary material, tables S26 and S30).

(e) Infection impacts gene expression in a parasite-
dependent manner

We tested the effect of infection status (infected, exposed, con-
trol) on gene expression (electronic supplementary material,
SI.4.4.) and ran pairwise comparisons of infected and control
fish (electronic supplementary material, SI.4.5.), infected and
exposed fish (electronic supplementary material, SI.4.6.), and
control and exposed fish (electronic supplementary material,
SI.4.7.). These analyses revealed a Wolf parasite effect on
innate gene expression in Walby and Wolf hosts in comparison
to controls (Wolf infection in Walby: PERMANOVAinnate:
F1,38= 1.38, p=0.009; Wolf infection in Wolf: PERMANOVAinnate:
F1,38= 1.57, p= 0.007; electronic supplementary material, figures
S12 and S13, tables S41 and S44). Walby S. solidus infection
was associated with upregulation of total, innate and regulatory
genes of DE stickleback compared to controls (PERMANOVAtotal:
F1,38= 5.71, p=0.02; PERMANOVAinnate: F1,38= 9.92, p=0.004;
PERMANOVAregulatory: F1,38= 7.12, p=0.009; electronic sup-
plementary material, figure S14 and tables S45–S47). Total,
innate, adaptive and regulatory profiles differed between Walby
exposed and Walby infected DE stickleback
(PERMANOVAtotal: F1,21= 5.8, p = 0.007; PERMANOVAinnate:
F1,21= 8.85, p = 0.003; PERMANOVAadaptive: F1,21= 5.16, p =
0.006; PERMANOVAregulatory: F1,21= 7.43, p = 0.02; electronic
supplementary material, figure S15 and table S53). We further
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detected significant differences between NO exposed and NO
infected DE stickleback (PERMANOVAtotal: F1,26= 2.54, p=0.02;
PERMANOVAinnate: F1,61= 5.12, p< 0.001; PERMANOVAadaptive:
F1,26= 4.33, p< 0.001; electronic supplementary material, table
S55). Whether Alaskan stickleback were exposed or infected
with sympatric or allopatric S. solidus did not affect gene
expression profiles (electronic supplementary material,
SI.4.7: tables S65 and S66).
3. Discussion
Host defence strategies are classified into mechanisms of
resistance and tolerance. While resistance mechanisms
reduce parasite burden by preventing infection (qualitative
resistance) or by limiting parasite growth (quantitative resist-
ance), tolerance mechanisms limit detrimental effects of a
given parasite burden [4,8,11,16]. Here, we applied the con-
cepts of qualitative resistance, quantitative resistance and
tolerance on helminth infections of stickleback and deter-
mined effects of (i) the host, (ii) the parasite and (iii) host–
parasite interactions on each of these epidemiological traits.

Our first key finding was that resistance and tolerance dif-
fered among host populations, implying host genetic effects
on infection outcome. Parasite infection rates (i.e. host quali-
tative resistance) depended on host genotype–parasite
genotype interaction, whereas parasite size (i.e. host quanti-
tative resistance) was affected by the host but neither
differed among parasite strains within host populations nor
according to interaction effects. Our second key finding was
that constitutive differences of gene expression profiles and
immunological parameters among host populations
remained upon parasite exposure but mostly converged
upon infection. This result implies dominant effects of para-
site-induced phenotypic plasticity and a stronger parasite
genotype main effect compared to interaction effects.

(a) Variation in host defence mechanisms
We observed two distinct types of resistance in combinations
of geographically disparate populations of hosts and para-
sites. First, Wolf stickleback prevented infection by
European S. solidus and sympatric Alaskan combinations
yielded higher infection rates than allopatric combinations.
Second, stickleback from both Alaskan populations showed
higher quantitative resistance than European stickleback.

Combination specific qualitative resistance against NO
S. solidus has been reported before: stickleback from two
out of three Canadian populations resisted NO S. solidus
infection [45]. Whether inter-continental resistance can be
attributed to local adaptation or specificities of host and para-
site populations or clades, warrants further investigation that
takes the effect of environmental variation on defence
mechanisms and infection outcomes into consideration.

Quantitative resistance, i.e. the ability to control parasite
growth, was approximated by the PI. Neither parasite origin,
nor sympatry had an effect on parasite size and the PI did not
differ significantly between Alaskan populations. In line with
previous results [31,46], quantitative resistance was much lower
in DE stickleback, indicating a dominant host effect.

The relationship of parasite size and host condition was
used to estimate tolerance. In addition to the qualitative
resistance of Wolf stickleback, these fish also appeared to be
more tolerant than Walby and DE hosts (figure 3). Accord-
ingly, stickleback populations (here, Wolf ) can have both
higher qualitative resistance and tolerance compared to stick-
leback from other, even nearby, populations. We suggest that
high tolerance is a universal property of Wolf fish, whereas
the prevention of infection is specific to NO S. solidus. Nota-
bly, S. solidus size depends on the size of the stickleback
[47,48], and vice versa and the relative contribution of environ-
mentally mediated phenotypic plasticity to infection
phenotypes can be substantial [49,50]. Accordingly, what
manifests as ‘tolerance’ could result from low host condition,
which causes low parasite growth. Furthermore, the lack of
an ecological context in laboratory experiments could obscure
our results.

Immune defence is costly and might be selected against
[51,52]. Our study confirms this assumption by demonstrat-
ing significantly lower body conditions in exposed than in
control fish. In line with a previous study [29], exposure
had no significant effect on gene expression. We cannot
conclude whether exposed but ultimately uninfected stickle-
back had prevented or cleared infection. The parasites
of uninfected fish may have failed to target and/or over-
come the intestinal wall or were eliminated by the host’s
immune system.
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(b) Parasite-induced phenotypic plasticity transcends
host genetic differences

Our data indicate constitutive differences, thus genetic diver-
gence, among stickleback populations: compared to Alaskan
populations, DE stickleback were in better condition and had
a higher baseline immunological activation. Gene expression
profiles differed among all host populations. Especially Wolf
stickleback profiles were distinct from DE and Walby
(figure 4). Genetic divergence between European and North
American stickleback and S. solidus is well documented
[25,53–55]. We show that proxies of immunological activation
converged upon infection, which has previously been shown
for S. solidus infections of different European stickleback [31].
Although the precise molecular mechanisms will have to be
investigated, our results suggest that S. solidus affects stickle-
back gene expression in a host–parasite genotype-dependent
manner and that parasite-induced phenotypic plasticity
transcends host genetic effects.
4. Conclusion
We used European and Alaskan three-spined stickleback and
S. solidus in experimental infections and found that infection
phenotypes were determined by main effects of the host and
the parasite. We identified different defence mechanisms in
this system: qualitative resistance (the inverse of parasite
infection success), quantitative resistance (parasite growth
suppression) and tolerance (the relationship between infec-
tion intensity and measures of host health). Although
qualitative resistance depended, over the scale of continents,
on host–parasite interaction effects, quantitative resistance
and tolerance did not. We conclude that host, parasite and
interaction effects differentially affect distinct defence
mechanisms.
5. Material and methods
(a) Hosts and parasites
Hosts and parasites came from two European and two Alaskan
populations (table 1; figure 1). European hosts and parasites
are characterized by low resistance against S. solidus (DE stickle-
back) and high growth in sticklebacks (NO S. solidus)
[31,45,46,56]. Alaskan host–parasite pairs show highly diverse
infection phenotypes on a small geographical scale [38,39,57].

We used laboratory-bred first-generation offspring from
wild-caught stickleback and S. solidus. Stickleback eggs were
fertilized in vitro in 3 ppt artificial seawater. Alaskan stickle-
back eggs were rinsed with acriflavine (50 µl l−1; 30 s) and
methylene blue (500 µg l−1 methylene blue; 30 s) and shipped
to the Max Planck Institute (MPI) for Evolutionary Biology,
Plön, Germany, at 4°C. German stickleback eggs were treated
in the same way. A fin clip of each parent was retained for



Table 1. Host and parasite origins.

ID sampling site

Walby Alaskan Walby Lake Alaska 61°370N, −149°120W
Wolf Alaskan Wolf Lake Alaska 61°380N, −149°160W
DE European stickleback Großer Plöner See Germany 54°080N, 10°240E
NO European S. solidus Lake Skogseidvatnet Norway 60°130N, 05°530E

Table 2. Exposed and infected stickleback. Numbers denote S. solidus- and sham-exposed stickleback nine weeks post exposure; the number of infected
stickleback is indicated in brackets.

Walby stickleback Wolf stickleback DE stickleback

Walby S. solidus 45 (14) 60 (7) 59 (9)

Wolf S. solidus 48 (9) 59 (15) 59 (4)

NO S. solidus 46 (8) 57 (0) 57 (15)

Sham-exposed 33 (1) 34 35
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downstream genetic analyses. The fish were kept at the insti-
tute’s aquaria system at 18°C and a light : dark cycle of 16 :
8 h. They were eight months old at the start of the infection
experiment. Schistocephalus solidus plerocercoids came from
infected Alaskan fish that were shipped to the MPI and dis-
sected immediately upon arrival. Pairs of Alaskan and
European S. solidus plerocercoids were weight-matched and
bred in vitro [36,58]. The eggs were kept at 4°C in the dark
and incubated at 18°C for three weeks before the hatch was
stimulated by light exposure [59].
(b) Infection experiment
Laboratory-cultured copepods (Macrocyclops albidus) were used
as first intermediate hosts and microscopically screened for
procercoids one week after exposure to single coracidia. Indivi-
dually housed stickleback were starved for 1 day and exposed
to single-infected M. albidus on day 16. The fish were transferred
to 16 l aquaria 2 days later. Water from each treatment group was
sieved and screened for leftover copepods in order to determine
the exact number of exposed fish.

The experiment was composed of three rounds. In each
round, hosts from the three populations were exposed to each
of the three parasite strains (i.e. S. solidus from a distinct location)
or sham-exposed (figure 1). Parasite sibships (offspring from one
pair of worms; n = 4 per S. solidus strain; figure 1b) were the same
in every round; fish families (offspring from one pair of fish) dif-
fered between rounds. We used a common garden approach to
minimize confounding factors. One tank housed fish from all
populations; controls had their own compartment (figure 1b).
Each tank (n = 36) housed 16 individuals in round 1 and 17 indi-
viduals in rounds 2 and 3. The fish were fed frozen chironomids
three times a week. The number of fish per tank was kept con-
stant by replacing dead individuals with naive fish from the
same family. Six controls and one exposed fish died before the
end of the experiment; one control fish was infected and
excluded from further analyses (table 2). Stickleback were eutha-
nized with MS222 and dissected nine weeks post exposure. At
the end of the experiment 82 fish were infected, 409 fish were
exposed but uninfected and 102 fish were sham-exposed
(table 2).
(c) Phenotypic measurements and tissue sampling
We recorded fish sex, standard length (±1 mm) and total weight
(±0.1 mg). Head kidneys, liver and spleen were weighted to the
nearest 0.1 mg. Head kidneys were immediately transferred to
RNAlater (Sigma-Aldrich) and stored at −20°C. Plerocercoids
were removed from the body cavity, weighted, transferred to
liquid nitrogen and stored at −80°C. DNA was extracted from
fin clips using the DNeasy 96 kit (Qiagen) following the manu-
facture’s protocol. Each fish was assigned to its family by using
15 different microsatellite loci in four PCR protocols [24,60,61].

We determined the infection rate as the proportion of
exposed fish (corrected by the number of copepods that have
not been eaten) that became infected. The relative weight of the
parasite, the PI, was calculated as 100 × parasite weight/fish
weight [35]. Fish condition was estimated using the CF (the
ratio between observed weight and expected weight at a given
length = 100 × fish weight/fish length^b with fish population-
specific exponent b [43] and the HSI, which is a measure for
medium-term energy reserves [44]. The immunological acti-
vation was estimated by the SSI and the HKI [62]. HSI, SSI and
HKI were calculated as 100 × organ weight/fish weight.
(d) RNA extraction and reverse transcription
Head kidney RNA was extracted with a NucleoSpin 96 kit
(Macherey-Nagel) following the manufacturer’s protocol, includ-
ing 1% β-mercaptoethanol for tissue lysis (2 × 3 min at 30 Hz;
Tissue Lyser II; Qiagen) and on-column DNA digestion. RNA
concentration and purity were determined spectrophotometri-
cally (NanoDrop1000; Thermo Scientific). All A260/A280 ratios
were at least 1.98 and RNA concentrations were adjusted at
500 ng for reverse transcription. We used the Omniscript RT kit
(Qiagen) according to the manual but used 0.2 µl of a 4-unit
RNase inhibitor (Qiagen) per reaction. The cDNA was stored at
−80°C.
(e) Quantitative real-time PCR (RT-qPCR)
Transcription levels of 32 genes were tested using 96.96 Dynamic
Array integrated fluidic circuits (IFCs) on a Biomark HD system
(Fluidigm) with EvaGreen as DNA intercalating dye. cDNA was
pre-amplified using TaqMan PreAmp Master Mix (Applied
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Biosystems) according to the manufacturer’s protocol (14 cycles).
The product was diluted 1 : 5 in low TE buffer (10 mM Tris, pH
8.0, 0.1 mM EDTA). Samples of all treatments were spread
across three IFCs. All targets for a given sample were included
in the same run and measured in technical triplicates. Inter-run
calibrators and negative controls were included on each IFC.

Targets of interest covered four putative reference genes
(b2 m, ubc, rpl13a, ef1a [63]), four regulatory genes (abtb1, ascl1b,
kat2a, mapk13) and 24 immune genes involved in innate immu-
nity (marco, mst1ra, mif, il-1β, tnfr1, saal1, tlr2, csf3r, p22phox, nkef-
b, sla1, cd97), adaptive immunity (stat4, stat6, igm, cd83, foxp3,
tgf-β, il-16, mhcII, tcr-β) and the complement system (cfb, c7, c9)
[32,33,46,64] (more information in electronic supplementary
material, SI.5).

Melting curves were analysed with the Fluidigm Analysis soft-
ware v. 4.5.1. Three targets (il-1β, tgf-β and ascl1b) were excluded
from further analyses due to ambiguous melting curves. Raw
data were imported into qbase+ 3.0 (Biogazelle) [65] to assess
data quality and calculate calibrated normalized relative quan-
tities (CNRQ) [66]. The negative cut-off for technical sensitivity
limit was set at cycle 28 and a 0.5 cycle variation was accepted
for maximum triplicate variability. Reference targets rpl13 and
ubc were used for normalization as inferred from geNorm
(M = 0.236) and the coefficient of variation (CV = 0.082) [65,67].
Target-specific amplification efficiencies (1.85–2.24) were calcu-
lated from a serial dilution. The data were log10 transformed.
Missing values (one for c9, cd83 and marco; two for cfb and
saal1; five for tcr-β) were replaced by the mean.
( f ) Statistical analyses
All statistical analyses were performed in R (v. 3.2.0; [68]). Infec-
tion rates were analysed with binomial GLMMs using glmer()
from lme4 [69]. Response variables were proportional data from
infected versus uninfected individuals. Infection rates in cope-
pods were analysed with parasite population and experimental
round and their interaction as fixed effects and parasite sibship
as random intercept. Infection rates in fish were analysed with
host and parasite population and their interaction as fixed effects
and experimental round and parasite sibship as crossed random
effects. Sympatry was used as predictor for infection rates in Alas-
kan fish. We accounted for the number of copepods that were not
ingested. Significantly different groups and p-values were deter-
mined with glht() from multcomp [70] with individually defined
contrasts or Type III Wald χ2-tests using Anova() from car [71].

Further analyses distinguished between (i) sham-exposed
controls, (ii) S. solidus exposed but uninfected fish (exposed)
and (iii) S. solidus infected fish. Linear mixed-effects models
(using lmer() from lme4) were used to test for differences between
parasite growth (PI), fish condition (CF, HSI) and immunological
parameters (SSI, HKI). To avoid rank deficient fixed-effect model
matrices we separated the data according to host and parasite
origins because NO parasites did not infect Wolf fish. Models
using data from infected fish included host or parasite origin
as fixed effect as well as fish sex and tank, which is confounded
with fish family and parasite sibship, as crossed random effects.
We excluded data from two fish due to missing information on
fish sex. Multiple testing was accounted for by using the false
discovery rate (FDR) according to Benjamini & Hochberg [72]
with α = 0.05. Different slopes of the relationship between infec-
tion intensity and measures of host health or fitness indicate
variance in tolerance [8,10,11]. We studied the relationship
between infection intensity and body condition because body
condition predicts mate quality and fitness in three-spined stick-
leback [73]. We fitted parasite-strain-specific linear mixed effect
models (lmer() from lmerTest [74]) with CF or HSI as dependent
variable, host population and PI and their interaction as fixed
effects and fish sex and tank as random effects. The
corresponding degrees of freedom were approximated with
Satterthwaite’s method.

Gene expression profiles were analysed with a multivariate
approach by grouping data from all 25 targets (total), 11 innate
immune genes (innate: marco, mst1ra, mif, tnfr1, saal1, tlr2, csf3r,
p22phox, nkef-b, sla1, cd97), eight adaptive immune genes (adaptive:
stat4, stat6, igm, cd83, foxp3, il-16, mhcII, tcr-β), three complement
component genes (complement: c7, c9, cfb) or three regulatory
genes (regulatory: abtb1, kat2a, mapk13). Non-parametric permuta-
tional multivariate analyses of variance (PERMANOVA [75])
were based on Euclidian distances and 10 000 permutations
that were constrained within tank. The weight of the fish was
included as covariate to account for size related effects. Pairwise
PERMANOVAs were used a posteriori to identify significantly
different groups [75]. We tested for differences in baseline gene
expression by using data from sham-exposed controls of the
three populations. We tested whether host, parasite and/or
their interaction affected gene expression of S. solidus exposed
stickleback. Since NO parasites did not infect hosts from Wolf,
we grouped data from (i) each parasite population and (ii)
from each host population (electronic supplementary material,
SI.4.2).

Gene expression profiles of infected, exposed and control fish
were compared within each combination of hosts and parasites.
We used the FDR to account for multiple testing [72]. Differen-
tially expressed single genes were identified by use of linear
mixed effect models with tank as random intercept. Plots were
created with ggplot2 [76] and aheatmap() from NMF [77].
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