
The MetaMorpho translation system

Attila Novák, László Tihanyi and Gábor Prószéky
MorphoLogic Ltd.

Orbánhegyi út 5, Budapest 1126, Hungary

{novak,tihanyi,proszeky}@morphologic.hu

Abstract

In this article, we present MetaMorpho, a rule

based machine translation system that was

used to create MorphoLogic’s submission to

the WMT08 shared Hungarian to English

translation task. The architecture of

MetaMorpho does not fit easily into traditional

categories of rule based systems: the building

blocks of its grammar are pairs of rules that

describe source and target language structures

in a parallel fashion and translated structures

are created while parsing the input.

1 Introduction

Three rule-based approaches to MT are

traditionally distinguished: direct, interlingua and

transfer. The direct method uses a primitive one-

stage process in which words in the source

language are replaced with words in the target

language and then some rearrangement is done.

The main idea behind the interlingua method is that

the analysis of any source language should result in

a language-independent representation. The target

language is then generated from that language-

neutral representation. The transfer method first

parses the sentence of the source language. It then

applies rules that map the lexical and grammatical

segments of the source sentence to a representation

in the target language.

The MetaMorpho machine translation system

developed at MorphoLogic (Prószéky and Tihanyi,

2002), cannot be directly classified in either of the

above categories, although it has the most in

common with the transfer type architecture.

2 Translation via immediate transfer

In the MetaMorpho system, both productive

rules of grammar and lexical entries are stored in

the form of patterns, which are like context-free

rules enriched with features. Patterns may contain

more-or-less underspecified slots, ranging from

general productive rules of grammar through more-

or-less idiomatic phrases to fully lexicalized items.

The majority of the patterns (a couple of hundreds

of thousands in the case of our English grammar)

represent partially lexicalized items.

The grammar operates with pairs of patterns that

consist of one source pattern used during bottom-

up parsing and one or more target patterns that are

applied during top-down generation of the

translation. While traditional transfer and

interlingua based systems consist of separate

parsing and generating rules, in a MetaMorpho

grammar, each parsing rule has its associated

generating counterpart. The translation of the

parsed structures is already determined during

parsing the source language input. The actual

generation of the target language representations

does not involve any additional transfer operations:

target language structures corresponding to

substructures of the source language parse tree are

combined and the leaves of the resulting tree are

interpreted by a morphological generator. We call

this solution “immediate transfer” as it uses no

separate transfer steps or target transformations.

The idea behind this architecture has much in

common with the way semantic compositionality

was formalized by Bach (1976) in the from of his

rule-to-rule hypothesis, stating that to every rule of

syntax that combines constituents into a phrase

pertains a corresponding rule of semantics that

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repository of the Academy's Library

https://core.ac.uk/display/478822467?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

combines the meanings of the constituents. In the

case of phrases with compositional meaning, the

pair of rules of syntax and semantics are of a

general nature, while in the case of idioms, the pair

of rules is specific and arbitrary. The architecture

implemented in the MetaMorpho system is based

on essentially the same idea, except that the

representation built during analysis of the input

sentence is not expressed in a formal language of

some semantic representation but directly in the

human target language of the translation system.

3 System architecture

The analysis of the input is performed in three

stages. First the text to be translated is segmented

into sentences, and each sentence is broken up into

a sequence of tokens. This token sequence is the

actual input of the parser. Morphosyntactic

annotation of the input word forms is performed by

a morphological analyzer: it assigns

morphosyntactic attribute vectors to word forms.

We use the Humor morphological system

(Prószéky and Kis, 1999; Prószéky and Novák,

2005) that performs an item-and-arrangement style

morphological analysis. Morphological synthesis of

the target language word forms is performed by the

same morphological engine.

The system also accepts unknown elements:

they are treated as strings to be inflected at the

target side. The (potentially ambiguous) output of

the morphological analyzer is fed into the syntactic

parser called Moose (Prószéky, Tihanyi and Ugray,

2004), which analyzes this input sequence using the

source language patterns and if it is recognized as a

correct sentence, comes up with one or more root

symbols on the source side.

Every terminal and non-terminal symbol in the

syntactic tree under construction has a set of

features. The number of features is normally up to a

few dozen, depending on the category. These

features can either take their values from a finite set

of symbolic items (e.g., values of case can be INS,

ACC, DAT, etc.), or represent a string (e.g.,

lex="approach", the lexical form of a token).

The formalism does not contain embedded feature

structures. It is important to note that no structural

or semantic information is amassed in the features

of symbols: the interpretation of the input is

contained in the syntactic tree itself, and not in the

features of the node on the topmost level. Features

are used to express constraints on the applicability

of patterns and to store morphosyntactic valence

and lexical information concerning the parsed

input.

More specific patterns (e.g. approach to) can

override more general ones (e.g. approach), in that

case subtrees containing symbols that were created

by the general pattern are deleted. Every symbol

that is created and is not eliminated by an

overriding pattern is retained even if it does not

form part of a correct sentence's syntactic tree.

Each pattern can explicitly override other rules: if

the overriding rule covers a specific range of the

input, it blocks the overridden ones over the same

range. This method can be used to eliminate

spurious ambiguities early during analysis.

When the whole input is processed and no

applicable patterns remain, translation is generated

in a top-down fashion by combining the target

structures corresponding to the source patterns

constituting the source language parse tree.

A source language pattern may have more than

one associated target pattern. The selection of the

target structure to apply relies on constraints on the

actual values of features in the source pattern: the

first target pattern whose conditions are satisfied is

used for target structure generation. To handle

complicated word-order changes, the target

structure may need rearrangement of its elements

within the scope of a single node and its children.

There is another technique that can be used to

handle word order differences between the source

and the target language. A pointer to a subtree can

be stored in a feature when applying a rule at parse

time, and because this feature’s value can percolate

up the parse-tree and down the target tree, just like

any other feature, a phrase swallowed somewhere

in the source side can be expanded at a different

location in the target tree. This technique can be

used to handle both systematic word order

differences (such as the different but fixed order of

constituents in possessive constructions: possession

of possessor in English versus possessor possession

+ possessive suffix in Hungarian) and accidental

ones (such as the fixed order of subject verb and

object in English, versus the “free” order of these

constituents in Hungarian
1
)

1 In fact the order is determined by various factors other than

grammatical function.

Unlike in classical transfer-based systems,

however, these rearrangement operations are

already determined during parsing the source

language input. During generation, the already

determined rearranged structures are simply spelled

out. The morphosyntactic feature vectors on the

terminal level of the generated tree are interpreted

by the morphological generator that synthesizes the

corresponding target language word forms.

The morphological generator is not a simple

inverse of the corresponding analyzer. It accepts

many alternative equivalent morphological

descriptions of each word form it can generate

beside the one that the corresponding analyzer

outputs.

4 The rule database

The rules used by the parser explicitly contain

all the features of the daughter nodes to check, all

the features to percolate to the mother node, all the

features to set in the corresponding target structures

and those to be checked on the source language

structure to decide on the applicability of a target

structure. The fact that all this redundant

information is present in the run-time rule database

makes the operation of the parser efficient in terms

of speed. However, it would be very difficult for

humans to create and maintain the rule database in

this redundant format.

There is a high level version of the language:

although it is not really different in terms of its

syntax from the low-level one, it does not require

default values and default correspondences to be

explicitly listed. The rule database is maintained

using this high level formalism. There is a rule

converter for each language pair that extends the

high-level rules with default information and may

also create transformed rules (such as the passive

version of verbal subcategorization frames)

creating the rule database used by the parser.

Rule conversion is also necessary because in

order to be able to parse a free word order language

like Hungarian with a parser that uses context free

rules, you need to use run time rules that essentially

differ in the way they operate from what would be

suggested by the rules they are derived from in the

high level database. In Hungarian, arguments of a

predicate may appear in many different orders in

concrete sentences and they also freely mix with

sentence level adjuncts. This means that a verbal

argument structure of the high level rule database

with its normal context free rule interpretation

would only cover a fraction of its real world

realizations. Rule conversion effectively handles

this problem by converting rules describing lexical

items with argument structures expressed using a

context free rule formalism into run time rules that

do not actually combine constituents, but only

check the saturation of valency frames.

Constituents are combined by other more generic

rules that take care of saturating the argument slots.

This means that while the high level and the run

time rules have a similar syntax, the semantics of

concrete high level rules may be very different

from similar rules in the low level rule database.

5 Handling sentences with no full parse

The system must not break down if the input

sentence happens not to have a full parse (this

inevitably happens in the case of real life texts). In

that case, it reverts to using a heuristic process that

constructs an output by combining the output of a

selected set of partial structures covering the whole

sentence stored during parsing the input. In the

MetaMorpho terminology, this is called a “mosaic

translation”. Mosaic translations are usually

suboptimal, because in the absence of a full parse

some structural information such as agreement is

usually lost. There is much to improve on the

current algorithm used to create mosaic

translations: e.g. it does not currently utilize a

statistical model of the target language, which has a

negative effect on the fluency of the output.

Augmenting the system with such a component

would probably improve its performance

considerably.

6 Motivation for the MetaMorpho

architecture

An obvious drawback of the architecture

described above compared to the interlingua and

transfer based systems is that the grammar

components of the system cannot be simply reused

to build translation systems to new target languages

without a major revision of the grammar. While in

a classical transfer based system, the source

language grammar may cover phenomena that the

transfer component does not cover, in the

MetaMorpho architecture, this is not possible. In a

transfer based system, there is a relatively cheaper

way to handle coverage issues partially by

augmenting only the source grammar (and

postponing creation of the corresponding transfer

rules). This is not an option in the MetaMorpho

architecture.

The main motivation for this system

architecture was that it makes it possible to

integrate machine translation and translation

memories in a natural way and to make the system

easily extensible by the user. There is a grammar

writer’s workbench component of MetaMorpho

called Rule Builder. This makes it possible for

users to add new, lexical or even syntactic patterns

to the grammar in a controlled manner without the

need to recompile the rest, using an SQL database

for user added entries. The technology used in

RuleBuilder can also be applied to create a special

combination of the MetaMorpho machine

translation tool and translation memories (Hodász,

Grőbler and Kis 2004).

Moreover, existing bilingual lexical databases

(dictionaries of idioms and collocations) are

relatively easy to convert to the high level rule

format of the system. The bulk of the grammar of

the system was created based on such resources.

Another rationale for developing language pair

specific grammars directly is that this way

distinctions in the grammar of the source language

not relevant for the translation to the target

language at hand need not be addressed.

7 Performance in the translation task

During development of the system and its grammar

components, regression testing has been performed

using a test set unknown to the developers

measuring case insensitive BLEU with three human

reference translations. Our usual test set for the

system translating from Hungarian to English

contains 274 sentences of newswire text. We had

never used single reference BLEU before, because,

although creating multiple translations is

expensive, single reference BLEU is quite

unreliable usually producing very low scores

especially if the target language is morphologically

rich, like Hungarian.

The current version of the MetaMorpho system

translating from Hungarian to English has a BLEU

score of 22.14 on our usual newswire test set with

three references. Obtaining a BLEU score of 7.8 on

the WMT08 shared Hungarian to English

translation task test was rather surprising, so we

checked single reference BLEU on our usual test

set: the scores are 13.02, 14.15 and 16.83 with the

three reference translations respectively.

In the end, we decided to submit our results to the

WMT08 shared translation task. But we think, that

these figures cast doubts on the quality of the texts

and reference translations in the test set, especially

in cases where both the English and the Hungarian

text were translated from a third language, so we

think that the scores on the WMT08 test set should

be evaluated only relative to other systems’

performance on the same data and the same

language pair.

References

Emmon Bach. 1976. An extension of classical

transformational grammar. In Saenz (ed.) Problems of

Linguistic Metatheory: Proceedings of the 1976

Conference, pp. 183–224. East Lansing, MI:

Michigan State University.

Gábor Hodász, Tamás Grőbler and Balázs Kis (2004)

Translation memory as a robust example-based

translation system. In Hutchins (ed.), pp. 82–89.

John Hutchins (ed.) Broadening horizons of machine

translation and its applications. Proceedings of the

9th EAMT Workshop, 26–27 April 2004. La

Valletta: Foundation for International Studies.

Gábor Prószéky and Balázs Kis. 1999. Agglutinative and

other (highly) inflectional languages. In Robert Dale

& Kenneth W. Church (eds.) Proceedings of the 37th

Annual Meeting of the Association for Computational

Linguistics, pp. 261–268. Morristown, NJ:

Association for Computational Linguistics.

Gábor Prószéky and Attila Novák. 2005. Computational

Morphologies for Small Uralic Languages. In: A.

Arppe, L. Carlson, K. Lindén, J. Piitulainen, M.

Suominen, M. Vainio, H. Westerlund, A. Yli-Jyrä

(eds.): Inquiries into Words, Constraints and Contexts

Festschrift in the Honour of Kimmo Koskenniemi on

his 60th Birthday. Gummerus Printing, Saarij

ärvi/CSLI Publications, Stanford. 116–125

Gábor Prószéky and László Tihanyi. 2002 MetaMorpho:

A Pattern-Based Machine Translation System. In:

Proceedings of the 24th 'Translating and the

Computer' Conference, 19–24. ASLIB, London,

United Kingdom

Gábor Prószéky, László Tihanyi and Gábor Ugray.

2004. Moose: A robust high-performance parser and

generator. In Hutchins (ed.), pp. 138–142.

