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The diet of L. forbesi in Scottish waters was subject to ontogenetic changes as shown by fatty acid 

and stable isotope analysis. Crustaceans were more frequently found in stomachs of immature squid 

smaller than 150 mm mantle length. With increasing size ( > 150 mm) and maturity fish became 

more prominent in the diet. Seasonal differences in the diet were also found but seemed to be linked 

to seasonal changes in squid size. Prey type and species composition also varied slightly between 

different regions. Differences between size and region were reflected in fatty acid profiles of mainly 

the digestive gland tissue. High levels of the saturated fatty acid 16:0 and the polyunsaturated fatty 

acids 20:5n-3 and 22:6n-3, which are typical for fatty acid signatures of many crustacean species, 

were found in tissues of smaller immature squid. Higher levels of the monounsaturated fatty acids 

16:1n-7, 20:1* and polyunsaturated fatty acids of the linoleic family (C18), which are typical for 

fish prey species, were found in squid of larger sizes and higher maturity stages. Regional 

differences found for fatty acid profiles of the digestive gland suggested a significant difference in 

origin of fatty acids thus indicating different diets. In comparing the fatty acid profiles of squid to 

those of putative prey species of L. forbesi, it was apparent that gadid species Trisopterus minutus, 

Micromesistius poutassou and Gadus morhua, were an important component of the diet of L. 

forbesi. With increasing size of the predator however the composition of fish species in the diet 

shifted more towards Gadiculus argenteus, Trachurus trachurus and Sebastes marinus. Results of 

quantitative fatty acid analysis on the estimate of the contribution of each prey species to the diet 

also reflected this shift in the importance of different prey species with increasing predator size.  

 

Due to slower turnover rates in muscle, changes in carbon and nitrogen stable isotope ratios with 

diet were more pronounced in this tissue. Smaller squid showed the lowest δ15N ratios thus feeding 

on the lowest trophic level of all squid examined. δ 13C ratios were the most depleted for small 
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squid indicating that small squid feed on prey closer to the carbon source in the food chain. Stable 

isotope analysis also showed that squid with fish remains in their stomachs showed higher ratios of 

nitrogen and less depleted carbon ratios than squid feeding on crustaceans. Comparisons of isotope 

levels of squid and putative prey species identified blue whiting and silvery pout as putative prey 

species of bigger sized squid. Small squid seemed to feed on the same trophic level and all other 

prey species examined were always similar or higher in isotope ratios than squid of any size.    
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Introduction 

 

Although numerous feeding studies exist, the importance of many cephalopod species as predators 

is still not well known, in part reflecting problems in data collection and partly reflecting bias 

introduced through methodology.  

 

Much of our existing knowledge on the feeding of squid is based on information gained through 

stomach content analysis and to a lesser extent observation in the field and the laboratory 

(Rodhouse & Nigmatullin, 1996). Through the application of conventional stomach content analysis 

it was possible to determine general feeding strategies for many squid species.  It was found that 

neritic as well as pelagic squid species feed on a mixture of fish, crustacean and cephalopod species 

in varying proportions throughout their life cycle (e.g. Breiby & Jobling, 1985, Castro & Guerra, 

1990, Rasero et al., 1996). Many species showed ontogenetic shifts in their diets with juveniles 

feeding predominantly on crustacean prey with an increase in fish and cephalopod prey occurring 

with increasing squid size (e.g. Breiby & Jobling, 1985, Pierce et al., 1994a). Furthermore daily 

feeding migrations have been reported for neritic squid species with squid feeding on the bottom 

during the day and in the water column and near the surface during the night (e.g. Tanaka, 1993, 

Sánchez et al., 1996, Lapthikovsky, 2002). Prey species found in stomach contents could often be 

identified and tentative pictures of trophic relationships could be drawn. However there are several 

problems associated with these kinds of studies.  

 
Due to morphological restrictions cephalopods are not able to swallow big lumps of prey, but have 

to macerate prey during ingestion. When eating relatively large fish prey this may lead to the 

rejection of the head (Porteiro et al., 1990) and consequently the lack of identifiable hard parts such 

as otoliths and jaw bones. The lack of hard parts may consequently lead to underestimating certain 

prey in the diet (Nixon, 1987). Also rapid digestion rates  (Bidder, 1966) will influence what is left 

in stomach contents and bias will result from the moment in time the animal has been caught. 

Indeed in many studies high proportions of stomachs are empty and therefore won’t contribute to 

any dietary information. In cases where stomach remains are found identification requires the 

researcher to have a good taxonomic knowledge of organisms found in the system and sufficient 

reference material, which might not always be accessible.  
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In cases where animals are caught by trawl further bias might be introduced by net-feeding and 

stomach contents analysed might not reflect the animals natural diet (Breiby & Jobling, 1985). 

There is also the danger of secondarily ingested prey being considered as consumed directly and 

therefore overestimated in prey species composition. Most importantly however results obtained 

from stomach content analysis will only ever reflect single feeding events thus giving an indication 

of the prey spectrum and feeding behaviour but do not provide information about assimilation of 

food and long-term dietary trends.  

 

These limitations have led to the development of more sophisticated methods, which do not only 

support results from conventional stomach content analysis but also have the further potential of 

being applied for quantitative analysis. These methods involve the use of fatty acid profiles and 

stable isotope signatures for the reconstruction of diets in the field.  

 

The use of fatty acids as biomarkers is based on the assumption that many fatty acids in the marine 

environment, particularly polyunsaturated fatty acids can only be biosynthesized by certain 

phytoplankton and macroalgae species and become essential dietary components to higher trophic 

levels (Sargent et al., 1976). It is also generally accepted that animals have only a limited capacity 

to desaturate or chain-elongate fatty acids and therefore many fatty acids are stored relatively 

unchanged in the predators tissue and can be useful as dietary tracers in food web analysis (Dunstan 

et al., 1996). 

 

The use of fatty acids as biomarkers does have the further potential to provide information as to 

which habitat contributes the majority of prey for an organism.  Large concentrations of 

polyunsaturate (PUFA) 20:5n-3 for example are typically found in diatom-based food webs whereas 

high proportions of PUFA 22:6n-3 mostly derive from food chains based on a predominance of 

dinoflagellates in the phytoplankton. On the other hand high proportions of 20:4n-6 are indicative 

of benthic food webs as they are primarily produced by benthic algae and C18 PUFA and 

monounsaturates of the C20 and C22 family are typically enriched in copepod based food webs 

(Sargent & Whittle, 1981). The influence of freshwater and marine habitats on the other hand can 

be distinguished through elevated levels of C16 and C18 PUFA levels freshwater organisms in 
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contrast to higher C20 and C22 MUFA found in marine organisms (Ackman, 1967). Feeding 

studies in fish, molluscs and marine mammals, that used fatty acids as dietary tracers, have clearly 

shown that fatty acids of the prey will be reflected in the predators tissue and can be a viable tool 

for the reconstruction of diets in the field (e.g. Olsen et al., 1991, Kirsch et al., 1998, Navarro et al., 

2000). 

 

The use of stable isotopes as dietary tracers is based on the principle that isotopic concentrations of 

consumer diets can be related to those of consumer tissues in a predictable fashion (Hobson & 

Clark, 1992). It has been extensively applied in the investigation of trophic relationships in various 

marine ecosystems (e.g. Rau et al., 1983, Hobson & Welch, 1992, Petersen, 1999) and has been 

used to determine feeding migrations in cephalopods and birds (Takai, 1998, Cherel et al., 2000). 

The small fractionation of carbon in a predator relative to its prey (1 ‰) suggests that 13C in the 

predator will reflect the isotopic composition in the prey and that 13C values can successfully be 

used to identify carbon pathways and sources of primary productivity (DeNiro & Epstein, 1978) 

whereas the stepwise enrichment of nitrogen between trophic levels (3 - 4 ‰) will indicate the 

trophic position of species in the food web investigated (Minagawa & Wada, 1984). The analysis of 

more than one stable isotope will also allow greater segregation of species than the use of a single 

isotope (Hobson, 1993). 

 

The conservative transfer of carbon isotopic compositions to the animal from the diet can also be 

useful in tracing food webs in systems where there are food sources with large differences in 13C 

values, such as terrestrial versus marine, benthic versus pelagic, inshore versus offshore and 

latitudinal differences (e.g. Schoeninger & DeNiro, 1984, DeNiro &Epstein 1978, Rau et al., 1982, 

Fry, 1988). In effect laboratory studies have shown that organisms fed on an isotopically distinct 

diet will, in time, approach dietary values as the animal grows and tissues turn over (DeNiro & 

Epstein, 1978, Fry & Arnold, 1982, Hobson & Clark, 1992, Tominaga et al., 2003) thus suggesting 

that the use of stable isotopes as dietary tracers is a valid approach to investigate feeding in 

cephalopod diets. 

 

The application of both fatty acid and stable isotope analysis offer three main advantages over the 

use of stomach content analysis alone: (a) they can be applied to any animal, even if the stomach is 
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empty (b) they provide information on “average” diet, integrated over a period of time and (c) 

through the use of tissues with different metabolic rates provide information on diet integrated over 

different lengths of time (Hobson, 1993).  

 

The life cycle of L. forbesi, has been relatively well-studied in European waters. Previous studies on 

the feeding of L. forbesi have covered various parts of its range (e.g. Ngoile, 1987; Porteiro et al., 

1990; Rocha et al., 1994; Collins & Pierce, 1996; Pierce & Santos, 1996) and were exclusively 

based on stomach contents analysis.  

 

In most locations studied, fish was found to be the main prey item with crustacean, cephalopod and 

polychaete species present in the diet to varying degrees. In all studies, L. forbesi was found to 

consume a wide variety of fish and crustacean species. The most prominent fish species present in 

the diet belonged to families Gadidae, Clupeidae, Ammodytidae and Gobiidae (e.g. Rocha et al., 

1994, Collins & Pierce, 1996, Pierce & Santos, 1996). In Scottish waters Loligo forbesi appeared to 

primarily feed on gadid and ammodytid species (Pierce et al., 1994b). Of crustaceans found in the 

diet of L. forbesi from Scottish waters, decapod and euphausiid families were the ones identified 

most frequently. Cephalopod prey consisted mainly of loliginid, sepiolid and octopodid species 

(Pierce et al, 1994b, Collins & Pierce, 1996).  

 

Apart from regional differences, diets showed seasonal variation (e.g. Pierce et al., 1994a, Collins et 

al., 1994) and were found to be dependent on squid size (Rocha et al., 1994; Collins & Pierce, 

1996). Ontogenetic shifts occurred from a crustacean dominated diet in juvenile squid to a 

predominance of fish in the diet of adult squid. No significant differences were found between the 

diets of male and female L. forbesi (Pierce et al., 1994a; Rocha et al., 1994) or animals of different 

maturity stages (Rocha et al., 1994).  

 

Lipid and fatty acid analysis has previously been applied to loliginid species, primarily investigating 

squid energy requirements and growth and their nutritional value for human consumption (e.g. de 

Koning, 1993, Hayashi, 1996; Kunisaki, 2000; Navarro & Villanueva, 2000). Only one study 

examining the lipid and fatty acid composition of Southern Ocean squid (i.e. Sepioteuthis australis) 

used fatty acid data to investigate food web interactions (Phillips et al., 2002). Loligo bleekeri is the 
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only loliginid species to date for which stable isotope ratios were examined. This study however, 

was concerned with investigating biological and geographical differences between several 

cephalopod species rather than trophic interactions between cephalopods and their prey (Takai et 

al., 1998).  

 

The aim of this study was to use a combined approach of conventional and alternative techniques to 

explore possible ontogenetic and seasonal shifts in the diet of a relatively well studied cephalopod 

species (Loligo forbesi) and assess their usefulness in studies in the field. 

 

Material & Methods 

 

Sampling  

 

A total of 107 specimens of L. forbesi were sampled from research cruises and commercial fishing vessels 

over a 10 months period in order to cover all four seasons. Samples of Loligo forbesi obtained in May 1999 

(n = 39) were collected during a demersal trawling survey on board the FRV Scotia, operated by the FRS 

Marine Laboratory Aberdeen, in Scottish shelf waters (Fig. 1). Further samples of L. forbesi collected in 

May (n = 10), August (n = 20) and November 1999 (n = 20) and March 2000 (n = 20), were landed as by-

catch from commercial fishing vessels landing at Kinlochbervie market (Northwest Highlands, Scotland). 

For samples collected in August, November and March, gear type and exact geographical location, other 

than approximate region of catch are unknown, although most landings in Kinlochbervie are from trawlers 

fishing the “Minch” (i.e. marine straight between the Scottish West coast and the Outer Hebrides, Fig.1). 

Samples of putative prey species (Table 1) were collected on several consecutive cruises (2000 – 2001) of 

the research vessel FRV Scotia in Scottish and Irish waters. All squid and prey samples collected during 

these surveys were bottom trawled with trawls lasting between 30 minutes and 1 hour.  
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Fig.1:  Location of catch 
of Loligo forbesi in May 
1999. Numbers indicate 
hauls. KIN = market 
sample Kinlochbervie. 
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Apart from commercial samples (i.e. market samples) all squid and fish were dissected immediately after 

capture. In squid pieces of muscle tissue were taken from the ventral side of the mantle whereas digestive 

gland and stomachs were sampled whole. Muscle tissue samples of fish were taken from the anterior dorsal 

side of the body. Crustacean prey was collected whole. Tissue samples were packed individually in 

polythene bags and frozen at – 20 °C.  Commercial samples of L. forbesi were stored on ice for up to 3 days 

at sea prior to dissection in the laboratory. Upon dissection, squid were measured, sexed and a maturity stage 

was assigned. Dorsal mantle length (DML) was measured from the anterior tip of the middorsal point to the 

posterior body tip, measured to the nearest centimetre (Boyle & Ngoile, 1993). Size classes chosen for 

morphometric and dietary comparisons were selected according to frequency distribution of mantle lengths 

and resulting adequate sample size, resulting in eight size categories of 30 mm DML. To determine sexual 

maturity in L. forbesi a modified scale was used (Pierce & Guerra, 1994) based on Lipinski’s (1979) 

universal maturity scale for cephalopods. 

 
 
Stomach content analysis 
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All 107 squid specimens sampled were investigated for stomach contents. Stomach samples were defrosted 

at room temperature and stomach fullness assessed. The mass of stomach contents was estimated on a 

subjective scale adapted from Pierce et al. (1994) and assigned 5 different categories from empty = 0 to full 

= 4.  

 

In order to prevent contamination with fish scales, cephalopod suckers or skin from dissection procedures, 

stomachs were rinsed on the outside prior to opening. Using scissors, stomachs were then cut open from their 

proximal to their distal end and contents washed in tap water over a 0.355-mm sieve. In cases where 

undigested flesh made the cleaning of remains difficult, stomach contents were soaked in a detergent 

solution (Bio-tex; Blumøller Ltd., High Wycombe) prior to washing (Pierce & Boyle, 1991; Pierce et al., 

1994d). Material remaining in the sieve was recovered and transferred into petri dishes. Prey remains were 

then examined under a binocular microscope fitted with a calibrated eyepiece graticule. All hard parts found 

in stomachs were stored in 70% ethanol until further analysis. Prey remains were initially sorted into major 

prey taxa i.e. fish, crustacea, cephalopoda and subsequently identified to the lowest taxon possible.  

 

 

Identification of fish prey was based on retrieval of hard parts such as otoliths and fish bones. These were 

identified using reference material held at the Department of Zoology, University of Aberdeen, and 

published guides (Harkønen, 1986; Watt et al., 1997). Other remains, including eye lenses, scales, flesh and 

skin, were used to confirm the presence of fish in the diet. Crustacean remains consisted of exoskeleton 

fragments such as mandibles, chelae, telsae and rostrae, which were identified using a published guide 

(McLaughlin, 1980). Cephalopod prey could be identified from beaks, eye lenses, skin fragments and 

radulae. Beaks were the only remains that allowed further analysis. Beak identification was achieved with 

reference material, published literature (Clarke, 1986) and the expertise of Dr. Maria B. Santos, University of 

Aberdeen. Other invertebrate remains, such as parasitic nematodes and bivalves, were noted as present but 

not considered to be prey and thus excluded from numerical analysis. Diet was quantified through frequency 

of occurrence (FO), which expresses the composition of the diet as a percentage of all stomachs containing 

food remains. Summarised data of food categories in some cases exceeds 100 % due to more than one food 

species present in the stomachs.  
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Table 1: Specimens of Loligo forbesi and prey species analysed. FA = fatty acid analysis, SI = stable isotope analysis, SC = 
stomach content analysis. * results courtesy to Jennifer Learmonth, University of Aberdeen.** results derive from a later study 
on the diet of deep sea fish carried out by the authors and funded by NERC.  
Species Common name n Location (haul) Season Analyses 
      
Loligo forbesi Veined squid 1 215 May FA, SI, SC 
    8 229 May SI, SC
  10 230 May FA, SI, SC 
  14 240 May FA, SI, SC 
    3 242 May FA, SC
    1 243 May FA, SC
    10 KIN May FA, SC
    20 Scotland August SI, SC
    20 Scotland November SI, SC
    20 Scotland March SI, SC
Prey species      
Clupea harengus Herring    10 Scotland July FA
Ammodytes sp. Sandeel    10 Scotland June FA*
Argentina silus Greater argentine 10 Scotland September FA 
Gadiculus sp. Silvery pout 6 Scotland September FA, SI 
Gadus morhua Cod   9 Scotland January FA, SI
Melanogrammus aeglefinus Haddock    5 Scotland January SI
Micromesistius poutassou Blue whiting 10 Scotland September FA, SI 
Trisopterus minutus Poor cod 8 Scotland July FA 
Sebastes marinus Redfish   8 Scotland August FA
Lepidorhombus whiffiagonis Megrim    7 Scotland January FA, SI
Limanda limanda Dab   4 Scotland January FA, SI
Trachurus trachurus Horse mackerel 10 Irish Sea August FA 
Meganyctiphanes sp.  10 Irish Sea  October FA** 
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Lipid and fatty acid analysis 

 

Due to storage difficulties only the samples obtained in May 1999 (n = 39) were suitable to be used for the 

lipid and fatty acid analysis of mantle and digestive gland tissue. Lipid was extracted from the mantle and 

digestive gland of 39 specimens of L. forbesi and from the muscle of 12 prey species (Table 1). Squid and 

fish tissue were homogenised prior to lipid extraction and a subsample (5 – 10g) taken for further processing. 

 

Lipid was extracted using a chloroform-methanol-water solvent mixture (2 : 2 : 1.4 v/v/v, Bligh & Dyer, 

1959, as modified by Hanson & Olley (1963) and applied according to the standard operating procedure 

(SOP) for lipid analysis, FRS Marine Laboratory, Aberdeen). Lipids were transesterified overnight 

(incubated at 50 ºC) using methanol containing sulphuric acid (1% v/v). The resulting methyl esters were 

extracted into iso-hexane and stored over anhydrous sodium sulphate at –20 ºC until further analysis.  

 

Fatty acid methyl esters (FAME) were analysed by gas chromatography with flame ionisation detection (GC-

FID) on a Hewlett Packard 5890 Series II gas chromatograph, fitted with a fused silica capillary column 

(0.25 mm i.d. x 30 m length) coated with a polar DB-23 phase (J & W Scientific Inc., California, USA) using 

nitrogen as the carrier gas. The detector temperature was set at 300° C. To achieve optimum separation of 

components the following temperature programme was used. The column temperature was ramped from 60° 

C initial oven temperature at 25° C min-1 to 150° C, then ramped at 1° C min-1 up to 200° C and held for 10 

min, then ramped at 10° C min-1 to 220° C and finally held at 220° C for 5 min. Total running time was 

59.60 min. On – column injection (1 µl) was by means of a Hewlett Packard 7673 automatic injector.Data 

were recorded by Perkin Elmer 600 Series Link Box connected to a Turbochrome Data Station and analysed 

using Turbochrome Navigator Software Version 6.1. 

 

Twenty-five fatty acids were identified through reference to a standard of known composition (E023), 

containing the fatty acid population chosen for this assessment. Amounts present are expressed as 

percentages of the summed area for the 25 fatty acids (NA, normalised area percentage). Since 

chromatographic separation between isomers of monounsaturated fatty acids 18:1 and 20:1 was not always 

complete, the groups 18:1* (18:1n-9 and 18:1n-7) and 20:1* (20:1n-11 and 20:1n-9) were defined for all 

further analysis. A group of 17 fatty acids, which comprised the most abundant and dietary relevant fatty 

acids (i.e. abundant in potential prey species), was chosen for statistical analysis.  In all further analyses these 

were classed as major and minor fatty acids, based on their level of contribution to the fatty acid profile, with 

minor fatty acids being < 5 % (single fatty acids).  
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Quantitation of data was checked by running the standard “E023” at the start of each analysis and after every 

6th sample. E023 is a standard developed in an EU intercalibration study in order to assess laboratory 

competency in the determination of the fatty acid composition of fish oil (1988, Torry Research Station, 

Aberdeen). Comparability of data was tested with “Shewhart chart” quality control. In this analysis it utilised 

normalised area percentage of selected fatty acids (palmitic, eicosapentaenoic and docosahexaenoic acids) 

derived from the repeated analysis of E023.  

 

Stable isotope analysis 

 

Of the 20 samples initially analysed for each season and tissue (i.e. N = 80 per tissue), 61 and 70 samples for 

digestive gland and muscle tissue respectively yielded viable results. The discrepancy in measured values 

between duplicates of the remaining samples exceeded set limits (2 ‰) and these data therefore had to be 

discarded. Accepted samples, as distributed across seasons, are shown in Table 1.  

 

Tissue samples of squid and putative prey species were placed into Eppendorf vials and freeze-dried (Edwards 

Super Modulyo freeze dryer, UK). Dried samples were powdered with a mortar and pestle and approximately 1-2 

mg was loaded into a 8 x 4 mm tin capsule (Europa Scientific Ltd, Crewe, UK). All further processing of samples 

was carried out by Mr. Peter Tompson, under the auspices of Dr. John Speakman, Zoology Department, 

University of Aberdeen. Duplicate samples were combusted in a Carlo Erba Na 1500 NC Elemental Analyzer at 

1800° C flash combustion temperature. Resulting gases (CO2 and N2) were analysed for Carbon and Nitrogen 

stable isotope ratios respectively using a dual inlet mass spectrometer (VG Micromass OPTIMA).  

Stable-isotope concentrations were expressed in δ notation as parts per thousand (‰) differences from a standard 

reference material:  

δX = [(Rsample/Rstandard) - 1]  x 1000 

, where X is 13C or 15N, R is the corresponding ratio 13C/12C or 15N/14N (for the sample or standard) and δ is the 

measure of the ratio of heavy to light isotope in the sample. 

 

Values measured were raw mass spectrometry δ estimates relative to laboratory working standards and had to be 

adjusted to international standards. Internal working standards used were pea, maize and spelt flour. δ estimates 

were adjusted to international standards IAEA CH-6, NBS-19 and IAEA CO-1 (calibrated against carbon 

standard material Peedee belimnite (PDB)) and international standard IAEA 305 N (calibrated against 

atmospheric N2 (AIR)), respectively. Analytical error for carbon was between 0.4 ‰ and 0.7 ‰ and 0.2 ‰ to 0.7 
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‰ for nitrogen, depending on the standard used. All carbon samples analysed produced negative values, due to 

samples being isotopically lighter (depleted in 13C) compared to standards used. Tissue samples were reanalysed 

if the difference between duplicates was more than 2 ‰.  

 

Statistical analysis 

 

Chi square tests (χ²) were used to investigate differences in stomach contents between groups with Yates’ 

Correction for Continuity being applied in tests with only two categories present. Differences in the 

distribution of maturity stages were tested by using Mann-Whitney nonparametric tests. Correlations 

between maturity and size were tested by applying the Spearman-Rank correlation coefficient. A group of 17 

fatty acids, which comprised the most abundant and dietary relevant fatty acids (i.e. abundant in potential 

prey species), was chosen for statistical analysis. Analyses were performed using 14:0, 15:0, 16:0, 16:1n-7, 

18:0, 18:1n-9, 18:1n-7, 18:2n-6, 18:3n-3, 18:4n-3, 20:1n-11, 20:1n-9, 20:4n-6, 20:5n-3, 22:1n-11, 22:5n3 

and 22:6n-3.  

 

One-way ANOVA on arcsine-transformed fatty acid data was applied to test for variations in selected fatty 

acids in relation to stomach contents. To examine differences in fatty acid signatures with stomach content 

and between squid species, principal component analysis (PCA) on arcsine-tranformed fatty acid data was 

used. Statistical results are presented for selected fatty acids only. Two-way multivariate analysis of variance 

(MANOVA) on arcsine-transformed stable isotope data was applied to test for intra- and interspecific 

differences. All statistical analyses was carried out using MINITAB 12.23 for Windows (Minitab Inc., State 

College, Pennsylvania). 

 

Quantification model for fatty acid analysis (QFASA) 

 

In order to quantitatively determine the importance of selected prey species in the diet of a given predator a 

model for quantitative fatty acid signature analysis (QFASA) was developed by Dr. Graham Pierce 

(University of Aberdeen). 

 

The model uses fatty acid signatures of predator and prey to quantitatively estimate the contribution of 

certain prey species to predator tissue composition. A subset of identified fatty acids was used that comprised 

of fatty acids that were of either dietary relevance to the predator or indicative of differences between prey 

species analysed (n = 18). Data on prey species were summarised and expressed by their mean fatty acid 

signatures.  
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The model calculates the difference between the observed proportion of each fatty acid in the predator from 

an estimated proportion of same fatty acid in the diet, the latter being based on some hypothetical 

combination of different prey species, and uses these distances to identify the most likely diet composition. 

The procedure is repeated for multiple hypothetical diets each comprising different combinations of 

proportions of the various prey species. Iverson et al. (2004) describes such a model, referring to its 

application as “quantitative fatty acid signature analysis” (QFASA). The present model was coded in BASIC 

by G.J. Pierce. 

Following the notation of Iverson et al., (2004), the goodness of fit (GOF) measure is based on the sum of 

the squared differences::  ∑ j = (yij – ŷij)2

 

, where yij defines the proportion of the jth fatty acid of the ith predator and ŷij  defines the mean proportion 

of the jth fatty acid of the ith prey species.  

 

The number of comparisons of randomly selected proportions of different prey species was set at 104. 

Results derived from this analysis are expressed as best fit scenarios, i.e. those diets with the smallest GOF 

value.  

 

Results 
 
Population Indices 
 
More than one size mode and maturity stage was present in most seasons. In accordance with 

breeding seasons found for L. forbesi in Scottish waters (e.g. Pierce & Boyle, 2003), body size as 

well as maturity increased in autumn and winter for both sexes. The small immature specimens 

caught during spring are indicative of recruitment in the months leading up to summer (e.g. 

Collins et al. 1999). For each of the seasons the number of females caught exceeded that of 

males (Table 2). The males were generally larger than the females with dorsal mantle lengths 

(DML) ranging from 100 to 520 mm for males and from 110 to 290 mm for female squid. 

However, only within the summer sample were male squid significantly larger than females (p < 

0.01).  
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Table 2: Specimens of L. forbesi grouped according to sex, maturity stage and 
average size for each quarter of the year. DML = dorsal mantle length, SD = standard 
deviation. a Index defined by Lipinski (1979). 

 
 Males Females 

Season n DML ± SD  (mm)  Maturity a n DML ± SD (mm)   Maturity a

Spring 
(05/99) 

20 146 ± 9 
 

range 1 – 2 
median 1 

27 134 ± 20 
 

range 1 – 2 
median 2 

Summer 
(08/99) 

9 232 ± 22 
 

2 11 182 ± 34 
 

2 

Autumn 
(11/99) 

7 287 ± 50 
 

range 1 – 5 
median 5 

13 229 ± 124 
 

range 1 – 5 
median 3 

Winter 
(03/00) 

7 246 ± 20 
 

range 2 – 5 
median 5 

13 201 ± 93 
 

5 

 
 
Both male and female squid varied significantly in size between seasons (female, p < 0.01 and 

male, p < 0.01). Specimens of both sexes were smallest in spring and reached peak in size in 

autumn. Maturity in both sexes was most advanced in autumn and winter. A moderate correlation 

existed between maturity and size in both male and female L. forbesi (male r = 0.632, p < 0.01, 

female r = 0.668, p < 0.01). 

 

Diet composition  
 

The diet was significantly different between L. forbesi smaller than 150 mm and L. forbesi larger 

than 150 mm (p < 0.01), with crustacean remains occurring more frequently in stomach contents of 

the two smallest size classes (DML 91 – 120 and 121 – 150 mm, table 3a). The occurrence of fish in 

the diet increased with increasing mantle length. The same trend applied to maturity stages, with 

lower maturity stages showing crustacean prey in their stomach contents more frequently than 

higher maturity stages, although differences were not significant (table 3b). 

 

Related to the ontogenetic shift in diet of this species, the prey type composition was significantly 

different between seasons (p < 0.01). There was a clear seasonal trend with crustacean and 

cephalopod remains present only in spring and summer and fish replacing all other prey in autumn 

and winter (table 3 c). A combined analysis on the influence of season and size on the diet (i.e. 

stomach contents) showed no significant effect for either of the independent variables, suggesting 
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that these effects could not be separated from each other (ANOVA, general linear model, p > 0.05 

for all factors).  

 
Table 3 a,b,c: Diet of L. forbesi from Scottish waters. Shown are the number of empty and 
non-empty stomachs examined in each  (a) size class, (b) maturity stage and (c) season, 
also the percentages of non-empty stomachs containing the following prey types: fish (F), 
crustaceans (Cr), cephalopods (C) and mixtures thereof (F+Cr). DML = dorsal mantle 
length. 
(3a) DML (mm) n Percentage of non-empty stomachs containing 

 empty non-empty F Cr F+Cr C 
91 - 120 6 3 66.7 33.3 33.3 33.3 
121 – 150 13 22 100.0 72.7 68.2 0.0 
151 – 180 12 6 83.3 0.0 0.0 16.7 
181 – 210 8 13 100.0 15.4 15.4 0.0 
211 – 240 4 4 100.0 0.0 0.0 0.0 
241 – 270 2 2 100.0 0.0 0.0 0.0 
271 – 300 2 3 100.0 0.0 0.0 0.0 
> 300 2 5 100.0 0.0 0.0 0.0 
       
Total 49 58 94.8 32.8 31.0 3.4 

 

(3b)Maturity  
stage n Percentage of non-empty stomachs containing 

 empty non-empty F Cr F+Cr C 
1 15 14 92.9 57.1 0.0 50.0 
2 18 27 92.6 40.7 7.4 40.7 
3 1 4 100.0 0.0 0.0 0.0 
4 1 1 100.0 0.0 0.0 0.0 
5 14 12 100.0 0.0 0.0 0.0 
       

Total 49 58 94.8 32.8 3.4 31.0 
 

(3c) Season n Percentage of non-empty stomachs containing 
 empty non-empty F Cr F+Cr C 
Spring    (05/99) 17 30 93.3 60.0 56.7 3.3 
Summer (08/99) 12 8 87.5 12.5 12.5 12.5 
Autumn (11/99) 7 13 100.0 0.0 0.0 0.0 
Winter   (03/00) 13 7 100.0 0.0 0.0 0.0 
       
Total 49 58 94.8 32.8 31.0 3.4 

 
Of the 107 stomachs analysed, 46 % (n = 49) were found to be empty. Of the stomachs containing 

prey remains (n = 58), the majority (83 %; n = 48) contained only small traces of food (stomach 

fullness 1, Chapter 2). Only ten specimens were recorded with stomachs half or three quarters full. 
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Empty stomachs occurred less frequently in spring and autumn, although differences to the 

remaining seasons turned out not to be significant. No significant relationship was found between 

stomach emptiness and sex, maturity or size class.  

Of animals with food in their stomach, 69 % (n = 40) contained a single prey type. Except for three 

stomachs in which only crustacean or cephalopod remains were found, the term “single prey” is 

indicative of teleost remains. The remaining “non-empty” stomachs (n = 18) contained multiple 

prey items, which were primarily found in squid of smaller sizes and lower maturity stages (Table 3 

a,b). Because more than one prey category was present, in these cases the sum of the percent 

occurrences exceeds 100 %. The majority of prey remains were not identifiable to species or genus 

but only to family. Prey identified for samples of L. forbesi are listed in Table 4.  

 

The most frequently identified fish were gadoid species such as Trisopterus sp. and silvery pout 

(Gadiculus argenteus), and gobiid species such as transparent goby (Aphia minuta). Many samples 

contained numerous very small prey remains. Identification of these remains was impeded by their 

less distinctive and more fragile structures.  Therefore fish prey found in 52 % (n = 30) of non-

empty stomachs remained unidentified.  

 

Based on mandible and telson morphology, three families of crustaceans could be identified. Most 

crustacean prey belonged to decapod or euphausiid species and one copepod of the order Calanoida 

was found. Many remains though were too fragmented to allow identification other than 

“crustacean”.  

 

Cephalopod prey were identified through the presence of suckers and skin in stomach remains but, 

since no beaks were found, no further identification was possible. Insect remains were found in one 

stomach but, due to the small number, these were excluded from the statistical analysis. Significant 

seasonal differences were observed in the occurrence of prey species (p < 0.05). Gadid species were 

more important in the diet during winter and spring and were less frequently found in stomachs 

collected in summer and autumn. Gobids and clupeids were found only in stomachs collected in 

spring and autumn respectively. Crustacean prey seemed to be restricted to spring and summer 

months, with decapods only found in spring. Prey species variation seemed to be highest in spring. 
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Owing to the difficulty in identifying prey remains, the importance of certain prey species might 

have been under- or overestimated. 

 
 

Table 4: Prey of L. forbesi from Scottish waters Shown are frequencies of  
occurrence (%) of prey in non-empty stomachs per season. 
Prey Spring Summer Autumn Winter 
 n = 30 n =8 n = 13 n = 7 
 Frequency  
     
Family Clupeidae     
    Clupea harengus   15.4  
Family Gadidae     
    Trisopterus spp. 10.0  7.7  
    Gadiculus argenteus   15.4  
    Unidentified Gadidae 40.0 12.5  42.9 
Family Gobiidae     
   Aphia minuta 10.0    
   Unidentified Gobiidae 33.3    
Flatfish 10.0    
Unidentified fish 40.0 75.0 61.5 57.1 
Total Fish 93.3 87.5 100.0 100.0 
     
Class Copepoda     
Order Calanoida 3.3    
Order Euphausiacea 3.3 12.5   
Order Decapoda     
   Pandalidae  3.3    
Unidentified Decapoda 3.3    
Unidentified Crustacea 46.7    
Total Crustacea 60.0 12.5   
     
Total Cephalopoda 3.3 12.5   
     
Nematoda 3.3  15.4 28.6 
Insecta 3.3    

 
 
 
 
Squid fatty acid profiles 
 
 

There was significant variation in the majority of fatty acids in digestive gland samples (18:0, 

18:1*, 18:3n-3 and 20:1* p < 0.05, all other FA p < 0.01) between size classes (Fig. 3a,b). Squid of 
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mantle length ≤ 150 tended to show higher amounts of saturated fatty acids 16:0, 18:0 and PUFAs 

20:5n-3 and 22:6n-3 in digestive gland tissue. In contrast bigger animals (> 150 mm) showed 

significantly higher amounts of saturated 14:0, all monounsaturates, PUFAs of the linoleic family 

(C18) and PUFA 22:5n-3.   

 

Comparing fatty acid signatures of squid by maturity stage, statistical analysis showed that 

digestive gland tissue of less mature squid (maturity stage 1) showed lower proportions of saturated 

fatty acids 14:0, 16:0, monounsaturates 16:1n-7, 20:1*, 22:1n-11  and PUFAs of the linoleic family 

as well as PUFA 22:5n-3 (Fig 4 a,b).  

 

3a.) 

 
 

3b.) 

Figure 3 a, b.: Normalised area percentage (% NA) of a) major and b) minor fatty acids (< 5 %) in digestive 
gland tissue of L. forbesi. Shown are means per size class (dorsal mantle length, mm) + standard deviation. 
Legend: numbers in parenthesis indicate number of squid per group. 
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4a.) 

 

4b.) 

Figure 4 a, b.: Normalised area percentages (NA%) of a) major and b) minor abundant fatty acids (< 5 %) in 
digestive gland tissue of L. forbesi. Shown are means per maturity stage (1 and 2) + standard deviation. 
Legend: numbers in parentheses indicate numbers of squid per group. 
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As found for smaller sized animals, squid of lower maturity stages were characterised by high 

proportions of PUFAs 20:5n-3 and 22:6n-3 in their digestive gland tissue. In muscle samples, only 

saturated fatty acid 18:0 showed a significant variation in proportion, with bigger (p < 0.05) and 

more mature animals storing higher concentrations in their tissue. In muscle tissue squid of maturity 

stage 1 showed significantly lower amounts of saturated fatty acid 18:0 (p < 0.01).  

 

 

Fatty acid profiles of putative prey species 

 

All fatty acids were significantly different between prey species (p < 0.01 for all FAs). The most 

prominent differences were found for fatty acids 14:0, 18:1*, 20:1*, 18:4n-3, 20:5n-3 and 22:6 n-3 

(Table 7). 

 

Clupea harengus and Ammodytes sp. showed comparatively high levels of saturated fatty acid 14:0 

monounsaturates 20:1* and 22:1n-11 and PUFAs of the linolenic family. Proportions of saturated 

fatty acid 16:0 and PUFAs 20:5n-3 and 22:6n-3 were lower than in any of the other species 
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examined. Argentina silus and T. trachurus were close in fatty acid signature and mainly separated 

by greatly differing proportions of monounsaturates 18:1*, 20:1* and 22:1n-11 and PUFA 22:6n-3.  

 

Gadid and flatfish fish showed similar fatty acid signatures and were separated from other fish 

species mainly by their low levels of saturated 14:0 and monounsaturates 20:1* and 22:1n-11. The 

main difference between flatfish and gadid species was based on significantly higher levels in 

PUFAs 20:4n-6, 20.5n-3 and 22:5n-3 found in flatfish and higher proportions of PUFA 22:6n-3 

found in gadids. Variation in fatty acid profiles within Gadiformes and flatfish were mainly due to 

differences in minor fatty acids (with % NA < 5). Gadiculus sp. was significantly different to all 

other Gadiformes and showed fatty acid profiles rather similar to those of S. marinus. Both species 

shared large proportions of 20:1* and 22:1n-11 and relatively low proportions of highly unsaturated 

fatty acids. Fatty acid signatures of the crustacean Meganyctiphanes sp. were characterised by 

comparatively high proportions of PUFAs of the linoleic family (C18), PUFAs 20:5n-3 and 22:6n-

3, very low levels of saturates, and low levels of monounsaturates (except 18:1*). 

 

Table 7: Fatty acid profiles of putative prey species. Shown are the most abundant and dietary relevant fatty 
acids (expressed in normal area percentage) of each species ± standard deviation.  

 
C. harengus 

n = 10 
Ammodytes sp. 

n = 10 
A. silus 
n = 10 

Gadiculus sp.
n = 6 

G. morhua 
n = 9 

M. poutassou 
n = 10 

T. minutus 
n = 8 

Fatty acid        
14:0 8.2 ± 0.9 6.3 ± 0.6 4.9 ± 0.8 3.5 ± 0.8 0.6 ± 0.1 0.7 ± 0.1  0.8 ± 0.1
15:0 0.5 ± 0.0 0.4 ± 0.0 0.7 ± 0.1 0.3 ± 0.0 0.4 ± 0.1 0.3 ± 0.1  0.4 ± 0.0
16:0 13.5 ± 1.1 13.8 ± 1.2 17.9 ± 0.8 14.4 ± 1.5 18.4 ± 0.6 18.6 ± 1.2 19.6 ± 0.4
16:1n-7 4.3 ± 0.6 5.2 ± 1.0 2.4 ± 1.1 2.8 ± 0.5 1.3 ± 0.2 1.1 ± 0.1 1.2 ± 0.1
18:0 1.1 ± 0.2 1.6 ± 0.1 4.8 ± 0.4 3.1 ± 0.3 4.2 ± 0.3 4.4 ± 0.3 4.8 ± 0.1
18:1* 9.0 ± 1.6 6.7 ± 0.8 24.9 ± 4.1 9.7 ± 0.8 10.7 ± 0.5 13.0 ± 1.1 10.2 ± 0.9
18:2n-6 1.6 ± 0.2 2.1 ± 0.4 0.9 ± 0.1 1.2 ± 0.1 0.5 ± 0.1 1.1 ± 0.1 0.7 ± 0.1
18:3n-3 1.3 ± 0.2 1.6 ± 0.2 0.6 ± 0.1 0.8 ± 0.1 0.3 ± 0.1 0.3 ± 0.1 0.3 ± 0.0
18:4n-3 3.8 ± 0.7 5.3 ± 0.5 0.9 ± 0.2 2.6 ± 0.5 0.4 ± 0.1 0.3 ± 0.2 0.4 ± 0.1
20:1* 13.0 ± 2.1 11.4 ± 1.2 8.0 ± 1.0 9.9 ± 2.4 0.7 ± 0.4 1.3 ± 0.2 1.4 ± 0.3
20:4n-6 0.6 ± 0.1 0.6 ± 0.0 1.2 ± 0.1 1.1 ± 0.2 5.0 ± 1.5 2.3 ± 0.5 2.8 ± 0.5
20:5n-3 7.5 ± 1.1 9.9 ± 0.8 6.1 ± 0.6 8.7 ± 1.1 16.7 ± 1.6 10.8 ± 2.4 14.4 ± 1.4
22:1n-11 20.7 ± 2.4 19.0 ± 1.6 7.1 ± 2.3 14.6 ± 3.4 0.1 ± 0.1 0.6 ± 0.2 0.5 ± 0.1
22:5n-3 0.8 ± 0.1 0.7 ± 0.0 2.1 ± 0.4 0.9 ± 0.1 2.3 ± 1.1 1.3 ± 0.2 1.9 ± 0.2
22:6n-3 10.8 ± 1.8 11.0 ± 0.7 14.4 ± 2.8 23.5 ± 4.1 36.7 ± 2.5 41.9 ± 3.4 38.6 ± 2.9
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Table 7 
continued 

S. marinus 
n = 8 

L. whiffiagonis 
n = 7 

L. limanda 
N = 4 

T. trachurus 
n = 10 

Meganyctiphanes sp. 
n = 10 

Fatty acid           
14:0 3.9 ± 1.1 1.0 ± 0.2 1.5 ± 0.8 4.5 ± 0.9 1.5 ± 0.2 
15:0 0.3 ± 0.0 0.6 ± 0.1 0.5 ± 0.0 0.7 ± 0.1 1.3 ± 0.2 
16:0 15.9 ± 1.8 22.4 ± 1.0 18.7 ± 2.8 19.3 ± 0.6 8.3 ± 0.8 
16:1n-7 3.4 ± 0.7 1.5 ± 0.1 3.5 ± 0.9 1.9 ± 0.3 5.1 ± 0.5 
18:0 3.7 ± 0.5 5.6 ± 0.3 6.0 ± 0.8 6.3 ± 0.4 2.1 ± 0.2 
18:1* 9.6 ± 2.4 8.0 ± 0.7 10.8 ± 1.7 10.0 ± 1.6 27.9 ± 2.6 
18:2n-6 1.6 ± 0.1 0.8 ± 0.1 1.2 ± 0.4 1.8 ± 0.2 1.8 ± 0.1 
18:3n-3 0.8 ± 0.2 0.2 ± 0.0 0.4 ± 0.3 1.1 ± 0.2 1.6 ± 1.1 
18:4n-3 1.8 ± 0.7 0.2 ± 0.0 0.5 ± 0.3 3.2 ± 0.7 3.2 ± 0.3 
20:1* 9.2 ± 2.3 1.2 ± 0.2 2.2 ± 0.2 0.5 ± 0.2 3.1 ± 0.7 
20:4n-6 1.6 ± 0.5 7.9 ± 1.7 5.9 ± 1.5 0.7 ± 0.1 1.1 ± 0.1 
20:5n-3 11.3 ± 2.1 17.9 ± 1.6 19.3 ± 4.1 9.1 ± 0.3 11.3 ± 0.5 
22:1n-11 9.7 ± 3.8 0.2 ± 0.1 0.4 ± 0.2 0.1 ± 0.1 1.1 ± 0.3 
22:5n-3 1.2 ± 0.2 4.5 ± 0.6 2.7 ± 0.7 1.2 ± 0.1 0.7 ± 0.1 
22:6n-3 22.7 ± 5.6 26.7 ± 2.6 23.3 ± 3.3 36.2 ± 2.7 26.3 ± 2.2 
   

Comparison of squid and prey 

 

Principal component analysis clearly showed groupings in prey species as well as some similarities 

between squid and prey (Fig. 6a). Fatty acid profiles of squid muscle tissue were clearly 

distinguishable from all prey species. The first principle component, which accounted for 49.8 % of 

variance in the data, separated squid tissue from all species but gadids (G. morhua, T. minutus and 

M. poutassou) and flatfish (L. limanda and L. whiffiagonis). The biggest distance between squid and 

prey fatty acid signatures was found for C. harengus, Ammodytes sp. and the euphausiid crustacean 

Meganyctiphanes sp.  

 

Separation along the first principle component axis was mainly due to saturates 16:0 and 18:0 and 

the major PUFAs 20:5n-3 and 22:6n-3. Fatty acid signatures of gadid and flatfish muscle were the 

closest, in levels of the saturates 16:0 and 18:0 and the major PUFAs 20:5n-3 and 22:6n-3 to muscle 

tissue of L. forbesi. The second principle component (PC2), which accounted for 19.2 % of 

variation in the data, separated squid muscle tissue from all prey species but C. harengus and 

Ammodytes sp. Separation here was mainly due to fatty acids 14:0, 20:1* and 22:1*, similar levels 

of which both C. harengus and Ammodytes sp. shared with muscle tissue of L. forbesi.  

High variation between digestive gland samples caused increased separation as demonstrated 

through PC1 (50.8 %) (Fig. 6b). 
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6b.) 

 
Figure 6a,b: PCA of fatty acid signatures of L. forbesi (by size class) 
and putative prey species. Encircled data indicate results found for L. 
forbesi muscle (6a) and digestive gland tissue (6b). 
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Fatty acid signatures of digestive gland tissue showed more similarities to fatty acid signatures of 

prey species than found for muscle tissue. The majority of digestive gland samples were close to 

gadid and flatfish species in their fatty acid profiles. However, with increasing size of the squid the 

digestive gland samples showed similarities in fatty acid signatures with Gadiculus sp., T. 

trachurus, S. marinus and A. silus (PC 1). These similarities between squid and fish related to high 
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levels of saturate 16:0, monounsaturate 22:1n-11, and PUFAs of the linoleic family (C18). Further 

separation along PC 2 (17.3 %) was mainly due to fatty acids 15:0 and 18:1*, levels of which were 

(as for muscle) similar between bigger sized squid and the pelagic fish species.The strongest 

separation from squid tissue was still found for C harengus, Ammodytes sp. and Megayctiphanes sp.  

 

Quantitative fatty acid analysis 

ata for a number of selected fatty acids (n = 17) of muscle and digestive gland tissue samples were 

he composition of the predicted diet was different for squid of different sizes and maturity stages 

able 8 a,b: Prey composition in a.) digestive gland and b.) muscle tissue of L. forbesi  as 
dual 

arengus Ammodytes sp. A. silus Gadiculus sp. G. morhua 

 

D

run against data on prey fatty acids and best fit predicted prey composition determined for each 

squid specimen. Results presented are based on an average of the first twenty best fit scenarios (out 

of 104 combinations tested). 

 

T

in digestive gland tissue. With increasing size of the predator, the proportions of the flatfish and 

gadid species decreased and species such as argentine, redfish, herring and sandeel seemed to 

contribute more to the diet (Table 8a,b). More variation was found for data from muscle samples, 

with less pronounced changes in estimated diet with increasing size of the squid.  Only horse 

mackerel and redfish showed a clear increase in predicted proportion with predator size. Sample 

sets for the bigger sized animals were however comparatively small (151 – 180 mm, n = 3, 181 – 

210 mm, n = 1) and changes could therefore be under – or overestimated.  

 

T
determined by quantitative fatty acid analysis. Shown are average percentage results for indivi
samples based on the first 20 best-fit scenarios grouped by size and maturity stage, including 
group mean and standard deviation. 
 
Digestive gland n C. h

Size classes (mm)     
91 - 120 8 0.0 ± 0.0 0.2 ± 0.6 0.  0 ± 0.0 0.1 ± 0.4 7.6 ± 2.8 

121 – 150 27 0.8 ± 2.8 2.2 ± 5.2 0.6 ± 1.6 0.6 ± 1.2 7.1 ± 4.5 
151 – 180 3 3.7 ± 2.4 11.0 ± 8.8 7.1 ± 8.1 1.7 ± 2.0 3.0 ± 4.5 
181 - 210 1 7.3 ± 0.0 15.2 ± 0.0 0.0 ± 0.0 3.8 ± 0.0 0.7 ± 0.0 

         
Maturity stages         

1 26 0.0  0.0 0.6  1.9 0.6  1.6 0.5  1.1 7.5  3.4  ± ± ± ±  ±
2 13 3.2 ± 4.1 7.2 ± 8.2 1.7 ± 4.5 1.0 ± 1.6 5.1 ± 5.6 
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Table 8a continued 
igestive gland n M. poutassou T. minutus S. marinus L. whiffiagonis L. limanda T. trachurus D
Size classes  

(mm)     
        

91 - 120 8 0.0 ± 0.0 7.4 ± 2.4 4.8  3.8 32.4  7.5 45.9  4.8 6  1.8 ± ± ± 1. ±
121 – 150 27 0.0  0.0 8.5  6.6 8.7 9.0 25.6 10.1 44.7 5.8 1.3 1.6  ±  ± ± ± ± ± 
151 – 180 3 0.4 ± 0.7 1.8 ± 3.1 15.7 ± 6.6 11.3 ± 8.9 44.4 ± 4.8 0.0 ± 0.0 
181 - 210 1 0.0 ± 0.0 0.0 ± 0.0 29.7 ± 0.0 7.5 ± 0.0 35.8 ± 0.0 0.0 ± 0.0 

           
Maturity stages           

1 2  0.0  0.0 8.3  4.8 6.3  6.6 29.2  8.4 45.6  5.3 1.4  1.8 6  ±  ± ± ±  ± ±
2 1  0.1  0.3 6.1  8.0 14.3 10.7 17.8  11.5 42.8  5.9 0.8  1.0 3  ±  ± ± ±  ± ±

 
 

able 8b 
Muscle n Ammodytes sp. Gadiculus sp. G. morhua M. poutassou T. minutus 

T

Size classes (mm)     
91 - 120 8 0.0 ± 0.0 4.0 ± 1.9 10.9 ± 4.7 4.0 ± 1.9 3  9.1 ± 11.2

121 – 150 27 0.0 ± 0.0 4.9 ± 2.4 12.9 ± 2.2 4.9 ± 2.4 41.8 ± 5.1  
151 – 180 3 0.2 ± 0.4 3.7 ± 4.0 5.3 ± 3.0 3.7 ± 4.0 30.0 ± 18.8 
181 - 210 1 0.0 ± 0.0 4.6 ± 0.0 11.4 ± 0.0 4.6 ± 0.0 45.1 ± 0.0 

        
Maturity stages        

1 26 0.0 0.0 4.8 2.1 13.0 2.5 4.8 2.1 42.1 .6  ± ± ± ± 4
2 13 0.1  0.2 4.4  2.8 9.7  4.2 4.4  2.8 37.1 2.7  ± ± ± ± 1

 
 

able 8b continued 
Muscle n S. marinus L. whiffiagonis L. limanda T. trachurus

T

Size classes (mm)          
91 - 120 8 0.5 ± 1.3 30.9 ± 8.7 3.7 ± 9.8 10.8 ± 5.2

121 – 150 27 .8  3.2 .0  4.9 .3  0.6 1.2  3.90 ± 28 ± 0 ± 1 ±
1   51 – 180 3 4.0 ± 7.0 37.0 ± 10.6 8.2 ± 13.4 11.4 ± 6.0
181 - 210 1 0.0 ± 0.0 26.9 ± 0.0 0.0 ± 0.0 11.9 ± 0.0

          
Maturity stages          

1 26 0.2 1.1 28.6 4.8 .3 0.7 1.0 3.8 ±  ± 0 ± 1 ± 
2 13 2.4  5.2 30.7  9.2 .1  9.7 1.6  4.9 ±  ± 4 ± 1 ±
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Stable isotope analysis 

average 4 ‰ more depleted than in digestive 

land tissue (-20.5 ± 1.5 ‰). Season was the only factor influencing δ 13C levels in digestive gland 

maturity stages 1 and 2, had muscle tissue that 

as more depleted in δ 13C than did squid of larger sizes and maturity stages. On a seasonal basis δ 

 digestive gland tissue showed similar mean δ 15N ratios (muscle 8.6 ± 1.7 ‰, 

igestive gland 8.3 ± 1.5 ‰).  Within tissues both muscle and digestive gland showed significant 

owed 

ignificantly lower values in both muscle and digestive gland than squid of bigger mantle lengths. 

 

 

δ 13C abundance 

 

δ 13C ratios in muscle tissue (- 16.2 ± 1.4 ‰) were on 

g

tissue (Table 9). δ 13C values of muscle tissue on the other hand varied with size (p < 0.01), 

maturity (p < 0.05) and season (p < 0.01) (Table 9). 

 

Squid of smaller sizes and the majority of squid of 

w
13C ratios derived from muscle tissue fell into two groups: squid caught in winter and summer had 

similar values, implying feeding on similar carbon sources, as did squid caught in spring and 

autumn. Squid caught in spring were up to 3 ‰ more depleted in δ 13C than squid caught in 

summer. δ 13C levels in digestive gland tissue of samples from squid caught in the summer were 

more enriched in δ 13C compared to all other seasons.  

 

δ 15N abundance 

 

Overall muscle and

d

variation between size classes, maturity stages and seasons (all categories p < 0.01)(Table 9). 

 

When comparing δ 15N values for different size classes, squid smaller than 151 mm DML sh

s

In squid of lower maturity stages (1 and 2), tissues were more depleted in δ 15N than in higher (3 to 

5) maturity stages. Muscle and digestive gland δ 15N values were influenced by season, with squid 

caught in spring showing on average less enriched δ 15N values than squid caught in any other 

season. The biggest seasonal differences in δ 15N abundance were found between animals caught in 

winter and spring. δ 15N values for each tissue were similar for squid caught in summer and autumn. 
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Table 9: Isotopic composition of muscle and digestive gland tissue of  
L. forbesi. Given are mean abundances ± standard deviation for δ 13C and  
δ 15N per size class, maturity stage and season. 
 
  δ 13C δ 15N 
 n Digestive gland Muscle Digestive gland Muscle 

Size classes          

≤ 150 mm 0 -20.5 ± 1. 7.2 ± 1.1 6.2 ± 0. 7.1 ± 1.1 2 1 -1 9 

> 150 mm  -1 4 9  50 -20.5 ± 1.5 5.8 ± 1. 9.0 ± 0.8 .2 ± 1.4

Maturity stages          

1 15 -20.6 ± 0.9 -17.0 ± 1.0 6.2 ± 1.0 7.0 ± 0.9 

2 11 -20.5 ± 1.3 -16.6 ± 1.9 7.7 ± 1.2 7.9 ± 1.9 

3 5 -19.5 ± 1.0 -15.3 ± 1.2 8.8 ± 0.4 8.6 ± 0.5 

4 2 -20.0 0 -14.1 8 8.7 0 9.2 1 ± 0. ± 0.  ± 0.  ± 0.

5 37 -20.6 ± 1.6 -16.0 ± 1.3 9.1 ± 0.9 9.5 ± 1.4 

Season          

Wi er 16 nt -20.5 ± 1.3 -15.8 ± 1.0 9.7 ± 0.8 9.9 ± 0.9 

Spri g n 19 -20.7 ± 0.8 -17.5 ± 1.0 6.1 ± 0.7 6.9 ± 0.9 

Summer 20 -19.6 ± 0.7 -14.9 ± 1.2 8.7 ± 0.5 8.8 ± 1.1 

Autumn 15 -21.2 ± 2.0 -16.9 ± 0.8 8.7 ± 0.7 9.2 ± 1.9 

Stomach contents          

E  -2 80.2 ± 1.2 -16.1 ± 1.3 .4 ± 1.5 8.6 ± 1.6 

C  -1 88.9 ± 0.0 -14.4 ± 0.0 .6 ± 0.0 8.9 ± 0.0 

Cr  -2 60.1 ± 0.0 -16.9 ± 0.0 .2 ± 0.0 7.6 ± 0.0 

F  -21.0 ± 1.6 -16.1 4 8.8 ± 1.1 9.3 7 ± 1.  ± 1.

FCr  -20.6 ± 0.9 -17.4 ± 1.5 6.4 ± 1.2 7.2 ± 1.1 

 

Comparison to prey species 

 

tomach contents 

nimals feeding on a mixed diet of fish and crustaceans (FCr) together with the specimen for which 

ains (Cr) were found in the stomach, showed more depleted δ 13C ratios in their 

uscle tissue than the rest of the feeding groups. 

 

S

 

A

only crustacean rem

m
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Squid feeding on a mixed diet of fish and crustaceans (FCr) were found to have lower δ 15N ratios 

than animals for which no prey (E) or only fish remains (F) were found in the stomach (Table 9).  

The two specimens that had only crustacean or cephalopod remains in the stomachs showed δ 15N 

tios similar to those found for squid feeding on a mixed or fish diet respectively. Due to lower 

nalysed for stable isotope profiles only M. poutassou, Gadiculus sp., G. morhua, 

. aeglefinus, L. limanda and L. whiffiagonis were of relevance as putative prey to species L. 

b). 

mn, digestive gland tissue was always enriched, by at least 1 ‰ and up to 7 ‰, 

 13C relative to any of the prey species (Fig. 7a,b). 

, M. aeglefinus, L. limanda and L. 

hiffiagonis were on average enriched relative to squid tissues. However, due to high variation in 

ra

within-group variation, differences between groups were more pronounced in results from the 

digestive gland. 

 

Putative prey  

 

Of prey species a

M

forbesi (Fig. 7a,

 

δ 13C ratios of squid muscle tissue were either similar to prey species or less enriched by 1-2 ‰. 

Significant differences in δ 13C were only found between L. forbesi and G. morhua. Apart from one 

sample taken in autu

δ

 

δ 15N abundance in squid tissues (both muscle and digestive gland) was significantly different from 

values in prey species (p < 0.01) (Fig. 7a,b). On average squid tissue was enriched in δ 15N relative 

to pelagic species Gadiculus sp. and M. poutassou. Gadus morhua

w

values for muscle tissue it was not possible to distinguish between seasons in relation to possible 

food preferences. Squid smaller than 150mm DML (collected in spring), showed similar or lower 

15N values when compared to pelagic fish species M. poutassou and Gadiculus sp. 
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Figure 7a,b: Nitrogen (δ 15N) and carbon (δ 13C) stable isotopes of L. forbesi muscle (a) and digestive gland (b) and 
putative prey species. LF/M = L. forbesi muscle, LF/DG = L. forbesi digestive gland tissue. 
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Discussion 
 
Stomach contents, fatty acid profiles and stable isotope signatures varied considerably between 

squid sizes, seasons and areas studied, demonstrating that L. forbesi does exploit a wide spectrum of 

prey across its distribution and life cycle.  

 

Stomach content analysis 

 

Stomach content analysis clearly indicated that the diet of L. forbesi changes from a diet containing 

high proportions of crustacean prey in small juvenile specimens to a more fish-dominated diet in 

squid of bigger sizes. These ontogenetic shifts in diet are known for many squid species (e.g. 

Rodhouse & Nigmatullin, 1996) and have also been found in previous feeding studies of L. forbesi  

(e.g. Ngoile, 1987, Rocha et al., Collins & Pierce, 1996). Loligo forbesi is considered to be a 

primarily piscivorous species (e.g. Collins et al., 1994, Pierce et al., 1994b), which agrees with 

current findings that in squid of all seasons and sizes present, fish was always the predominant prey 

type (67 – 100 % FO). Although squid tend to feed on larger prey with increasing mantle length, 

bigger squid still consume small prey throughout their life cycle (e.g. Collins & Pierce, 1996).  
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The prey species composition in the present study was broadly similar to diets previously found for 

L. forbesi in Scottish and Irish waters (Pierce et al., 1994, Collins et al., 1994, Collins & Pierce 

1996). Prey composition changed from a more variable diet in spring dominated by gadid and 

gobiid species to a less varied diet with decreasing proportions of gadids over the summer and 

autumn and the presence of clupeids in autumn in the diet. Due to its short life cycle of just over 

one year, squid size and maturity are strongly linked to season. Seasonal variation found in the diet 

composition is therefore most likely a function of ontogenetic shifts in the diet.  

 

Ngoile (1987) and Pierce et al. (1994b) found that, next to gadid species, ammodytid species 

(sandeel) played an important part in the diet of L. forbesi in Scottish waters. No sandeels were 

identified from stomach remains in specimen of L. forbesi in this study. Due to the scarcity of 

otoliths and the high level of fragmentation of stomach remains a big proportion of fish remained 

unidentified and thus the presence of sandeel in the diet could have been missed. The small sample 

size analysed and prey availability for each season might also have had an influence on the 

distribution of results.  

 

Of crustacean species identified in this study, euphausiids comprised the biggest proportion in the 

diet. If identified, crustacean prey in previous studies usually belonged to euphausiid and decapod 

families (Collins et al., 1994, Pierce et al., 1994b, Pierce & Santos, 1996). Cannibalism and 

predation on other cephalopod species has previously been reported in L. forbesi (Ngoile, 1987, 

Rocha et al., 1993, Collins et al., 1994, Pierce et al., 1994b, Pierce & Santos, 1996). Although 

studies exist in Scottish waters where cephalopod prey was taken on a more frequent basis than 

found in this study, those data are localised and are likely due to the availability of prey in the area 

(Pierce et al., 1994b).  
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Fatty acids 

 

Fatty acid analysis of digestive gland tissue clearly indicated dietary differences between squid 

below and above 150 mm mantle length.  Increased levels of saturated and highly polyunsaturated 

fatty acids were found for squid of smaller size classes whereas higher levels of C18 PUFA and 

MUFA were characteristic for fatty acid signatures of bigger squid.  

 

There are significant differences as to the origin of these fatty acids. Large concentrations of PUFA 

20:5n-3 are typically found in diatom-based food webs and are usually elevated relative to 22:6n-3 

in herbivorous and benthic higher trophic levels. In contrast, high proportions of 22:6n-3 mostly 

derive from food chains based on dinoflagellates and are found in higher proportions in marine 

omnivorous and carnivorous animals (Sargent & Whittle, 1981). Both elevated levels of C18 PUFA 

and monounsaturates, are typical for pelagic food webs. C18 PUFA usually originate from 

phytoplankton and can reach high relative proportions in wax esters of copepods and their predators 

(Sargent, 1976). Monounsaturates (MUFA) C20:1 and C22:1 on the other hand are biosynthesised 

by calanoid copepod species and abundant in the alcohols of their wax esters (Lee et al., 1971). 

Higher trophic levels rich in these MUFAs (e.g. C. harengus, Ammodytes sp., Meganyctiphanes 

norvegica), are thought to assimilate fatty alcohols from the wax esters of their prey and directly 

convert them into fatty acids (Ratnayake & Ackman, 1979, Falk-Petersen et al., 1982). Although 

generally found in small proportions in marine organisms, saturated fatty acid 18:0 can be elevated 

in benthic feeders since marine detritus contains substantial quantities of saturated fatty acids 

between 14 and 18 carbon chain length (Perry et al., 1979). 

 

Accepting the general assumption that fatty acids stored in digestive gland tissue are mainly of 

dietary origin rather than being biosynthesised (Blanchier & Boucaud-Camou, 1984, Clarke et al., 

1994, Semmens, 1998, 2002), the distribution of fatty acid proportions across size classes therefore 

indicates that smaller squid fed predominantly in benthic habitats whereas squid of larger sizes fed 

increasingly on prey of pelagic origin.  

 

As in previous feeding studies of L. forbesi the stomach remains found in this study showed an 

ontogenetic shift in the diet with changes from a crustacean dominated diet to a fish dominated diet 
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with increasing size of the squid. The overall scarcity of copepod remains agrees on the one hand 

with low proportions of MUFA in tissues of smaller squid and suggests that high levels of MUFA 

in bigger squid originate from copepod predators such as herring or sandeel rather than the 

crustacean itself. Crustacean species found in the stomachs, such as euphausiids and decapods can, 

depending on their habitat, have fatty acid signatures resembling demersal fish species high in 

PUFA and saturated fatty acids (Morris & Sargent, 1973). Thus the predominance of high 

proportions of PUFA and SAT over MUFA in smaller squid does not exclude the presence of 

crustaceans in the diet.  

 

Fatty acid profiles showed gradual differences between size classes, which is in concordance with 

findings of bigger squid still feeding on small proportions of crustaceans and smaller squid feeding 

on small fish species. Differences in fatty acid profiles do not directly indicate the change from a 

crustacean to a fish dominated diet but rather a difference between benthic and pelagic feeding. The 

swap from a more benthic to a more pelagic diet with increasing size might be due to squid of 

bigger sizes being faster and therefore able to catch faster prey (Macy, 1982).  

 

The fatty acid composition of muscle tissue remained largely unchanged with increasing mantle 

length and indicates a similar feeding history between size classes investigated in this study.  

 

Multivariate analysis grouped the majority of digestive gland samples close to demersal gadid and 

flatfish species. This agrees with results from stomach content analysis, where all identifiable 

remains belonged to demersal gadid and flatfish species, and suggests that demersal species were 

the main prey in recent feeding. However L. forbesi is known to take a wide variety of prey species 

and pelagic fish quite frequently are also part of the diet (Pierce et al., 1994b).  

 

Although not identified from stomach contents in spring samples PCA grouped pelagic and 

benthopelagic species M. poutassou, Gadiculus sp., T. trachurus, S. marinus and A. silus with part 

of the squid samples analysed. All of these prey species have previously been identified from 

stomach remains of L. forbesi in Scottish waters (Pierce et al., 1994b) even if in low frequencies. 

Results from fatty acid analysis suggest that these species might on a short-term local basis have 
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played an important part in the diet of L. forbesi collected in this study and emphasises the 

usefulness of fatty acids to support conventional stomach content analysis. 

 

Ammodytes sp. and C. harengus were not identified from stomach content and together with 

Meganyctiphanes sp. were grouped furthest away from squid fatty acid profiles in PCA. Although 

the analysis of individual fatty acids in squid tissues suggests a significant contribution of 

Ammodytes sp. or C. harengus these species were not identified from stomach content analysis and 

multivariate analysis (PCA) did not group them together with squid tissue samples. Fish species that 

store their lipids in the muscle tissue such as C. harengus, Ammodytes sp., T. trachurus and Sprattus 

sprattus (sprat) are subject to seasonal changes in their meat lipid deposits. A study on S. sprattus in 

British waters found that the proportions of saturates and MUFA increased and the proportion of 

PUFAs decreased as the season progressed (Hardy & Mackie, 1969). Therefore fish samples 

collected in the summer will likely have lower PUFA and higher saturates and MUFA levels in their 

tissues than the fish prey the squid samples in spring will have encountered. Digestive gland 

samples were separated from Ammodytes sp. and C. harengus only through the first principal 

component and the main separation factor was indeed the difference in highly polyunsaturated fatty 

acids. Euphausiid species in the North-east Atlantic are also subject to seasonal changes in their 

lipid storage (Morris, 1971). The separation between Meganyctiphanes sp. and squid tissues is 

likely due to species originating from different geographical areas and seasons and the unlikelihood 

of squid analysed in this study having encountered this species. 

 

Fatty acid signatures of muscle tissue were well separated from all putative prey species but as for 

digestive gland did show the least separation to demersal gadid and flatfish species (2nd PC). 

Proposing that diet will to a small but significant extent affect the fatty acid composition of muscle 

tissue this indicates that these squid fed predominantly on demersal species over an extended period 

of time which also supports the assumption of a predominantly benthic lifestyle of this squid 

species. 
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Quantitative fatty acid analysis 

 

The development of a statistical model using fatty acid data of predator and prey allowed us to 

quantitatively estimate the proportions of putative prey species in the diet of L. forbesi. 

 

As expected the predicted prey composition for muscle tissue was less varied than for the digestive 

gland due to smaller differences in fatty acid profiles within the muscle. As for the analysis of 

individual fatty acids the predicted diet did change from high proportions of  benthic species in the 

diet of smaller squid to a more pelagic oriented diet in squid of bigger sizes.  

 

Iverson et al. (2004) noted that, to be able to quantitatively estimate a predators’ diet, it is necessary 

to accurately differentiate between different prey fatty acid signatures, evaluate their variation due 

to environmental factors and understand how and if ingested fatty acids are deposited and 

metabolised in the predators’ tissue.  

 

The authors found that, the bigger the prey sample size and the more fatty acids were included into 

the analysis, the more representative their estimates were of the true diet, and that fits were better 

and more consistent where diet items were easily distinguished. By applying a calibration 

coefficient, which compensated for biomodification of fatty acids in the tissues results were further 

improved. This was also found in a feeding study on L. brevis (unpublished data), where through 

the application of a calibration coefficient the estimated diet reflected true prey considerably closer 

than when no calibration coefficient was used.  

 

It is currently not known to which extent fatty acids are deposited in the tissues of L. forbesi and no 

calibration coefficient could be established for this species. Diet was therefore estimated solely 

based on the use of prey fatty acid signatures without considering biochemical changes due to 

metabolic activity in the tissues.  

 

A general limitation to fatty acid analysis, is the similarity of prey fatty acid signatures, which also 

arose in this study. Results from stomach content analysis in previous studies showed that flatfish in 

contrast to gadids played only a minor part in the diet of L. forbesi. Quantitative analysis however 
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attributed flatfish a rather prominent contribution to the diet in muscle and digestive gland (30% 

and 75% respectively). This might to a small part be due to flatfish species generally being 

underestimated in stomach content analysis but is to the biggest part due to highly similar fatty acid 

signatures for demersal gadid and flatfish species. As shown in multivariate analysis these 

similarities also apply to fatty acid signatures of blue whiting and to a small extent to horse 

mackerel. A control analysis in which individual prey were designated as predators, and QFAA run, 

did also show that demersal gadid and flatfish species were the only species that were correctly 

identified through the model. The within-species variation in the remaining prey caused 

misidentification and subsequently led to prey species being under-represented in the predicted diet. 

Furthermore the variation in fatty acid signatures of squid tissue samples (mainly muscle) might not 

be big enough for the model to be able to find minor effects of other more different prey species. 

 

The model was however able to show trends in feeding with increasing size of the predator and did 

offer an estimate as to which ecosystem provided most of the squids’ diet. Even if no calibration 

coefficients can be established for this species, bias could be minimised in future applications by 

sampling more significantly different prey species, by sampling bigger numbers within these prey 

species to reduce within species variation and to eliminate environmental influences prey species 

should also be chosen from similar seasons and areas as the predator.  

 

Stable isotopes 

Both carbon and nitrogen analysis have demonstrated that L. forbesi shows ontogenetic and 

seasonal changes in feeding.  

 

Significant differences were found between δ 13C of muscle and digestive gland tissue with muscle 

showing carbon values always enriched by 4 ‰ relative to the digestive gland. Feeding studies on 

marine mammals and various invertebrate species have shown that the deposition of stable isotopes 

in the predators’ tissue is dependent on the turnover (i.e. metabolic activity) of the respective tissue 

and the selective incorporation of biochemical fractions such as proteins or lipids into these tissues 

(Hobson & Clark, 1992b, Pinnegar & Polunin, 1999). Tissues with a slower turnover (e.g. muscle) 

tend to integrate a range of isotope values with varying diets, whereas tissues with faster turnover 

(e.g. liver) tend to reflect the isotope content of the most recent diet (Tieszen et al., 1983). 
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Differences in turnover rates for carbon between different tissues were shown in a feeding study of 

squid Lolliguncula brevis (unpublished data), in which digestive gland showed quicker and higher 

turnover rates than muscle. The differences in ratios found between tissues in this study are 

therefore likely a function of different turnover rates. We would therefore expect that the stable 

isotope data gathered in this study will provide us with dietary information integrated over a longer 

period of time and data gained from the analysis of digestive gland tissue will provide us with 

information on diet most recently ingested.    

 

However compared to putative prey species analysed in this study carbon ratios of the digestive 

gland were always significantly depleted relative to the prey. Previous studies have shown that 

lipids are isotopically lighter in 13C compared to other biochemical fractions in the body and that 

lipid-rich tissues can therefore be depleted rather than enriched in 13C relative to the diet 

(McConnaughey & Mc Roy, 1979, Tieszen et al., 1983). Lipids were not removed prior to stable 

isotope analysis and since lipid is 13C poor the high lipid content typical for digestive gland tissue 

will have depleted carbon ratios. Carbon ratios were therefore of limited use in this study for the 

interpretation of trophic relations regarding the influence of individual prey species on the diet but 

the data could be applied to detect general trends such as the impact of seasonal and ontogenetic 

changes in feeding on the diet. However the extraction of lipids as a precaution has to be considered 

carefully since the removal of lipids can result in greater variance of the data and thus poorer 

resolution of dietary relationships (Pinnegar & Polunin, 1999).  

 

Stomach content analysis for cephalopods in general, and for L. forbesi in this and previous studies, 

has shown that the prey species consumed by cephalopods vary seasonally with changing foraging 

locations, seasonal prey availability and changes in feeding due to cephalopod size (e.g. Nixon, 

1987, Pierce et al., 1994b, Collins & Pierce, 1996 Rodhouse & Nigmatullin, 1996). The isotopic 

distribution across seasons showed summer samples to be significantly enriched to all other seasons 

with the most depleted ratios found within autumn and winter samples. However both winter and 

autumn showed also a wide range of values within seasons. Primary production in the North East 

Atlantic is highest during spring and summer. A study on the temporal variations of carbon ratios in 

particulate organic matter (POM) in the Southern North Sea found a similar seasonal trend in 

carbon ratios to this study and suggested that due to the fact that algae preferably use isotopically 
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light DIC (dissolved inorganic carbon) the organic matter synthesized by these algae can also 

become isotopically enriched and this enrichment will then be carried along the food chain (Megens 

et al., 2001). The relative high enrichment in summer and spring samples could therefore been 

caused by phytoplankton blooms offering enriched carbon to higher trophic levels in these seasons. 

Since L. forbesi is a short-lived species of approximately one year its growth is closely linked to 

season. Therefore the high variation within autumn and winter samples is likely due to bigger sized 

squid feeding on a bigger variety of prey and thus carbon sources. This would also explain the 

relative enrichment of some bigger squid from winter samples compared to smaller squid collected 

in spring. 

 

Apart from feeding on a wider variety of prey with increasing size L. forbesi is also known to move 

offshore during summer and autumn and return to coastal areas in winter and spring for spawning 

purposes (Pierce et al., 1994b). More depleted carbon ratios are usually associated with offshore 

and pelagic habitats whereas coastal and benthic ecosystems show comparatively less depleted 

carbon ratios (Hobson, 1993, Hobson et al., 1994). The majority of squid in the winter did show 

less depleted carbon ratios which suggests coastal, more benthic feeding. The more depleted ratios 

in autumn on the other hand suggest more pelagic feeding, which is supported by the fact that 

stomach contents analysed from this season were the only ones containing remains of pelagic fish 

species.  

 

Muscle tissue showed similar trends in the distribution of carbon ratios across sizes and seasons, the 

differences to digestive gland tissue being apparent in a bigger variation in 13C within seasons and 

the shift of autumn samples to more enriched values in relation to the other seasons.  This suggests 

that the long-term effect on the diet is dominated by ontogenetic differences in feeding with bigger 

squid taking bigger prey further removed from the carbon source. The distribution of carbon ratios 

across seasons and sizes demonstrates the omnivorous feeding behaviour of L. forbesi.  

 

Comparing carbon ratios of squid to stomach contents, carbon ratios followed the trend of being 

more depleted in specimens that had crustacean remains in their stomachs than squid containing fish 

or no remains in their stomachs. Across the seasons samples taken in autumn showed less depleted 

values only to pelagic small gadid species M. poutassou and Gadiculus sp. Summer and winter 
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samples were the only squid showing carbon ratios close to demersal gadid and flatfish species thus 

confirming previously found trends in feeding across the seasons.  

 

Again as for carbon different fractionation factors are usually found between tissues as nitrogen 

deposition depends on protein levels in the diet and metabolic activity of the tissue (Owen, 1987). 

Feeding studies on marine mammals and birds did show that different tissues had different 

fractionation factors depending on the diet with fractionation being higher for tissues of higher 

metabolic activity (DeNiro & Epstein, 1981, Tieszen et al., 1983). A feeding study on rainbow trout 

found liver to be slightly less enriched relative to the diet than muscle and the authors considered 

the difference in structural amino acids between tissues to be responsible for these differences 

(Pinnegar & Polunin, 1999). Since the muscle tissue of squid species is high in structural proteins 

compared to predominantly dietary proteins in the digestive gland (Kunisaki, 2000), the relative 

higher enrichment of 0.6 ± 1.4 ‰ compared to digestive gland tissue is also likely due to 

differences in protein storage between tissues.  

 

The reconstruction of trophic pathways through stable isotope analysis has in many field studies 

been based on the generalisation that a nitrogen fractionation of 3.4 ‰ occurs with every step in the 

food chain. Many feeding studies however found that these enrichments can vary considerably 

within one species and that especially in food webs with different nitrogen sources and high 

occurrence of omnivory the separation into individual species contributing to a diet will be difficult 

(Adams & Sterner, 2000, Post, 2002). 

 

Post (2002) also noted that the mean trophic fractionation of 3.4 ‰ is a valid approximation of 

trophic fractionation only when applied to entire food webs, involving multiple trophic pathways 

and many species. Since prey data was limited to only a few species in this study and no source data 

was available, no fractionation factor relating to trophic levels could be established for L. forbesi 

and information gathered on the feeding over different trophic levels must be limited to 

investigating the contribution of benthic and pelagic and offshore and coastal species to the diet.  

 

Differences in nitrogen ratios were mainly found with increasing body size in and were less 

pronounced between seasons. Increases in 15N with increasing weight or size and therefore trophic 
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position have previously been found for fish and have been attributed to changes in prey type and 

size of prey with increasing body size of the predator (Jennings, 2002). The feeding study on L. 

brevis (unpublished data) did also show that feeding on a species of lower calorific value and lower 

trophic level in squid will result in lower trophic level of the predator tissue. Therefore changes 

with increasing size found for L. forbesi are likely due to feeding on different and more varied 

trophic levels with increasing body size.  

 

Clear seasonal separation in nitrogen ratios of the muscle was only found between spring and winter 

with 15N being considerably enriched in winter samples. Unsurprisingly considering the 

development of squid across the seasons, winter samples consisted mainly of big pre-spawning 

squid whereas spring samples comprised mostly juvenile small squid. Higher nitrogen ratios in 

winter samples therefore are indicative of feeding on a higher trophic level in bigger squid.  

 

The considerable variation found for nitrogen ratios over all seasons in muscle tissue suggests that 

long-term feeding is varied in this species and supports previously discussed findings of 

omnivorous feeding in this species. Also previous results on bigger squid feeding on a wider variety 

of prey are supported by the fact that isotopic variation is more pronounced for squid bigger than 

150 mm than for smaller squid.  

 

The same trends are found for recent diet (i.e. digestive gland) with smaller squid feeding on prey 

of lower trophic levels and squid taken from the spring sample showing the lowest nitrogen ratios. 

Variation is also much lower within size classes and seasons which suggests that most recent 

feeding, although still varied, is more selective and that muscle tissue retains a more mixed isotopic 

memory of previous diets integrated over a longer period of time.   

 

Big carnivorous fish (G. morhua and M. aeglefinus) and benthic feeders (flatfish) analysed in this 

study showed higher nitrogen ratios than more pelagic offshore species such as M. poutassou and 

Gadiculus sp. The similarity of nitrogen ratios for big gadids and flatfish suggest that although big 

squid might not feed on these species directly they feed on the same trophic level as piscivorous 

fish. Small squid were similar in nitrogen ratios to small pelagic gadids although hardly ever 

enriched relative to these fish indicating feeding on prey of lower trophic levels in general and 
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possibly the same type of prey these small gadids feed.  Although absolute values between studies 

are difficult to compare due to differences in methodology general trends can still be evaluated. 

Jennings et al. (2002), in a study on links between size and trophic level through isotope analysis, 

also found L. forbesi linked to benthic feeding. 

  

As squid grew, dietary changes were observed in stomach contents involving increased importance 

of fish in the diet. These changes were reflected in increases in 15N in squid showing predominantly 

fish remains in their stomachs. 15N of squid with no food in their stomachs followed the same trend, 

which suggests that for these specimens fish was also the main prey.  

 

Conclusions 

 

Stomach content data, fatty acid analysis and stable isotope analysis indicated that L. forbesi is 

mainly associated with the benthic food web and that prey type and prey variability changed with 

increasing body size. The application of all three methods made it also possible to follow general 

movement patterns of the species from offshore into more coastal waters and most importantly 

made it possible to suggest the diet of animals where no food was found in the stomachs.  

 

Both fatty acid and stable isotope analysis did however show that without considering factors 

influencing the deposition of fatty acids and stable isotopes in the tissues of the predator it will be 

necessary to supplement data with information gained from conventional dietary analysis.   

 

The results gained from the application of these methods to a species where the life cycle is 

relatively well known has validated their usefulness for studies on the trophic ecology of little 

known species. The strengths of these findings however will always depend on the complexity of 

feeding relationships considered, i.e. numbers of species involved in the food web sampled, and 

total numbers of specimens sampled to minimise the effect of within species variation. 
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