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Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a peptide involved in physio-pathological processes of the eye. 
It exerts multiple effects directly through activation of its related receptors and indirectly through increases in the synthesis 
of activity-dependent neuroprotective protein (ADNP). To study the role of ADNP and protect against ADNP deficiencies, a 
small peptide called NAP was synthetized. It includes an eight amino acid active site sequence of ADNP. In this review, we 
summarize the knowledge regarding the neuroprotective function played by PACAP and NAP in retinal tissue and provide 
an overview of the correlation between PACAP and ADNP in the context of diabetic retinopathy. 
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Introduction

Pituitary adenylate cyclase-activating polypeptide (PACAP) 
is a neuropeptide encoded by the ADCYAP1 gene that 
belongs to the vasoactive intestinal polypeptide (VIP)-
secretin-glucagon peptide superfamily (Harmar et al. 1998; 
Arimura and Shioda 1995). This neuropeptide was first iso-
lated from ovine hypothalamus by Miyata and coworkers in 
1989. PACAP and its related receptors are expressed in the 
central nervous system (CNS) and in most peripheral organs 
(Ghatei et al. 1993; Arimura and Shioda 1995; Vaudry 2009; 
Moody et al. 2020; Girard et al. 2020; Toth et al. 2020). This 
peptide exists in two isoforms: PACAP38, which includes 38 
aminoacids, and PACAP27, which is PACAP-38 truncated in 
C-terminal form and includes 27 aminoacids. It shows a high 

sequence homology with vasoactive intestinal polypeptide 
(VIP) (Miyata et al. 1989; 1990; Segre and Goldring 1993).

PACAP is a pleiotropic peptide, as it is involved in a wide 
array of physiological processes such as neuromodulation 
of immune response, neuroprotection, and stimulation of 
cell proliferation. It also plays a protective effect in several 
pathologies affecting the CNS and eye, including retinopa-
thies (Canonico et al. 1996; Arimura et al., 1998; Vaudry 
et al. 2003; 2009; Giunta et al. 2010; Nackamachi et al. 
2011, 2012, 2016; Atlasz et al. 2010a and 2010b; Varga et al. 
2011; Scuderi et al. 2013; Castorina et al. 2014; Maugeri 
et al. 2018; 2019a; Kovacs et al. 2020; Martínez-Rojas et al. 
2020; Józsa et al. 2001).

PACAP carries out its functions in tissue-specific man-
ner by binding to different G protein-coupled receptors 
including PAC1 (PAC1-R), VPAC-1, and VPAC-2 recep-
tors (VPAC1-R and VPAC2-R) (Vaudry 2009). The PAC1-
R was first isolated in rat pancreatic acinar carcinoma cell 
line, whereas VPAC receptors were isolated initially in rat 
lung and olfactory bulb (Hosoya et al. 1993; Morrow et al. 
1993; Svoboda et al. 1993; Lutz et al. 1993; Laburthe et al. 
2002). The cDNA of the rat VPAC-1 receptor encodes for 
a protein of 459-amino acid and shows a sequence identity 
of the 50% to the rat PAC1-R (Pisegna and Wank 1993). 
PAC1-R receptor binds to PACAP with higher affinity than 
VPAC1 and 2 receptors (Vaudry 2009; Harmar et al. 2012). 
PAC1-R exists in diverse splice variants (Null, Hip, Hop1, 
Hop2, Hiphop1, Hiphop2, short and very short isoforms) 
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that differ at the N-terminal domain and/or in the third intra-
cellular loop (Blechman 2013). These isoforms can activate 
two different signaling cascades: the adenylate cyclase (AC) 
pathway activating cAMP and phospholipase C (PLC) path-
way stimulating protein kinase C (PKC) formation (Lack 
et al. 2015). By binding to VPAC-1 and VPAC-2 receptors, 
PACAP induces the activation of AC as well as some other 
signaling cascades independently by cAMP (Somogyvari-
Vigh and Reglodi, 2004; Ohtaki et al., 2008; Shioda et al. 
2006; Waschek et al. 2002). Therefore, multiple effects of 
PACAP depend on the concentration of the peptide and 
receptor splice variant expressed in the specific tissue and 
cell (Ashur-Fabian et al. 1997; Pilzer et al. 2006).

PACAP’s activity on cell proliferation and differentiation 
in the CNS is also carried out through the stimulation of an 
intracellular astrocyte-derived neurotrophic factor known 
as activity-dependent protein (ADNP) (Bassan et al. 1999; 
Zamostiano et al. 2001). ADNP is a neuroprotective pro-
tein of 123.56 kDa largely distributed throughout the body, 
including the CNS, where it is involved in brain development 
and cognition (Gozes 1999; Gozes et al. 2002; Pinhasov 
et al. 2003). This protein is an essential factor during embry-
ogenesis, as it has been demonstrated that ADNP-knockout 
mice have impairment in neural tube closure (Pinhasov et al. 
2003). It was demonstrated that PACAP increases ADNP 
level in young astrocytes and in co-cultures of neurons and 
glial cells (Zusev et al. 2004; Li et al. 2005), suggesting 
that some intracellular activity of PACAP could be medi-
ated by ADNP-induction. This evidence was corroborated 
by other studies demonstrating that ADNP is a mediator of 
some PACAP neuroprotective activity. It was proven that 
PACAP-38 induced ADNP expression in a bimodal manner 
depending on its concentration. More specifically, subpico-
molar concentration of PACAP stimulates ADNP release 
via PAC1-R, whereas nanomolar concentration of peptide 
induces ADNP expression mediated by VPAC1-R (Naka-
machi et al., 2006) . Furthermore, Nakamachi et al. (2008) 
revealed that ADNP and PAC1-R co-localized in different 
areas of mouse brain, suggesting that ADNP expression in 
neurons and astrocytes is regulated by PACAP. Interestingly, 
in an in vivo mouse model of ADNP deficiency, PACAP 
provided protection (Sragovich et al. 2019).

To identify the ADNP neuroprotective active site, small 
peptides were synthesized and a small peptide known as 
NAP was discovered. This small active element exerts 
protective activity at femtomolar concentration (Bassan 
et al. 1999; Pinhasov et al. 2003). The protective action of 
NAP was demonstrated in many in vitro and in vivo stud-
ies; it prevents apoptotic cell death in neurons exposed to 
different kinds of stress such as glucose deprivation and 
β-amyloid or tetrodotoxin treatment, and in a rat model 
of cerebral ischemia and severe head injury (Bassan et al. 
1999; Leker et al. 2002; Beni-Adani et al. 2001; Zaltzman 

et al. 2005; Zemlyak et al. 2007; Jehle et al. 2008; Gozes 
et al. 2008; Belokopytov et al. 2011). Noteworthy, the 
chemical structure of this small fragment peptide allows 
it to penetrate into cell membrane and by binding to micro-
tubules it protects astrocytes and neurons (Divinski et al. 
2004; Oz et al. 2012; 2014; Ivashko-Pachima et al. 2017; 
2018; 2019a and 2019b; 2020; Gozes et al. 2015; 2018; 
2019; Grigg et al. 2020). Furthermore, it has been demon-
strated that NAP provides significant neuroprotection also 
in a diabetes rat model (Idan-Feldman et al. 2011) and it 
has been also showed that NAP regulates PAC1 expression 
(Kapitansky et al. 2020).

Retinal Expression of PACAP and ADNP

To date, various studies have provided detailed descriptions 
of the retinal distribution of PACAP and related receptors 
in different mammalian species and described retinoprotec-
tive functions in response to different insults (Onali et al. 
1994; Wang et al. 1995; D’Agata and Cavallaro 1998; Cav-
allaro et al 1996; Silveira et al. 2002; Borba et al. 2005). 
In situ hybridization and immunohistochemical studies have 
revealed that PAC1-R is strongly expressed in the ganglion 
cell layer (GCL), inner nuclear layer (INL), and nerve fiber 
layer (NFL), while a weak expression was found in the inner 
plexiform layer (IPL), outer plexiform layer (OPL), outer 
nuclear layer (ONL), and photoreceptor layer (Seki et al. 
1997, 1998, 2000a, 2000b). Furthermore, other papers have 
described the retinal distribution of PAC1-R splice variants, 
Null, Hip, Hop1, Hop2, and Hiphop1, as well as VPAC-1 
and VPAC-2 receptors (Lakk et al. 2012; Zhang et al. 2005). 
The presence of PACAP has been found in mammalian, tel-
eost, turtle, and chicken retina using immunohistochemistry 
(Reglodi et al. 2001). The peptide expression was identi-
fied in rat retinohypotalamic tract and amacrine and hori-
zontal cells, the GCL, and the NFL, whereas it was absent 
in photoreceptor layer and in retinal pigmented epithelium 
(Seki et al. 1997; 1998; Hannibal 1997 and 2002). At the 
ultrastructural level, PACAP was detected in the plasma 
membranes, rough endoplasmic reticulum, and cytoplasmic 
matrix in retinal INL neurons (Seki et al. 1997; 2000a, b).

In our previous work, we have demonstrated that a sig-
nificant reduction of mRNA expression of PACAP and its 
related receptors occurs in diabetic rat retinas (Giunta et al. 
2012). Furthermore, we have also proven that ADNP mRNA 
retinal expression is significantly downregulated in diabetic 
rats compared with control animals (Scuderi et al. 2014). 
This confirms that ADNP expression is affected by hypergly-
cemic condition similarly to PACAP, suggesting that hyper-
glycemic insult on retinal functions is at least in part linked 
to impairment of endogenous PACAP and ADNP levels.



Journal of Molecular Neuroscience 

1 3

PACAP and NAP Retinal Protection

The protective effect of PACAP has been largely demonstrated 
in different in vivo and in vitro models of retinopathy, includ-
ing UVA-induced retinal damage (Atlasz et al. 2011), retinal 
ischemia (Atlasz et al. 2007; 2010a, b; Seki et al. 2011; Ye 
et al. 2019), glutamate toxicity (Atlasz et al. 2008; 2009), and 
diabetic retinopathy (Szabadfi et al. 2016). Moreover, its activ-
ity has been also demonstrated during retinal development, as 
it interferes with retinal progenitor cells proliferation (Njaine 
et al. 2010). It has also been suggested that PACAP counteracts 
retinal aging process since PACAP knock-out mice showed an 
early degeneration of the retina (Kovács-Valasek et al. 2017).

Numerous studies have demonstrated that PACAP exerts its 
retinoprotective effects in a dose-dependent manner. In fact, this 
peptide modulates apoptotic cell death occurring after retinal 
monosodium glutamate lesion (Racz et al. 2006a and 2006b) 
by inducing a cAMP/PKA signaling cascade at micromolar or 
nanomolar concentration (Silveira et al. 2002; Racz et al. 2007) 
or PLC pathway at a picomolar dose (Lakk et al. 2015). The 
PACAP administration counteracts retinal hypoperfusion after 
bilateral common carotid occlusion (BCCAO) through modula-
tion of inflammatory cytokines, induction of MAPKs phospho-
rylation, and concomitant reduction of apoptotic related genes, 
including JNK and p38 (Szabo et al. 2012). Furthermore, it has 
been demonstrated that PACAP crosses the ocular barriers and 
is able to exert neuroprotective effect even given in eye drops 
in rat chronic retinal ischemia (Werling et al. 2016, 2017). The 
protective role is also associated to functional improvement, 
as demonstrated by measuring electrical activity after retinal 
hypoxia (Danyadi et al. 2014). In this context, by using the 
PAC1-selective agonist maxadilan, it has been suggested that 
PACAP’s effect is mediated through PAC1 receptor activation 
(Vaczy et al. 2016). The protective role of PACAP was also 
demonstrated in a rodent model of retinopathy of prematurity 
(Kvarik et al. 2016). In this model, the intravitreal injections of 
PACAP have significantly reduced the oxygen-induced damage 
in the retinal tissue by increasing vascularized area and counter-
acting the expression of proinflammatory cytokines. In accord to 
these evidences, studies conducted by using in vitro models of 
oxidative stress demonstrated that PACAP reduces expression 
of inflammatory cytokines in human retinal pigment epithelial 
cells and also counteracts cellular apoptotic death interfering 
with the balance between pro- and anti-apoptotic genes (Zhang 
et al. 2005; Mester et al. 2011; Fabian et al 2012). More recently, 
Fabian and coworkers (2019) have demonstrated the efficacy of 
PACAP in counteracting morphological changes occurring in 

human retinal pigmented epithelium cells (ARPE-19) exposed 
to hyper-osmosis and oxidative stress. They also demonstrated 
that PACAP inhibits VEGF release in these cells. Furthermore, 
PACAP counteracts glutamate-induced excitotoxicity by reduc-
ing glutamate, decreasing proinflammatory factors, and concom-
itantly normalizing glutathione levels that play an important role 
as free radical scavengers (D’Alessandro et al. 2014).

Although PACAP exerts numerous effects acting through 
the signaling pathways mentioned above, its activity is also 
mediated by induction of neuroprotective molecules from 
glial cells, including microglia and macrophages, as well as 
Müller glial cells (Nakatani et al. 2006; Wada et al. 2013; 
Werling et al. 2016). In a rodent model of ischemia, it has 
been demonstrated that PACAP counteracts the morpho-
logical retinal changes by reducing GFAP expression occur-
ring in Müller cells (Atlasz 2010b), representing the retinal 
cells activated first following an insult. Thus, the modula-
tory effect of PACAP on glial cells could underlie to its neu-
roprotective action. The glial cells in the retinal are involved 
in maintaining the correct retinal microenvironment in neu-
rons and vessels. These cells are primarily responsible for 
regulation of retinal ions, levels of glutamate, and coun-
teracting retinal impairments due to stress caused by free 
radicals or hypoxia, by modulating glutathione synthesis. 
Any retinal damage leads to microenvironmental alterations 
with consequent hyper-activation of Müller cells. This event 
leads to increased expression of glial fibrillary acidic pro-
tein (GFAP) in Müller cells, which in turn may be accom-
panied by hypertrophy and cellular proliferation in dam-
aged tissue. Among insults able to induce retinal alterations, 
hyperglycemia triggers enhanced expression of GFAP in 
Müller cells in the early phase of diabetes in both humans 
and animal experimental models (Gabriel et al. 2013, 2019). 
Therefore, it was suggested that activation of Müller glial 
cells could represent the first scenario in this pathology. 
In the context of increased glucose levels, these glial cells 
activate ion-regulatory machinery and induce the release of 
different molecules including vascular endothelial growth 
factor (VEGF), and inflammatory cytokines such as inter-
leukins or tumor necrosis factor, which are responsible for 
triggering the degeneration process. In this context, it has 
been demonstrated that PACAP is able to ameliorate patho-
logical Müller glial induction during diabetic retinopathy 
(Szabadfi et al. 2014, 2016).

Among glial mediators of PACAP’ actions, the astro-
cytes-released neuroprotective protein, ADNP, has also been 
suggested (Gozes et al. 2003). The smallest active element 
of this protein is an octapeptide named NAP that has shown 
to exert beneficial effects in different retinal pathologies. 
It protects neuroretinal cells from hypoxic damage because 
it induces neurite growth of retinal ganglion cell (RGC) in 
retinal explant of rat pups and counteracts RGC injuries 



 Journal of Molecular Neuroscience

1 3

following optic nerve crush and retinal ischemia (Jehle 
et al. 2008). Furthermore, Zheng et al. (2010) have dem-
onstrated that NAP transfection into Müller cells protects 
them and surrounding retinal neurons from hypoxia. Intra-
vitreal administration of NAP is also efficacious in counter-
acting laser-induced retinal damage (Lagrèze et al. 2005; 
Belokopytov et al. 2011).

Effect of PACAP and NAP in Diabetic 
Retinopathy

Among ocular pathological conditions, diabetic retinopathy 
(DR) is the most common disease affecting patients with 
Type 1 or Type 2 diabetes (Yau et al. 2012; Gabriel et al. 
2019). It represents a microvascular complication of dia-
betes leading to blindness. The retinal impairments during 
diabetic retinopathy can be ascribable to metabolic changes 
caused by hyperglycemia leading to microvascular altera-
tion, retinal hypoxia, inflammation, impairments of retinal 
architecture, and consequent general tissue dysfunction. The 
micro environmental changes that followed DR lead to thin-
ning of retinal layers, loss of GCL, a decreased number of 
amacrine cells, and rods and cones (Holopigian et al. 1997; 
Gastinger et al. 2006). It also leads to activation of Mül-
ler cells and astrocytes at the onset of diabetes (Zeng et al. 
2000, 2008; Puro et al. 2002). It was also demonstrated that 
rat retinal Müller cells are impaired by hypoxic insult caus-
ing neuroretinal dysfunction (Bringmann et al. 2001; Puro 
2002). This scenario is additionally characterized by apop-
tosis of neuronal cells, synapse loss among retinal layers, 
and significant loss of ganglion cells that occurs at the early 
stage of diabetes (Szabadfi et al. 2016).

It has been proven that alterations characterizing DR pro-
gression are attenuated or counteracted by treatment with 
peptides, including PACAP and NAP. As summarized in 
Table 1, the neuroprotective effect of these peptides has been 

widely demonstrated in several studies. For instance, the 
intravitreal injection of PACAP has been shown to play a 
significant ameliorative effect against retinal degenerations 
in streptozotocin-induced diabetic rats. More specifically, 
PACAP preserves cone photoreceptors damages, counteracts 
the reduction of ganglion and dopaminergic amacrine cells 
(Szabadfi et al. 2012), and it is able to rescue neurons from 
apoptotic death (Szabadfi et al. 2014).

In line with this evidence, our research group has dem-
onstrated that PACAP plays a neuroprotective activity in 
the retina during the early phase of DR. In fact, PACAP and 
its related receptors are downregulated after three weeks of 
hyperglycemia, suggesting their involvement in retinal dys-
function during diabetes. In this model, a single injection of 
PACAP provided neuroprotection in the diabetic retina by 
inducing modulation of apoptotic genes expression such as 
p53 and Bcl2 levels (Giunta et al. 2012).

To deepen our knowledge on the molecular mechanisms 
underlying PACAP’s effect in this pathology, we investigated 
whether its activity was directly linked ADNP induction in 
retinal tissue. We tested the effect of ADNP’s smallest active 
element, NAP, in a model in vivo of rat DR. We demon-
strated that both NAP and PACAP are able to improve retinal 
morphology, counteract its thinning, and reduce loss of GCL 
at early phase of hyperglycemia (D’Amico et al. 2017a). 
We have also shown that a single dose of NAP was able to 
decrease the rate of apoptotic cell death by activating the 
MAPK/ERK pathway in diabetic retina (Scuderi et al. 2014). 
Furthermore, both NAP and PACAP interfere with hypoxia 
signaling pathway occurring 3 weeks from the beginning 
of hyperglycemia. In particular, both peptides modulate the 
expression of some hypoxic inducible factors (HIFs). The 
latter are heterodimeric transcription factors representing the 
first biological response to cellular hypoxia. Among these, 
HIF-1α and HIF-2α under hypoxia elude the proteasome 
degradation system, translocate into the nucleus and activate 
many target genes. These genes include VEGF, the main 

Table 1  Summary of knowledge regard PACAP and NAP effect in diabetic retinopathy

Key findings Reference

Treatment of PACAP prevents cone photoreceptor damage and reduction of ganglion and dopaminergic amacrine 
cells

Szabadfi et al. (2012)

PACAP provides neuroprotection in diabetic retina by inducing modulation of apoptotic genes, reducing p53 and 
increasing Bcl2 levels

Giunta et al. (2012)

PACAP counteracts neural apoptotic death, by inducing expression of antiapoptotic p-Akt, p-ERK1-2, PKC, and Bcl-
2

Szabadfi et al. (2014)

NAP treatment reduces apoptotic retinal cell death and improves cell survival by inducing MAPK/ERK Scuderi et al. (2014)
PACAP interferes with hypoxia inducible factors (HIFs) D’Amico et al. (2015)
PACAP treatment saves ribbon synapses and pigment epithelial cell morphology Szabadfi et al. (2016)
PACAP treatment reduces expression levels of IL-1β, VEGF, and VEGFRs D’Amico et al. (2017a)
NAP treatment modulates Hypoxia signaling cascade by reducing expression of HIF-1α, HIF-2α, and VEGF D’Amico (2017b)
PACAP treatment induces EGFR phosphorylation via PKA-signaling cascade activation Maugeri et al. (2019a, b)
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factor responsible to microvasculature system dysfunction. 
In diabetic rat retinas, HIF-1α and HIF-2α are aberrantly 
expressed since they are upregulated in different retinal 
layers including INL and ONL. PACAP and NAP admin-
istration significantly downregulates HIF-1α and HIF-2α 
expression and, at the same time, enhances HIF-3α levels 
in diabetic retina (D’Amico et al. 2015, 2017b; Maugeri 
et al. 2017a). This finding was relevant because HIF-3α is 
well-known as a negative regulator of the other two hypoxic 
inducible factors and inhibits their activity. Noteworthy, 
PACAP and NAP also significantly reduced VEGF levels 
in diabetes-affected retina and abrogated its expression in 
the GCL, including ganglionic cells, the axons of which 

form the optic nerve (D’Amico et al. 2017a and b). There-
fore, these two peptides represent two factors able to act as 
upstream regulators of VEGF expression. This data is in 
agreement with the ameliorative effect played by PACAP 
in counteract vascular dysfunction hyperglycemia-induced 
(Solymar et al. 2018). 

This is relevant evidence because anti-VEGF-therapy 
represents an elective tool in DR treatment, although it is 
efficacious only in 50% of treated-patients. The identifica-
tion of molecules able to modulate the expression of this 
angiogenic growth factor could represent a new therapeutic 
strategy to prevent angiogenesis in non-responders. In our 
studies, we have demonstrated that PACAP and NAP are 

Fig. 1  Graphical representation of PACAP and NAP effect in hyper-
glycemic retina. Hyperglycemia induces retinal damage during diabe-
tes, by promoting tissue inflammation, hypoxia, and apoptosis. This 
event leads to alterations of retinal architecture and consequent gen-
eral dysfunction mirroring loss of ganglion cell layer (GCL) and thin-
ning of inner plexiform layer (IPL), inner nuclear layer (INL), outer 

plexiform layer (OPL), and outer nuclear layer (ONL). PACAP exert 
its neuroprotective action on diabetic retina directly by binding to its 
related receptors or indirectly by inducing ADNP secretion. Exoge-
nous administration of NAP, the smallest active element of this neu-
rotrophic protein, and PACAP counteracts the hyperglycemia-induced 
metabolic changes
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able to interfere with the HIF-VEGF signaling cascade at 
the early stage of hyperglycemia.

As mentioned above, hyperglycemia/hypoxia also stimu-
lates release of inflammatory cytokines. Among these, IL-1β 
was described as a mediator of retinal tissue damage at early 
stages of the disease. In line with this evidence, we demon-
strated that this cytokine and its related receptors, IL-1R1 
more than IL-1R2, were upregulated in diabetic rat retinas. 
During hyperglycemia, IL-1β and IL-1R1 are overexpressed 
in the photoreceptor layer and in the ONL, highlighting the 
induction of inflammatory process in specific retinal regions 
as well as their involvement in blood retinal barrier break-
down (BRB) during DR progression (Scuderi et al. 2015). 
For the first time, we have demonstrated that PACAP and 
NAP counteract this inflammatory event, by downregulat-
ing IL-1β and IL-1R1 aberrant expression, and maintaining 
BRB integrity (D’Amico et al. 2018, 2019; Maugeri et al. 
2017b; Fabian et al. 2019). The maintenance of BRB integ-
rity is fundamental for visual function. The impairment of 
this structure in macular region leads to diabetic macular 
edema (DME), a serious complication leading to vision loss. 
BRB is constituted by an inner compartment, known as inner 
BRB, that is represented by vascular endothelium and an 
outer compartment, known as outer BRB, characterized 
by retinal pigmented epithelium (RPE) (Simó et al. 2010). 
These cells play a protective role in survival of photorecep-
tor exposed to different insults. Therefore, the identification 
of molecules able to preserve RPE survival represents a fur-
ther therapeutic approach in the retinal diseases.

Our research group has demonstrated the ameliorative 
effect played by PACAP and NAP in maintenance of outer 
BRB integrity. More specifically, we showed that PACAP 
and NAP preserve barrier integrity by reducing hyper-per-
meability of pigment epithelium exposed to various insults 
accounting for diabetic macular edema (i.e., high glucose 
and interleukin 1β). In these cells, PACAP and NAP pre-
serve retinal pigment epithelial cell monolayer by inhibiting 
HIFs-VEGF signaling cascade and reducing pro-inflamma-
tory pathway. Recently, we have demonstrated that PACAP 
exert its activity also through induction of EGFR phospho-
rylation in DR. (Maugeri et al. 2019b).

Overall, these evidences suggest that the neuroprotec-
tive effect of PACAP is mediated, at least in part, by ADNP 
induction in the diabetic retina, summarized in Fig. 1.

Conclusion

In conclusion, PACAP and NAP play a key role in retinal 
physiopathology; however, while PACAP’s half-life is a min-
ute or shorter, NAP’s half-life is relatively long for a peptide, 
half an hour. NAP has previously been used in clinical trials 

showing safety and tolerability as well as efficacy increasing 
cognitive functions and protecting activities of daily living 
in mild cognitive impairment patients and schizophrenia 
patients, respectively (Gozes 2020). Overall, the evidences 
reported suggest that PACAP and NAP could be considered 
good candidates for therapeutic approach to DR.
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