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0. Summary

The trace metal iron is considered to be the nutrient that limits marine primary production
in one third of the global surface ocean (Martin, 1990; Boyd et al., 2007; Moore et al.,
2013). It is also the nutrient that maintains future ocean fertility due to its irreplaceable
role in the process of nitrogen fixation, which adds “new” nitrogen (another nutrient for
phytoplankton) to the surface ocean (Raven, 1988; Kustka et al., 2003b; Zehr and Capone,
2020).

Due to iron’s importance, it is not surprising that the demand for incorporating iron into
global biogeochemical models is high. However, including iron in an earth system model
has been shown to have no clear benefits with respect to model misfit against observa-
tional data (Nickelsen et al., 2015) . How smart is it then to introduce iron models into
global biogeochemical models, when the benefits are not clearly identifiable? Especially,
when the iron models perform poorly at reproducing observed iron patterns in the ocean
(Tagliabue et al., 2016).

The poor performance of iron models, coupled with their failure to improve biogeochem-
ical tracer representation of the ocean, inspired this additional effort to identify the advan-
tages of including iron in a global biogeochemical model, both for the preindustrial state
and under conditions of a changing climate. The working hypothesis was that the rela-
tively poor performance of iron models might come from inadequate model calibration.

A first sensitivity study on biogeochemical model parameter values was conducted in or-
der to identify key parameters for model calibration. It was found that while some of the
parameters influence simulated nitrogen, phosphorus, and oxygen concentrations, few pa-
rameters influence simulated iron concentrations. This suggests that our modelling skill
of the iron cycle is still limited and/or that the observational data base is insufficient for
comprehensive model calibration so far. Thus it was decided not to include iron data in
further model calibration.

A model calibration framework (Kriest et al., 2017) was next applied to a hierarchy of
global models with different implementations of iron; one without iron, one with pre-
scribed iron concentrations, and another one with a dynamic iron cycle. Using calibration
against global data sets of nitrogen, phosphorus, and oxygen, the misfit of each model was
pushed to its minimum. It was found that under an assumed preindustrial steady state, the
calibrated model with a full dynamic iron cycle has the lowest model misfit against ob-
servations (thus confirming the working hypothesis). It was also found that the calibrated

1



Summary

model with a fully dynamic iron cycle has 50% less net primary production (which is
closer to empirical estimations) compared to the calibrated model without iron.

Finally, transient simulations for all calibrated models were integrated from their pre-
industrial state until the end of the 21st century using an atmospheric CO2 concentration
pathway consistent with a ’business-as-usual’ CO2 emission scenario. It was found that
nitrogen fixation trends diverge among models. This divergence is caused by whether iron
limits the productivity of the upwelling regions, e.g. in the eastern tropical Pacific. The
export production in the eastern tropical Pacific (and other tropical upwelling regions)
reacts differently to warming, depending on whether iron is a limiting nutrient. These
different responses trigger a divergent chain of downstream responses that affect nitrogen
fixation across the tropical oligotrophic regions in the model.

Through the comparison between calibrated models, this thesis quantifies the advantages
of including iron in a global biogeochemistry model and reveals how important iron is
for future nitrogen fixation trends. It furthermore illustrates the interconnection between
tropical upwelling and oligotrophic regions.

2



Zusamenfassung

Das Spurenmetall Eisen gilt als der Nährstoff, der die Primärproduktion in etwa einem
Drittel der globalen Ozeanoberfläche begrenzt (Martin, 1990; Boyd et al., 2007; Moore
et al., 2013). Da Eisen bei der Stickstofffixierung nicht ersetzt werden kann, durch die
dem Oberflächenozean neuerSStickstoff (ein weiterer Nährstoff für Phytoplankton) zuge-
führt wird, hält Eisen die Ozean-Fertilität aufrecht (Raven, 1988; Kustka et al., 2003b;
Zehr and Capone, 2020).

Angesichts der Bedeutung von Eisen ist es nicht überraschend, dass der Bedarf einer
Implementierung des ozeanischen Eisenkreislaufs in globale biogeochemische Modelle
hoch ist. Die Einbeziehung von Eisen in Erdsystemmodellen hat jedoch bislang keine ein-
deutigen Vorteile hinsichtlich des Modell-Misfits gegenüber Beobachtungsdaten gezeit-
igt (Nickelsen et al., 2015). Wie sinnvoll ist es dann, Eisenmodelle in globale biogeo-
chemische Modelle zu implementieren, wenn der Nutzen nicht klar erkennbar ist? Vor
allem, wenn die Eisenmodelle die beobachteten Muster im Ozean nur unzureichend re-
produzieren (Tagliabue et al., 2016).

Die schwache Leistung bisheriger Eisenmodelle, einhergehend mit deren Unfähigkeit,
die simulierte Verteilung biogeochemischer Tracer im Ozean zu verbessern, inspirierte
diese zusätzliche Forschung, um zu eruieren, welche Vorteile die Einbeziehung von Eisen
in ein globales biogeochemisches Modell haben könnte, sowohl für den vorindustriellen
Zustand als auch unter den Bedingungen eines sich ändernden Klimas. Die Arbeitshy-
pothese war, dass die relativ schwache Leistung der Eisenmodelle auf eine unzureichende
Modellkalibrierung zurückzuführen sein könnte.

Um die Schlüsselparameter für die Kalibrierung zu identifizieren, wurde eine erste Sensi-
tivitätsanalyse der biogeochemischen Parameter durchgeführt. Die Ergebnisse der Studie
zeigen, dass einige Parameter zwar die simulierten Stickstoff-, Phosphor-, und Sauer-
stoffkonzentrationen beeinflussen, aber nur wenige Parameter die Eisenkonzent-rationen.
Dies weist darauf hin, dass unsere Fähigkeit, den Eisenkreislaufs zu simulieren, noch
begrenzt ist, bzw. dass die Datenbasis für eine umfassende Modellkalibrierung bisher
unzureichend ist. Daher wurden die Eisendaten nicht in die weitere Modellkalibrierung
einbezogen.

Im nächsten Schritt wurde eine Hierarchie globaler Modelle mit unterschiedlichen Imple-
mentierungen von Eisen in einem Modell-Kalibrierungs-Framework (Kriest et al., 2017)
analysiert. Eines der Modelle ist ohne Eisen, eines hat vorgeschriebene Eisenkonzen-
trationen und ein weiteres einen dynamischen Eisenkreislauf. Die Kalibrierung hat den
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Summary

Misfit der Modelle gegen globale Datensätze von Stickstoff, Phosphor und Sauerstoff
minimiert. Unter der Annahme eines vorindustriellen Steady States hatte das kalibrierte
Modell mit einem dynamischen Eisenzyklus den geringsten Modell-Missfit gegenüber
den Beobachtungen, wodurch die Arbeitshypothese bestätigt wurde. Außerdem weist das
kalibrierte Modell mit dynamischem Eisenzyklus 50 % weniger Netto-Primärproduktion
auf (was näher an empirischen Schätzungen liegt) als das ohne Eisen.

Abschließend wurden transiente Simulationen für alle kalibrierten Modelle vom vorindus-
triellen Zustand bis zum Ende des 21. Jahrhunderts integriert, mittels eines atmosphärischen
CO2-Konzentrationspfades, der mit einem „Business-as-usual”-CO2-Emissionsszenario
konsistent ist. Die Trends der Stickstofffixierung divergieren zwischen den Modellen.
Die Divergenz wird dadurch verursacht, ob Eisen die Produktivität der Auftriebsgebiete,
z.B. im östlichen tropischen Pazifik, begrenzt. Die Exportproduktion im östlichen tropis-
chen Pazifik (und anderen tropischen Auftriebsgebieten) reagiert unterschiedlich auf die
Erwärmung, je nachdem, ob Eisen ein limitierender Nährstoff ist. Diese unterschiedlichen
Reaktionen lösen eine divergente Kette von nachgelagerten Reaktionen aus, die die Stick-
stofffixierung in den tropischen oligotrophen Regionen der Modelle beeinflussen.

Durch den Vergleich zwischen kalibrierten Modellen quantifiziert diese Dissertation die
Vorteile der Einbeziehung von Eisen in ein globales biogeochemisches Modell und zeigt,
wie wichtig Eisen für zukünftige Trends der Stickstofffixierung ist. Zudem veranschaulicht
diese Dissertation die Verbindung zwischen tropischen Auftriebsgebieten und oligotro-
phen Regionen.
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1. Introduction

1.1. Role of iron in global biogeochemistry

Tiny phytoplankton form the base of the marine ecosystem and help to shape the chem-
ical and elemental distribution of the Earth’s vast oceans (Redfield, 1958). The marine
ecosystem provides essential services, such as fisheries and recreation, for human so-
ciety. In a photosynthetic process called “primary production”, phytoplankton take up
dissolved carbon dioxide and form organic material, some of which passes through the
surface ecosystem and eventually sinks into the deep ocean where it decomposes back to
CO2. This sequence of processes, often referred to as the biological carbon pump, is an
important component of the marine carbon cycle. Its carbon uptake potential is known
to play a considerable role in shaping Earth’s climate on long time scales (Sarmiento and
Gruber, 2006) and might also play a role in the oceanic sequestration of carbon as we
face the challenge of climate change in the anthropocene (Riebesell et al., 2009; Shaffer,
2010; Passow and Carlson, 2012; Taucher et al., 2014).

However, the nutrients required for phytoplankton growth are not always available in the
surface ocean and therefore primary production can be nutrient-limited (Moore et al.,
2013). Over the years, there has been debate over whether nitrogen or phosphorus is
the ultimate limiting nutrient in the ocean (Tyrrell, 1999). A “geologist’s view” is that
phosphorus is the ultimate nutrient limiting global primary production. This is based on
the existence of a process called ‘nitrogen fixation’. Nitrogen fixation occurs in nitrogen-
depleted waters, where a special type of phytoplankton, diazotrophs, fix dinitrogen and
make it bio-available. Phosphorus does not have an analogous route of production within
the ocean; hence, phosphorus can eventually become more scarce compared to nitrogen,
e.g. if loss by burial of organic matter in sediments exceeds external terrestrial sources
of phosphate globally. Furthermore, a “biologist’s view” suggests that nitrogen is the ul-
timate limiting nutrient. This is indicated by the ratio of nitrogen to phosphorus in the
surface water showing a relative shortage of nitrogen in observational data, e.g., World
Ocean Atlas (Tyrrell and Law, 1997). Additionally, it has been shown that adding nitrogen
to oligotrophic, or nutrient-poor, waters can induce higher growth while adding phospho-
rus does not (Ryther and Dunstan, 1971; Moore et al., 2013). Tyrrell (1999) used an
ocean box model to explain that in anoxic regions, denitrification acts as a nitrogen sink,
contributing to the shortage of nitrogen in the surface. They found that denitrification is
globally and on long timescales balanced by nitrogen fixation and both are controlled by
the addition of phosphorus. Hence, they concluded that phosphorus is the ultimate lim-
iting nutrient regulating long-term ocean productivity. However, Tyrrell (1999) did not
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1.1 Role of iron in global biogeochemistry Introduction

consider the constraints on nitrogen fixation in their model, e.g. by iron availability. The
availability of iron defines the biogeography of diazotrophs in the low latitudes and is
thus important for the long-term stability of the nitrogen inventory, and the maintenance
of ocean fertility (Ward et al., 2013; Snow et al., 2015).

Figure 1.1.: Observed dissolved iron concentrations in the surface ocean (tiles; µmol m�3) and
locations that are primarily iron limited (red points within black circles). The iron concentrations
are compiled from both the 2017 GEOTRACES intermediate data product (Schlitzer et al., 2018)
and (Tagliabue et al., 2012). The iron limitation locations are from Moore et al. (2013).

Iron as a micro-nutrient is irreplaceable in certain cellular enzymes associated with photo-
synthesis, respiration, and nitrogen fixation (Raven, 1988; Kustka et al., 2003b; Tagliabue
et al., 2017; Zehr and Capone, 2020), owing to the origin of marine life in iron rich anoxic
conditions (Canfield et al., 2006). In contrast to its abundance in the Earth’s crust, iron
is not among the most abundant chemical compounds (e.g. chloride, sodium, sulfate,
magnesium, calcium, and potassium) present in modern seawater. This is due to the low
solubility of iron in oxygenated water and a process called “scavenging”, where dissolved
iron attaches itself to particles and sinks through the water column. The concentration
of iron in seawater is on the scale of µmol m�3 or lower (Fig. 1.1), which is about a
thousand times lower than the molar concentration of phosphate. This concentration is
so low that it was not until the 1970s, with the achievement of contamination-free sam-
pling and trace-metal measurements (Bruland et al., 1979; Settle and Patterson, 1980),
that it was possible to accurately measure iron concentrations in seawater. Considering
that the stoichiometric ratio between iron and phosphate in phytoplankton varies from 4.6
to 31 mmol mol�1 (Twining and Baines, 2013) and the ratio in seawater is about 0.27
mmol mol�1 (Moore et al., 2013), it is not surprising that iron in seawater is a rare com-
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Introduction 1.1 Role of iron in global biogeochemistry

Figure 1.2.: High nutrient low chloropyll regions: the North Pacific Ocean, the Equatorial Pacific
Ocean, and the Southern Ocean. This is a screenshot of the video abstract by Yao et al. (2019)
from link: https://iopscience.iop.org/article/10.1088/1748-9326/ab4c52 .

modity for phytoplankton.

Primary production in one-third of the surface ocean is limited by iron and the shortage of
iron explains the existence of “High-Nutrient-Low-Chlorophyll” (HNLC) regions, such
as the Southern Ocean, where relatively high concentrations of nitrogen and phosphorus
in the surface water are not utilized by biological production (Fig. 1.2; Boyd et al., 2007;
Moore et al., 2013). Based on these findings, could iron be the actual ultimate limiting
nutrient of primary production? The answer is complicated. The in-situ iron fertilization
experiments show an increase of the primary production during the iron addition period
(de Baar et al., 2005). The global iron fertilization based on model studies show that
the primary production and carbon uptake of the ocean may increase (Aumont and Bopp,
2006; Zahariev et al., 2008). However, in those models experiments, simulating replete
iron for a short period, the phytoplankton community in the HNLC regions can utilize
more micro-nutrients causing in turn a reduction of macro-nutrient lateral transport to
oligotrophic regions and a decrease of productivity downstream.

Martin (1990) hypothesized that the lower atmospheric CO2 concentrations of the Last
Glacial Maximum (LGM) may have been due to a much higher ocean carbon export from
enhanced surface biological activity. They hypothesized that this enhanced carbon export
was caused by an increase in iron supply due to higher levels of atmospheric dust depo-
sition. This hypothesis, famously described by Martin with his controversial statement,
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1.2 The marine iron cycle Introduction

“Give me half a tanker of iron, and I’ll give you the next ice age”, has inspired multi-
ple mesoscale iron fertilization experiments (de Baar et al., 2005) and ideas for climate
engineering (Aumont and Bopp, 2006). Model studies show that iron fertilization might
not be the sole factor for the carbon dioxide drop during the LGM, but enhanced produc-
tivity in high latitudes might have contributed from less than a quarter (Lambert et al.,
2015) to one-half (Watson et al., 2000; Hain et al., 2010) of the decrease in atmospheric
carbon dioxide. This uncertainty, in addition to the circulation and forcing differences,
could be partly caused by differences between model implementations (including model
complexity) of the iron cycle (Tagliabue et al., 2017).

1.2. The marine iron cycle

pFe

dFe

aerosol deposition

iceberg transport

uptakeplankton
ecosystem

scavenging

remineralization

sedimental
release

hydrothermal
vents

sink

ligand-bound Fe
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Figure 1.3.: The iron cycle in the ocean. This is a representation of the marine iron cycle adapted
from the review on marine iron cycling by Tagliabue et al. (2017). The sources of iron in the
ocean are aerosol deposition, sedimentary release, iceberg transport, and hydrothermal flux.
Phytoplankton take up dissolved iron (dFe) and produce organic matter. Dissolved iron can be
scavenged by particles, both organic and lithogenic, which form particulate iron (pFe).
Eventually particulate iron sinks out of the water column. However, not all dissolved iron will be
scavenged. Ligands can be produced as result of biological activity in the marine ecosystem and
they can bind with iron and protect iron from scavenging. The ligand-bound iron can be then
transported further by the ocean circulation (marked by dashed white arrow).

Our understanding of the iron cycle has evolved in the last few decades. Before the GEO-
TRACES project (Schlitzer et al., 2018) discovered variable iron concentrations in the
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deep ocean linked to hydrothermal vents (e.g., Fitzsimmons et al., 2015), the deep ocean
iron concentrations were assumed to be quasi-constant and reflecting the ambient organic
iron-complexing ligand concentrations (Gledhill and van den Berg, 1994; Rue and Bru-
land, 1995). Aerosols were assumed to be the sole source of iron in the ocean in early
model studies (Lefèvre and Watson, 1999; Archer and Johnson, 2000). This was partly
motivated by earlier studies that suggested a limited reach of riverine iron; e.g., rapid re-
moval of iron in river water by salt-induced flocculation in estuary regions (Boyle et al.,
1977). More recently, Elrod et al. (2004) found out that the shelf sediments can be a
significant iron source and can sustain high phytoplankton productivity downstream hun-
dreds of kilometers offshore. Robinson et al. (2016) also pointed out that there is natural
iron fertilization downstream from islands, primarily due to sediments and runoff. In the
polar oceans, icebergs can be a major iron source, since the iron particles can hitchhike
on the iceberg during its voyage (Raiswell et al., 2008; Hopwood et al., 2019). Although
hydrothermal sources are important for the deep ocean iron inventory, they are a minor
contributor to ocean primary production, fertilizing only 2 to 3 percent of the global ocean
surface production of particle organic carbon and is less pronounced than aerosol (around
12 to 15%) and sediment sources (79 to 81%; Tagliabue et al., 2014).

In the vast ocean, the rapid removal of iron by scavenging process seems to set a general
trend of iron concentration: low abundance when local iron source is absent. However,
organic ligands that bind with iron can keep iron in solution (Fig. 1.3). The production
of ligands is associated with iron-limited bacterial and phytoplankton community growth,
zooplankton grazing and organic particle remineralization (Gledhill, 2012). Völker and
Tagliabue (2015) introduced a dynamic ligand cycle in a global biogeochemical model
and found improvement for model misfit against observational iron patterns.

1.3. Performance of iron models

Marine biogeochemical models are a means to test hypotheses induced by observations
or experimental work, to illustrate interactions between marine ecosystems and physical
environments, and to deduce the implications of such interactions. As more processes
are discovered and hypotheses are generated, for example by novel observational data
(e.g., the finding of hydrothermalism being an iron source in the interior ocean; Tagliabue
et al., 2010), there is increasing demand to include these proposed processes into bio-
geochemical models. This demand is based on the assumptions that (a) a more complex
model better reflects reality and (b) that a model that better reflects current observations
provides for more realistic future projections. Neither of which are necessarily the case.
Modelers can be hesitant to implement more processes into models, or to make models
more complex. This “hesitation”, however, may not be about the implementation pro-
cess itself but rather about the challenges that come with the calibration of more complex
models.
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1.4 Parameter calibration difficulties and possible solutions Introduction

Increasing in complexity without sufficient parameter calibration does not guarantee bet-
ter model projections (Anderson, 2005). In an iron model inter-comparison project against
observed data of dissolved iron by Tagliabue et al. (2016), the authors compared 13 global
biogeochemical models and found large disagreements in iron residence time in the ocean
(from the scale of years to centuries). This variability is due to differences in the applied
iron scavenging parameterizations. The authors also pointed out that even the most com-
plex iron model has a large model-data misfit (and only explained 36 % of the observed
iron concentration variance, despite representing a wide variety of processes thought to
be relevant). Nickelsen et al. (2015) hand-tuned parameter values against surface nutrient
fields as they introduced a full dynamic cycle of iron into an earth system model with
intermediate complexity (Eby et al., 2013; Keller et al., 2012). This addition of iron did
not lead to improvement of model performance with respect to reproducing observed sur-
face nutrient distributions, compared to an earlier version of the biogeochemical model
by Keller et al. (2012). This earlier version uses a simple prescribed iron concentration
mask in the surface ocean to limit primary production. Poor parameter value choices in
the new, more complex model might have contributed to the stagnating performance, but
also this might not be the sole issue. In addition, the uncertainty in iron models needs
to be addressed before we can trust model results that examine iron fertilization as a po-
tential climate change mitigation measure (Tagliabue et al., 2016; Buesseler et al., 2008).
More effort should be put into improving parameter calibration techniques, and into un-
derstanding the impact of model complexity before increasing model complexity further.

Parameter uncertainty may occur not in iron modules alone, but is widespread in the
global biogeochemical models. Model architecture and its parameters describe the path-
ways for elements (e.g., nutrients and carbon) passing through marine ecosystems. Even
when models show similar nutrient distributions (e.g., nitrate, phosphate), the fluxes in
the ecosystem can vary (Löptien and Dietze, 2017). Laufkötter et al. (2016) show that
the projections of carbon export over the 21st century vary across different models due to
pathway uncertainties and call for better-constrained ecosystem parameterizations.

1.4. Parameter calibration difficulties and possible solutions

In this section I will address the question, what is hindering calibration of model parame-
ters in an earth system model.

1.4.1. Computing expense of a single simulation

In coupled physical-biogeochemical models of the ocean, the global chemical and bio-
logical tracers (e.g., the concentration of dissolved inorganic nitrogen and the abundance
of phytoplankton) are generally modeled within the framework of local “grid-boxes”,
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which are connected via the ocean General Circulation Models (GCM). This means that
the chemical and biological processes take place in the local grid-box and the physical
transport (advection and mixing) of tracers between the grid-boxes is carried out by the
GCMs. Since many tracers in the ocean model require thousands of model years to reach
their equilibrium state (i.e., the annual mean concentration of a tracer does not change
over time), the effect of changes in parameter values on steady state solutions of ocean
models are computationally expensive to obtain. A fully coupled earth system model
used for assessing the impact of climate change in the Climate Model Inter-comparison
Projects (CMIP; e.g., Bopp et al., 2013; Eyring et al., 2016) might take up to a month to
finish a 300-year simulation. Due to this long integration time, even a single spin-up (the
simulation where a model reaches its equilibrium state) may take up to a year.

Khatiwala (2007) reduced the model spin-up time problem with the Transport Matrix
Method (TMM). The underlying idea of the TMM is that a GCM, if the advective-
diffusive transport operator is linear, it can be written as a sparse matrix, which may
be efficiently constructed by “probing” the GCM with a passive tracer (Khatiwala, 2007).
This sparse matrix is called a Transport Matrix (TM). The TM is used to move tracers
around without activating its corresponding GCM: hence, it is an “offline model”. Fur-
thermore, models using a seasonally cycling set of constant TM by Khatiwala (2007) are
adapted to parallel computing frameworks. Consequently, the model spin-up can be run
at up to two orders of magnitude higher efficiency. However, this offline model has some
bias to biogeochemical quantities (e.g., differences in tracer concentrations at high lati-
tudes) compared to its online counterpart. This is due to modifications (e.g., omission of
the polar filtering applied in the online version, and slight differences in the application
of time-dependent forcing fields) that are necessary in the TMM (Kvale et al., 2017).

1.4.2. Dealing with large numbers of parameters

Model complexity increases and the number of tunable parameters rise. Given the avail-
able observations, in particular the number of independent datasets, not all parameters can
be independently tuned in biogeochemical models (Kriest, 2017). Searching a combina-
tion of parameter values that minimize misfit between model results and observational
data in a model with n parameters is a search problem in a solution space with n dimen-
sions (e.g., if there are two value choices for each parameter, a model with 46 parameters
has 246 possible parameter value combinations). This means that when n increases by 1,
the number of combinations that need to be tested increases at least by a twofold. Hence,
hand-tuning or making educated guesses, can be ever more challenging when dealing with
exponentially expanding numbers of possible parameter value combinations.

One of the possible solutions for parameter optimization is the Covariance Matrix Adap-
tion Evolution Strategy (CMA-ES) (Kriest et al., 2017; Hansen, 2006). It is one of the
meta-heuristic methods, which is made to solve the minimization problem in multiple
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dimensions by mimicking the evolution process in nature to search the parameter space
efficiently. For the classical evolutionary algorithms, parameter value is seen as a trait and
a combination of parameter values is seen as an individual. The performance of an indi-
vidual is measured by a cost function (e.g., the misfit against observations of the model
which applied this very combination of parameter values) and a “better” individual is an
individual with a lower cost (i.e., a smaller misfit). In the beginning, a certain amount
of individuals are “born” by drawing randomly from the solution space (i.e. a plausible
range of values for a given parameter as indicated by e.g. the respective physiological
literature). In each generation or iteration, the performance (misfit) of individuals will
be evaluated and the offspring will be produced by random selection of traits from the
“better” individuals, while “worse” individuals will not be considered further (they go
’extinct’). The algorithm will also allow the re-insertion of “good” individuals from for-
mer generations in order to give the good traits (parameter values) a better chance to pass
on to the next generation of individuals. This evolutionary process encourages the emer-
gence of individuals with preferable traits. After a certain number of generations, the
“best” individual with the smallest misfit arises.

Different from classical evolution algorithms, CMA-ES is an Estimation of Distribution
Algorithm (EDA) (Hansen and Ostermeier, 2001). CMA-ES assesses the distribution of
each parameter not only from the misfit of the current generation but also a few gener-
ations backwards, and looks for where is more likely to have better fitness. In this way,
the knowledge of the distribution gathered by older generations can persist and fade out
slowly. CMA-ES then draws the offspring following the knowledge of the distribution.
The advantage of CMA-ES is that it needs smaller amounts of individuals per generation,
and hence lower computational demand compared to classical evolutionary algorithms.
However, considering the total numbers of parameters in a biogeochemical model and
the limited number of available independent data sets (see paragraph below), the values
of some parameters may not converge after calibration (Löptien and Dietze, 2015, 2017).
In a study by Kriest et al. (2017), a selective set of 6 parameters from a biogeochemical
model (which contains over 20 parameters) is calibrated against the global data sets of
nitrate, phosphate, and oxygen concentrations, and the calibrated model shown a better
skill to reproduce observed global biogeochemical fluxes.

1.4.3. Data set limitations

As the models grow in complexity, we need more independent data sets to constrain the
parameters. The World Ocean Atlas is an precious asset for modellers. It contains a clima-
tological compilation of a few biogeochemical tracers, such as oxygen, nitrate, phosphate,
and silicate in the world ocean (Garcia et al., 2013b,a). However, the observations for iron
in the ocean is relatively scarce, since, as motioned above, it was not possible to measure
the low concentration of iron in sea water until the late 70s (Bruland et al., 1979; Settle
and Patterson, 1980), and still requires dedicated equipment and experts. Thanks to in-
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ternational collaborations, e.g., the GEOTRACES project (Schlitzer et al., 2018), limited
amount of cruise sections of iron concentration data in all major basins are collected or
planned to be collected. These can provide insight into the variability of iron concentra-
tions in the ocean.

Observation-based biogeochemical flux/rate measurements or estimates (e.g. net primary
production and export production) may provide extra constraints for biological parame-
ters, in addition to traditional concentration-based data sets. However, fluxes have their
own uncertainty. Carr et al. (2006) compared 24 models that estimate global ocean net
primary production from satellite measurements of ocean color and found a variation
by a factor of two among them, contributed possibly by different model estimates in
high-nutrient low-chlorophyll conditions, and extreme temperatures or chlorophyll con-
centrations. Sediment traps are criticized for systematic bias (e.g., caused by tipping over,
advection, sample preservation, and estimation models) (Honjo et al., 2008; Bloesch and
Burns, 1980). They are still an important data set for assessing the global oceanic parti-
cle sinking rates, because of their wide deployments in various regions of the ocean ever
since 1983 (Honjo et al., 2008).

1.5. University of Victoria Earth System Climate Model

Earth system models of intermediate complexity (EMICs) include most of the processes
described in comprehensive models and have a coarse grid (compare to higher resolu-
tion in comprehensive models) and often apply substantial simplifications to represent the
dynamics of some or all components, which make the models simple enough that long-
term climate simulations over thousands of years are sensible (weeks of computing) on
the current generation of computers (Claussen et al., 2002). University of Victoria Earth
System Climate Model version 2.9 (UVic 2.9) is an EMIC with four coupled components
(Weaver et al., 2001; Eby et al., 2013): a single layer atmospheric model, a sea ice model
(Bitz and Lipscomb, 1999), a land model (Meissner et al., 2003), and a three dimensional
ocean model. In the horizontal direction, all components have a grid resolution of 1.8 �

latitude ⇥ 3.6 � longitude. The atmospheric model calculates heat and water fluxes be-
tween the atmosphere and the ocean, land and sea ice dynamically (Fanning and Weaver,
1996). The vertical grid resolution of the ocean model varies from 50 m near the surface
to 500 m in the deep ocean.

In order to isolate the impact on biogeochemistry from the complexity of the iron mod-
els, we apply the same GCM (Modular Ocean Model 2, Pacanowski, 1996), coupled with
different versions of the Kiel Marine Biogeochemical Model (KMBM) as the oceanic
biogeochemical component (Fig. 1.4). The first model ignores iron as a nutrient for
phytoplankton (NoFe) and the phytoplankton potential growth rate depends on nitrate,
phosphate, light intensity, and temperature. This version of the model is created by dis-
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Figure 1.4.: Three different implementations of iron modules in a biogeochemistry model. The
complexity increases from left to right (NoFe < FeMask < FeDyn).

abling the iron limitation factor in (KMBM1, Keller et al., 2012). The second model has
a prescribed seasonal cycling of iron concentrations (FeMask, Keller et al., 2012), which
is estimated by the Biology Light Iron Nutrient and Gas model (BLING, Galbraith et al.,
2010). In FeMask, the iron limitation factor (a Monod function of iron concentrations)
acts as an additional constraint for the phytoplankton potential growth rate compared to
NoFe. The third model builds on FeMask and instead of using prescribed iron concen-
trations, it calculate iron concentrations dynamically through an explicit representation
of the oceanic iron cycle (FeDyn, Nickelsen et al., 2015) similar to what was used origi-
nally in the BLING model simulations. In FeDyn, the accounts for different iron sources,
such as aerosol deposition (Luo et al., 2008), sediment release (Elrod et al., 2004), and
hydrothermal iron flux (Tagliabue et al., 2010). Dissolved iron in FeDyn is also subjected
to scavenging and colloid formation. Ligands can bind with dissolved iron and prevent
iron scavenging, which is prescribed as a global constant concentration in FeDyn. More
details of each model variation can be found in Keller et al. (2012, NoFe and FeMask)
and Nickelsen et al. (2015, FeDyn).
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1.6. Chapter synopsis and author contribution

This thesis aims to understand the impact of different iron model implementations on bio-
geochemical processes under pre-industrial steady state and climate change. The goals
and achievements of each chapter are summarized here.

Chapter 2 aims to identify suitable parameters (i.e. those to which simulated tracer dis-
tribution is sensitive) in UVic 2.9 for model calibration in Chapter 3. This chapter focuses
on identifying parameter uncertainties from the literature and testing parameter sensitiv-
ity for the pre-industrial climate state in the offline UVic 2.9. It demonstrates possible
deficiencies arising from hand-tuning and the major difficulties of the iron model at re-
producing observational data. It paints a general picture for parameter sensitivities in
UVic 2.9 with KMBM 2(Nickelsen et al., 2015). It also lays down some of the ground
work for the model calibrations in the next chapter.
A. Oschlies, W. Koeve and W. Yao conceived and designed the experiments. W. Yao
implemented and performed the experiments and analysed the data. W. Yao wrote the
chapter with contributions from K. F. Kvale, W. Koeve and A. Oschlies.

Chapter 3 aims to explore the impact of different iron implementations on global bio-
geochemical indicators in a pre-industrial climate after calibration, which optimizes every
model against observational data. In this chapter a model calibration framework by Kriest
et al. (2017) is applied that utilized the TMM and the CMA-ES. Three different variations
of UVic 2.9 (one without iron implementation, one with prescribed iron concentrations,
and another with a full iron cycle) are calibrated against multiple observational data fields
(nitrogen, phosphate, and oxygen). By comparing the calibrated models, the impact of
iron model implementations on global biogeochemical indicators (e.g., net primary pro-
duction and oxygen deficit zone volume) in the pre-industrial steady state ocean are quan-
tified. It is demonstrated that the model with a full iron cycle implementation has the best
performance. Different nutrient pathways resulting from different iron model implemen-
tations are described, which emphasize the importance of model parameter calibration for
future studies.
This chapter is based on the published paper: Yao W, Kvale K F, Achterberg E, Koeve W,
Oschlies A. (2019) Hierarchy of calibrated global models reveals improved distributions
and fluxes of biogeochemical tracers in models with explicit representation of iron[J].
Environ. Res. Lett. 14 114009, DOI:https://doi.org/10.1088/1748-9326/ab4c52. W. Yao
and A. Oschlies conceived and designed the experiments. W. Yao implemented and per-
formed the model calibrations with support from K. F. Kvale and W. Koeve. W. Yao
analysed the data. W. Yao wrote the paper with contributions from K. F. Kvale, W. Ko-
eve, E. Achterberg and A. Oschlies.

Chapter 4 aims to examine the impact of applying different iron implementations under
climate change. The three calibrated variations of UVic 2.9 (Chapter 3) are integrated
online (in a fully-coupled earth system mode) under the atmospheric CO2 concentra-
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tion scenario Representative Concentration Pathways (RCP) 8.5 of the Intergovernmental
Panel on Climate Change (IPCC). While all models agree on a trend of decreasing NPP
with global warming, models disagree on nitrogen fixation trends. Comparing all models,
we find that the nutrient pathways in the upwelling regions, e.g., in the tropical eastern
Pacific, are determined by model differences in the iron cycle parameterization. These
pathways behave differently in response to warming, which creates different nutrient sto-
ichiometric conditions (nitrogen to phosphorus ratio) for diazotrophs in the oligotrophic
regions, and hence triggers different nitrogen fixation responses. This chapter illustrates
the importance of a realistic iron parameterization for future climate studies and argues
for more effort in model calibration accompanied with future model development.
This chapter is based on a manuscript submitted to the scientific journal Global Bio-
geochemical Cycles: W. Yao, K. F. Kvale, W. Koeve, A. Landolfi, E. Achterberg, E.
M. Bertrand and A. Oschlies (2020) Simulated future trends in marine nitrogen fixation
are sensitive to model iron implementation. W. Yao conceived and designed the experi-
ments. W. Yao performed the model simulation and analysed the data. W. Yao wrote the
manuscript with contributions from K. F. Kvale, W. Koeve, A. Landolfi, E. Achterberg,
E. M. Bertrand and A. Oschlies.
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