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4 ABSTRACT: We report the rational design of a tunable Cu(II)
5 chelating scaffold, 2-(((2-((pyridin-2-ylmethyl)amino)ethyl)-
6 amino)methyl)phenol, Salpyran. This tetradentate (3N,1O) ligand
7 is predicated to have suitable permeation, has an extremely high
8 affinity for Cu compared to clioquniol (pCu7.4 = 10.65 vs 5.91), and
9 exhibits excellent selectivity for Cu(II) over Zn(II) in aqueous
10 media. Solid and solution studies corroborate the formation of a
11 stable [Cu(II)(3N,1O)]+ monocationic species at physiological pH
12 values (7.4). Its action as an antioxidant was tested in ascorbate, tau,
13 and human prion protein assays, which reveal that Salpyran prevents
14 the formation of reactive oxygen species from the binary Cu(II)/
15 H2O2 system, demonstrating its potential use as a therapeutic small
16 molecule metal chelator.

17 ■ INTRODUCTION

18 The dysregulation and accumulation of biometals is a common
19 pathological hallmark of many neurodegenerative disorders,
20 such as Alzheimer’s (AD), Parkinson’s (PD) and prion
21 diseases.1−9 AD is the most prevalent adult neurogenerative
22 disorder and the most significant cause of dementia.10,11

23 Currently, 24 million people suffer globally, and, with an aging
24 population, this figure may double by 2040.12,13 AD is
25 characterized by intracellular accumulation of neurofibrillary
26 tangles formed of misfolded tau proteins and the extracellular
27 deposition of fibrillar amyloid-β (Aβ) peptides. However, AD
28 is a multiparameter disease, and other factors contribute to its
29 etiology such as mitochondrial dysfunction, genetics, and
30 age.14 At present, a large body of research suggests that metal
31 ion dyshomeostasis plays a role in AD’s pathology; therefore,
32 the restoration of biometal homeostasis offers a new clinical
33 target when developing AD therapies.6,15−22

34 Recent trends show that drug development into disease-
35 modifying therapies (DMTs) for AD is broadening its scope
36 beyond the classical primary targets of Aβ and tau
37 aggregation.23,24 A paucity of new treatments for AD, for
38 almost two decades, and the low success rate of drugs in
39 clinical trials have furthered the need to widen the scope of
40 both targets and approaches in curbing disease progres-
41 sion.25,26 Recently, the first DMT (aducanumab) was approved
42 by the Food and Drug Adminstration (FDA) for the treatment
43 of AD patients. By targeting the production and aggregation of
44 Aβ, this novel therapy was found to reduce senile plaques,
45 although there still remains some uncertainty in its clinical
46 benefits.

47Metal ions can affect the self-assembly of amyloid proteins;
48for example, Aβ has a picomolar affinity for Cu(II) binding via
49histidine binding.27,28 Cu(II) imbalances exist in AD affected
50brains, and Cu(II) can be found either upregulated or
51downregulated depending on the locality of the tissue.6,29

52Due to its redox potential when bound to Aβ, Cu(II)
53contributes to the generation of reactive oxygen species
54(ROS), leading to oxidative neuronal damage.30−32

55In the past decade, there has been an increasing interest in
56designing Cu-specific small molecule metal chelators
57(SMMCs) aiming to reduce Cu(II)-Aβ induced oxidative
58stress and the resul t ing pathogenic consequen-
59ces.6,15,34−39,16−22,33 Chelation therapy aims to disrupt
60potential toxic interactions of metal ions and biomolecules
61by targeting specific metal ions and promoting redistribution
62or excretion. When designing a Cu-specific SMMC, both the
63thermodynamic properties of the metal chelate and the
64pharmacological properties of the ligand must be considered.
65The key criteria for Cu(II) targeting AD therapeutic are
66denticity, metal/ligand stoichiometry, and the coordination
67environment and geometry of the complex at physiological pH
68values. Ideally, the given ligand would coordinate to Cu(II) in
69a 1:1 stoichiometry, as ligands of this type exhibit a higher
70copper affinity than similar 1:2 complexes due to the
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71 chelation.40 The increased shielding observed in 1:1 complexes
72 protects the metal ion from the physiological environment,
73 preventing further biological interactions such as the formation
74 of [Aβ(Cu)L] ternary species.39,41 Also, to be an effective
75 therapeutic, both the ligand and the formed metal complex
76 must be metabolically stable, nontoxic, and possess suitable
77 aqueous solubility. Moreover, to be effective in AD, the
78 SMMC should be able to pass through the blood−brain barrier
79 (BBB) to reach the site of Cu(II) accumulation. For passive
80 diffusion, this requires a SMMC that is suitably hydrophobic to
81 passively pass through the membrane yet hydrophilic enough
82 to stay soluble in physiological environments.42,43

f1 83 Clioquinol (CQ, Figure 1) was investigated in phase II
84 clinical trials for targeting metal homeostasis as an AD
85 treatment. CQ is a bidentate ligand that forms a [Cu(II)L2]
86 complex with an 2N,2O coordination environment. By
87 targeting both Cu(II) and Zn(II)binding, CQ showed some
88 improvements in the cognition of the patients trialled.44

89 However, due to neurotoxic side effects, the clinical progress of
90 CQ was ultimately abandoned.45 This led to the design of a
91 s e c o n d - g e n e r a t i o n t r i d e n t a t e 5 , 7 - d i c h l o r o - 2 -
92 ((dimethylamino)methyl)quinolin-8-ol (PBT2, Figure 1),
93 which completed Phase II clinical trials.46,47 Introduction of
94 a dimethylamino unit at the C2 position introduced a new
95 binding site, but still [Cu(II)L2] complexes are formed.48 A
96 lack of reduction in amyloid plaque levels in the brains of AD
97 patients and only mild cognitive benefits mean that PBT2 has
98 not progressed into more extensive clinical studies. The poor
99 metal selectivity is a possible reason for the clinical failure of
100 CQ, as interactions with other biometals or metalloproteins/
101 substrates in vivo are conceivable. The formation of the
102 [Cu(II)L2] species, in both CQ and PBT2 cases, speculates
103 the likely in vivo formation of ternary L(Cu)Aβ species that
104 can contribute to increased ROS production.49

105Due to the clinical potential demonstrated by CQ and
106PBT2, several tetradentate ligands based on similar scaffolds
107have been developed to increase Cu(II) selectivity and
108minimize unwanted biological interactions.38,40,48,50,51 This
109incremental design led to the state-of-art Cu(II) chelator,
110TDMQ-20 (Figure 1).52 TDMQ-20 is an 8-aminoquinoline
111derivative that offers a 4N coordination environment and
112shows exceptional selectivity for Cu(II) ions. Recently,
113TMDQ20 has been studied as an AD therapeutic in early
114stage nontransgenic mouse models and late-stage transgenic
115models.52 Oral treatment offered significant improvements in
116both the behavioral and cognitive impairments observed in
117each model, while also reducing oxidative stress in the mouse
118cortices. This efficacy paves the way for future pharmacological
119evaluation of SMMCs; thus, most research heavily focuses on
120chelators based around either 8-hydroxy/8-amino quinoline
121backbones. Having the chemical criteria and fall-outs from
122previous studies in mind,39 and aiming to develop new
123chelators not derived from 8-hydroxy/8-amino quinoline cores,
124we hypothesized that the scaffold 2-(((2-((pyridin-2-
125ylmethyl)amino)ethyl)amino)methyl)phenol, Salpyran (Fig-
126ure 1) would be an ideal therapeutic Cu(II) targeting SMMC.
127Herein, we report the criteria considered in designing
128Salpyran, its synthesis and characterization, solid-state and
129solution studies, and ROS inhibition.

130■ RESULTS AND DISCUSSION

131Scaffold Development. Several organic ligands, exclusive
132of hydroxy and aminoquinolines frameworks, have been
133investigated as potential Cu(II) SMMCs. A recent review by
134Hureau et al. highlights the pros and cons of these structures.39

135Among them, tetradentate bis(pyridine), ENDIP, competes
136for both copper and zinc in Aβ aggregates, preventing their
137formation and solubilizing amyloid precipitates.53 Tetrahy-
138drosalen (Salan) ligands are strong metal binders and offer

Figure 1. Previous and current SMMCs 2-(((2-((pyridin-2-ylmethyl)amino)ethyl)amino)methyl)phenol, Salpyran.

Figure 2. Development of Salpyran by combining structures of ENDIP and Salan.
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139 antioxidant properties.54 Storr et al. designed multifunctional
140 carbohydrate ligands based around an N-methylated salan core

f2 141 (Salan-1, Figure 2).55 The pendant glucose arm facilitates
142 access to the brain and passes through the BBB via glucose
143 transporters. Both ligands were found to have significant
144 antioxidant properties in vitro. The O-glycosylation of the
145 Salan ligand was also investigated as a prochelator strategy,
146 where the glucose moiety effectively masks the coordination
147 pocket until hydrolysis occurs in vivo.56,57 It was confirmed that
148 the enzyme Agrobacterium sp. β-glucosidase could effectively
149 cleave the C−O bond of the glucose moiety releasing the N-
150 methylated Salan scaffold as the active chelator at the site.
151 Other attempts to improve the pharmacological profile of the
152 core Salan scaffold have involved the sulfonation of the
153 phenolic groups (Salan-2), which significantly improves

t1 154 solubility (Table 1).58 However, it is expected that the
155 presence of an ionizable sulfonate group will result in poor
156 BBB permeability, making it unsuitable for AD treatments.
157 Having all these in mind and building on our recent work in
158 nonsymmetric salan ligands,59 we envisaged that the
159 combination of the Salan and Endip moieties should yield a
160 nonsymmetric ligand, Salpyran (Figure 2). By breaking the C2

161 symmetry, a new 3N,O coordination environment is formed
162 that may partially fulfill the coordination environment of the
163 Cu(II) center. Salpyran offers the same number of
164 heteroatoms as TDMQ-20. Pearson’s acid−base principle
165 predicts that the addition of the pyridine will increase the
166 Cu(II) affinity and selectivity versus the Salan scaffold; this is
167 observed in the trend of pCu values observed for more
168 nitrogen-rich coordination pockets (Table 1). Also, compared
169 to the Salan (cLogP = 2.26, Table 1) scaffold replacement of a
170 phenol with a pyridine entity improves the aqueous solubility
171 by reducing the lipophilicity of the scaffold (cLogP = 1.73,
172 Table 1). However, the phenolic moiety provides the scaffold
173 with radical scavenging capabilities to act as an antioxidant

174during AD treatments.54 Our approach introduces an entirely
175different scaffold for use in AD treatment, contrasting the more
176classical approach of modifying known metal coordinating
177scaffolds.54,56−58,60−63

178Thermodynamic and Physiochemical Properties
179Compared to Other Cu Chelators. The selectivity of the
180ligand for Cu(II) over other metal ions is a critical factor in
181designing Cu(II) targeting SMMC. The chelator in question
182should have high selectivity toward copper to minimize
183competition with other essential metal ions and interactions
184with other metalloproteins. The stability constant (log β) of
185the metal complex (ML) is used to assess the affinity of a
186ligand for a specific metal (eq 1). Therefore, in designing AD
187therapeutics, it is beneficial to compare the stability constants
188for Cu(II) and Zn(II) due to the high concentration of Zn(II)
189in AD brains.64,65 The variability in the method and conditions
190used to measure the metal/ligand affinities has led to the use of
191the pM (eq 2) value when comparing and assessing the
192chelation capability of copper targeting SMMCs. The pM value
193is calculated at physiological pH and micromolar metal and
194ligand concentrations. Consequently, this offers added benefit
195by comparing chelators regardless of denticity or metal/ligand
196stoichiometry.
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199Synthesis of Salpyran. Salpyran can be synthesized via a
200stepwise protecting group strategy in which consecutive
201reductive aminations using salicylaldehyde and 2-formylpyr-
202 s1idine take place across an ethylenediamine backbone (Scheme
203 s11, Figures S1−S10). First, the reductive amination of either

Table 1. Thermodynamic and Calculated Pharmacological Relevant Properties of Chelators Targeting Cu(II) Homeostasis in
Alzheimer’s Disease*

*Constants are for the form Aβ1-x. apM = −log[M]free; [M] = [L] = 10 μM, pH = 7.4. bCalculated from conditional affinity value. cCalculated
from apparent affinity value at pH = 7.4. dCu/Zn selectivity calculated by pCu − pZn. eCoordination environment in solid state; equatorial (eq)
and apical (ap) sites. fCalculated using the SwissADME free to use webtool; both log P and log S and the consensus values.72
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204 aldehyde with N-Boc-ethylenediamine and subsequent depro-
205 tection give the amine precursors (1) and (2) (Scheme 1). A
206 second reductive amination, this time in the presence of
207 stoichiometric base (NEt3), yields Salpyran. It is possible to
208 modify Salpyran via variation in the aromatic substitution of
209 either aldehyde or by replacement of the diamine linker unit.
210 Functionalization is also possible at either of the amine’s
211 groups, making Salpyran a highly tunable scaffold compared to
212 similar symmetric structures. For this three-step synthesis, the
213 total yield of Salpyran via route A is 49% and significantly
214 drops to 19% for route B. The fact that there are two simple
215 synthetic routes demonstrates the synthetic accessibility
216 toward Salpyran, which offers flexibility in analogue design
217 in further medicinal chemistry pursuits. In the development of
218 drugs targeting neurodegenerative disorders, there has been a
219 trend in the design of multifunctional drugs that contain
220 structural moieties aiming to target multiple pathological
221 features at once or the addition of bioisosteres or isosteres to
222 modify the pharmacokinetic properties.66 This has led to an
223 interest in multifunctional drugs containing a metal-binding
224 unit;67−69 therefore, the high synthetic accessibility and
225 tunability of Salpyran may offer future opportunities for use
226 in multifunctional drugs.
227 Complexation Behavior with Cu(II) and Zn(II). The
228 protonation constants (Table S1) of Salpyran were
229 determined by pH-metric titrations. Using these data, the
230 stability constants of the Cu(II) and Zn(II) complexes were

t2 231 calculated (Table 2). At low pH (<4) values, the dicationic
232 [CuLH]2+ is the dominant species. At the same time, the
233 phenolic hydroxyl group remains protonated and uncoordi-
234 nated. Across the physiological pH values (7.4), the

235monocationic [CuL]+ is the dominant species. In contrast, at
236high pH values (>11), a further deprotonation process occurs,
237forming a neutral [CuLH−1] species likely via the deprotona-
238 f3tion of a coordinated water molecule (Figure 3A,B). The
239aqueous solution behavior is alike for Zn(II); however, no
240protonated complex is formed. At pH 5, 50% of Zn(II) is
241found unbound (Figure 3C). In all, the stability of the formed
242Zn(II) species is lower than that of the corresponding Cu(II)
243species, demonstrating the Cu(II) selectivity of Salpyran
244(Table 1). The species distribution plots of the Cu(II)
245complexes formed in equimolar metal to ligand solutions are
246shown in Figure 3. Further solution studies with Cu(II) were
247performed in a mixture of DMSO:H2O (70:30), as it is a
248common practice for biological studies. Notably, the ligand
249behavior changes drastically, corroborated by UV−vis studies
250(Figure 3D,E), showcasing the formation of other species and
251indicating that speciation is highly dependent on the solvent
252system (Table S2). In the less polar DMSO-containing solvent
253mixture, the positively charged [CuL]+ species is dominant in
254both systems in the physiological pH range (Figure 3) but is
255present in a narrower pH range, and the formation of the
256neutral [CuLH−1] species is favorable. Based on this evidence,
257we considered that solution studies in DMSO solution would
258add no value to our conclusion.
259The complex formation of Salpyran with Cu(II) and Zn(II)
260ions was studied at 1:2 and 1:1 ligand to metal ion ratios in the
261pH range 3−11 (Figure S11). Comparison of the UV−vis
262spectra of the Cu(II)-Salpyran system at 1:2 and 1:1 metal to
263ligand ratios (Figure S12) shows that similar spectra are
264obtained. These studies indicate that irrespectively of the metal
265to ligand ratio, only the 1:1 complex forms at pH values
266ranging from 3 to 11. Therefore, we assume that during in vivo
267studies, the 1:1 species is dominant, reducing the possibility of
268interactions with endogenous metalloproteins
269The thermodynamic properties and drug-likeness of
270Salpyran and other chelators discussed in this work are
271summarized in Table 1. The affinity of the ligands for Cu(II)
272and Zn(II) is measured using pCu and pZn values calculated
273from the reported conditional (log βcon) or apparent (log βapp)
274stability constants using [M] = [L] = 10 μM, p.H = 7.4. This
275was achieved using the Hyperquad simulation and speciation
276(HySS) software.71 Copper/zinc selectivity is given as pCu/

Scheme 1. Two Alternate Synthetic Routes Towards Salypyran Starting from N-Boc-ethylenediamine and Using Either (A)
Salicylaldehyde or (B) 2-Formylpyridine

Table 2. Stability Constants (log β) for Salpyran complexes
with Cu(II) and Zn(II) in Aqueous Solution Calculated
Using the SUPERQUAD software (ref 70)*

*I = 0.2 mol × dm−3 KCl, T = 298 K, standard deviations are in
parentheses.
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277pZn; the larger the value, the greater selectivity toward Cu(II)
278over Zn(II). Also included in Table 1 is the stoichiometry and
279coordination environment of the copper complexes according
280to the reported solid-state structures. The drug-likeness of the
281ligands has been predicted using the SwissADME web tool,
282and the calculated physicochemical properties and predicted
283BBB permeation and gastrointestinal absorption are also
284given.72 Ideally, any SMMC would follow the ‘ Lipinski rule
285of 5’73 and have a topological polar surface not exceeding 140
286Å2 (Veber rule).74 In all, the complexation behavior of
287Salpyran supports its potential use as a Cu(II) targeting
288SMMC. It has an exceptional affinity for Cu(II) (pCu = 10.65)
289and good selectivity for Cu(II) over Zn(II) (Cu/Zn = 4.60)
290(Table 1). Salpyran acts as a tridentate or tetradentate,
291dependent on the pH and only forms the 1:1 complex with
292Cu(II). (The characteristic bands of the Cu(II) complexes are
293summarized in Table S3.) Salpyran has a higher affinity and
294selectivity for copper when compared to its C2 symmetric
295analogues, ENDIP and Salan and comparable affinity but with
296lower selectivity when compared to TMDQ-20 (Table 1).
297From Table 1, it is evident that Salpyran offers both high
298affinity and selectivity for Cu(II) (pCu = 10.65, Cu/Zn = 4.6).
299Compared to both “parent” ligands, EDNIP and Salan,
300Salpyran outperforms, and its values are close to the state of
301the art TDMQ-20 (pCu = 10.75, Cu/Zn = 5.06). Salpyran has
302good solubility, and its calculated log P value suggests that
303good BBB permeation could be expected, although the number
304of hydrogen bond donors (HBD = 3) may be deleterious to
305BBB influx and may need to be factored into future drug
306design (e.g., masked HBDs, rigidification).80,81

307Salpyran Copper Crystal Structure. To better under-
308stand the complexation behavior of Salpyran with Cu(II), we
309carried out several complexation reactions in protic or aprotic
310solvents. The reflux of an equimolar solution of Salpyran,
311CuCl2, and NEt3 for 1 h in methanol yielded a viscous, green
312oil, which upon dissolving in DMF, followed by vapor diffusion
313of diethyl ether over 1 week, yielded blue crystals suitable for
314single X-ray diffraction in low yield (13%, Tables S4 and S5).
315 f4The solid-state structure is shown in Figure 4. Upon
316complexation with CuCl2, Salpyran yields an asymmetric
317Cu(II)-dimer consisting of two different (CuCl2HL) units, and
318Cl2 serves as a bridge of these two entities. The coordination
319geometry of the two Cu centers varies; Cu1 adopts a 3N,2Cl
320coordination environment (square pyramidal), while Cu2
321adopts a 3N,3Cl environment (distorted octahedron) (Figure
3224); notably, both phenol moieties remain protonated. This
323observation is in line with the potentiometric studies, which
324suggest that at low pH values (pH < 4), the [CuHL]2+ species
325is dominant. The crystal structure confirms that the ligands
326exhibit two five-membered chelated rings via coordination of
327the three nitrogen donor atoms (NH, NH, Npy), which may
328account for the high stability of [CuHL]2+ species (Table 1).
329Moreover, a close inspection of bond lengths and angles
330(Table S3) reveals three different Cu−Cl bond types: Cl2 and
331Cl3 strongly bind to Cu1 and Cu2, respectively, [2.2780(14) Å
332and 2.2649(15) Å], the Cu1−Cl1 [2.6466(15) Å] and Cu2−
333Cl4 [2.7294(15) Å] are weakened bonds, while the value of
334the Cu2−Cl2 bond is 3.0454(15) Å, which is indicative of a
335secondary, very weak interaction.82

336Further attempts to isolate crystals of the complex with the
337deprotonated ligand were unsuccessful. HRMS of the isolated
338crystals and viscous green oil is provided in the Supporting
339Information (Figures S13 and S14) and is in line with the

Figure 3. (A, B) Species distribution and UV−vis data of the Cu(II)-
Salpyran complexes formed in the equimolar solutions as a function
of pH in H2O. (C) Species distribution of the Zn(II)-Salpyran
complexes formed in the equimolar solutions as a function of pH. (D,
E) Species distribution and UV−vis data of the Cu(II)-Salpyran
complexes formed in the equimolar solutions as a function of pH in
mixture DMSO:H2O (70:30).
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340 [CuL]+ and [CuHL]2+ structures, respectively. In all, taking
341 into account that (a) differentiation in Cu−Cl bonding is due
342 to the weakly binding character of the Cl anion, (b) solution
343 studies were carried out using CuCl2 stock solutions, (c) UV−
344 vis studies suggest the existence of a Cu,3N (low pH value)
345 and Cu,3N,O (physiological pH values) chromophores, and
346 (d) ESI-MS studies corroborate the existence of monomeric,
347 not dimeric species, in methanolic or aqueous solution, we can
348 correlate the solid and solution phases and confirm the
349 dominance of the [CuL]+ species at physiological pH values.
350 Antioxidant Properties. Redox-active Cu(II) is known to
351 induce ROS formation and oxidative stress accumulation.83

352 Therefore, potential therapeutic SMMCs must be capable of
353 effectively inhibiting Cu(II)-induced ROS formation. As a
354 starting point, we adopted a recently reported protocol83 and
355 investigated the ability of Salpyran to arrest the ROS
356 production by monitoring ascorbate consumption under
357 three different conditions (open air, Ar, and sealed cuvette).
358 The ascorbate consumption is plotted as a function of time in

f5 359 seconds (Figure 5 and Figures S15−S20). The ascorbate

360consumption without Salpyran was followed for 2 h, while in
361the presence of Salpyran, the samples were monitored for 3 h.
362Samples were prepared in situ from stock solutions in 100 mM
363HEPES buffer at pH 7.1, and the pH was adjusted with 0.2 M
364HCl. The components were added in the following order:
365HEPES, HCl, water, ascorbate, CuCl2, and Salpyran (if any).
366The assay was carried out under anaerobic and aerobic
367conditions. In the anaerobic studies, the ascorbate con-
368sumption was not completed even after 2 h, while under
369aerobic conditions, the ascorbate is fully consumed in 1.5 h.
370 t3The calculated rate constants (from 5000 to 10,000 s, Table 3)
371for the samples containing Salpyran are under argon, 1.07 ×
37210−9 Ms−1 (=1.07 nMs−1), in open air, 1.37 × 10−9 Ms−1 (1.37
373nMs−1), and in a sealed cuvette, 1.36 × 10−9 Ms−1 (=1.36
374nMs−1). The rate constants were calculated by dividing the
375slope by the extinction coefficient of ascorbate, ε = 14,500 M−1

376cm−1. Any difference in rates with the reported protocol83 may
377be attributed to the stirring rate (300 rpm over 800 rpm) and
378ligand framework. These studies clearly show Salpyran slows

Figure 4. Solid-state structure of protonated Salpyran−copper complex.

Figure 5. Kinetics of ascorbate consumption with(out) Salpyran in different conditions (open air, Ar, and sealed cuvette). The reactants Salpyran
(if any)/CuCl2/ascorbate (12 μM/10 μM/100 μM) ratio.
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379 the ascorbate consumption, thus demonstrating its capability
380 to prevent ROS production.
381 Also, we investigated Salpyran’s oxidation ability in the

f6 382 presence of H2O2 (Figure 6 and Figures S21 and S22). The
383 reaction mixtures containing 1.0 mM Salpyran at metal to
384 ligand molar ratio 1:1 were incubated at 25 °C for different
385 time periods in the presence of H2O2 at ligand to H2O2 molar
386 ratio 1:4. The pH was adjusted to 7.4. The reaction was
387 initiated by the addition of a freshly prepared 1% H2O2
388 solution. The reaction was stopped by the addition of
389 Na2EDTA at ligand to Na2EDTA ratio 1:5. The reaction
390 process was monitored by analytical RP-HPLC using a Jasco
391 instrument, equipped with a Jasco MD-2010 plus a multi-

392wavelength detector. From these data, it is evident that
393oxidation does not occur in the sample containing equivalent
394amount of Cu(II) and Salpyran even after 2 days (Figure S21,
395upper). While in the sample containing 4-fold excess 1% H2O2,
396some oxidation occurs in the first 4 h (Figure S21, lower).
397Then, we assessed the ability of Salpyran in preventing
398Cu(II)-catalyzed oxidation in two different protein fragment
399assays at physiological pH values. It has previously been shown
400that a fragment of the human prion protein (HuPrP(103−
401112), dMKHM) (Figure S23) undergoes oxidation in the
402presence of radicals formed from the Cu(II)/H2O2 system.84

403The oxidation occurs only at the methionine residues, yielding
404three main products: two singly oxidized products (dMKHM +
405O, orange) and a doubly oxidized product (dMKHM + 2O,
406yellow). Both methionine residues at position 7 (Met109) or/
407and at position 10 (Met112) can be oxidized. However, only
408methionine sulfoxides are produced and not the corresponding
409sulfones. The oxidation was initiated by adding H2O2 to an
410equimolar Cu(II)-dMKHM-Salpyran solution, and the reac-
411 f7tion was monitored by HPLC for 1 day (Figure 7). After 1 h,
412almost 60% of HuPrP(103−112) remains intact, and no
413oxidation occurs in any methionine group, three times higher
414than the blank experiment. In contrast, after 2 h, the

Table 3. Calculated Rate Constants* for Kinetics of
Ascorbate Consumption in Different Conditions with Ratio
Salpyran/CuCl2/Ascorbate (12 μM/10 μM/100 μM)

*In nMs−1.

Figure 6. (upper) Ratio of the Cu(II)/H2O2 oxidized prion protein fragment, HuPr(103−112) (dMKHM), formed products with and without
Salpyran. (lower) An HPLC chromatograph of the oxidation process 0 min, 10 min, 60 min, 120 min, and 1 day. Teknokroma Europa Protein C18
(250 × 4.6 mm, 300 Å, 5 μm) column at a flow rate of 1 mL·min−1, monitoring the absorbance at 222 nm. Mobile phases were water (A) and
acetonitrile (B) containing 0.1% TFA.
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415 percentage of dMKHM is still high (40%, doubled compared
416 to that of the blank), while unreacted dMKHM parts are still
417 evident after 1 day (HPLC, Figure 6). These data demonstrate
418 Salpyran’s efficiency in hindering the oxidation of the peptide,
419 possibly by protecting the Cu(II) ions and inhibiting the ROS
420 formation from the binary Cu(II)/H2O2 system. The lack of
421 total inhibition of peptide oxidation was not observed,
422 potentially due to an excess of peroxide used in the experiment.
423 These results demonstrate the potential of Salpyran in
424 targeting Cu(II) dyshomeostasis and reducing the oxidative
425 stress associated with neuronal death.
426 One known product of oxidation induced by Cu(II) is
427 dityrosine cross-links on proteins, such as Aβ.85 Dityrosine
428 (DiY) formation, whereby closely spaced tyrosines covalently
429 cross-link by ortho−ortho coupling at C3 of their benzene
430 rings, has been used as a marker of oxidative stress, and DiY
431 has been shown to form under Cu(I/II)/H2O2 oxidative
432 conditions for Aβ and tau in vitro86−89 and within AD amyloid
433 plaques in vivo.87 In the presence of H2O2, Cu(II) induces
434 dityrosine cross-linking more efficiently, serving as an excellent
435 marker of oxidation.89 Also, Cu(II) is known to bind tau and
436 induce tau oxidation, dimerization, and aggregation.90,91

437 Recently, it was demonstrated that Cu(II) alone or in the
438 presence of H2O2 induces oxidation and dityrosine cross-
439 linking of a tau297−391 fragment which contains one tyrosine
440 at position 310.89,92 To further demonstrate the antioxidant
441 ability of Salpyran, we performed a series of reactions using
442 tau297−391 and Cu(II) (1:10 ratio) in combination with
443 H2O2 to induce oxidation and dityrosine formation, which
444 were quenched after 1 h with the addition of EDTA. The
445 appearance of the dityrosine species was observed by
446 monitoring the intensity of the peak at 410 nm (Figure 7).
447 Unlike the reactions with just Cu(II) or more so in
448 combination with H2O2, which showed robust induction of
449 dityrosine to approximately 1% and 7% dityrosine levels
450 (Figure S24), similar reactions mixed with Salpyran showed
451 no dityrosine cross-linking alongside the controls (below 0.5%)
452 (Figure 7). This suggests that Salpyran effectively prevents
453 dityrosine formation and thus oxidation of dGAE via binding

454to Cu(II). Combined with the aforementioned antioxidant
455studies, these results indicate that Salpyran can reduce ROS
456production in both Cu(II)/H2O2 and Cu(II)/O2/reductant
457systems.

458■ CONCLUSION
459We rationally designed and synthesized a highly modifiable
460copper chelating scaffold, Salpyran. This tetradentate ligand
461offers a 3N,O coordination environment and possesses good
462drug-likeness. Salpyran exhibits an extremely high affinity for
463Cu and excellent Cu(II) selectivity over Zn(II), comparable to
464the state of the art components. Solid and solution studies
465corroborate variation in coordination behavior at different pH
466values, but confirm the existence of only one dominant species
467at physiological pH values in aqueous solutions. Under
468physiological pH values and unaerobic conditions, the
469[Cu(II)(3N,1O)]+ complex remains intact for at least 2
470days, while in the presence of H2O2, an oxidation procedure
471occurs. Further studies showcase that Salpyran slows the
472ascorbate consumption, thus preventing ROS production.
473Finally, two different protein fragment assays that investigate
474antioxidant properties revealed Salpyran’s excellent efficacy to
475prevent the formation of ROS from Cu(II)/H2O2. Due to its
476drug-likeness, desirable coordination behavior, antioxidant
477properties, and tunability, Salpyran is an alternative scaffold
478to 8-hydroxy/aminoquinolines for further pharmaceutical
479development of Cu(II) targeting drugs in neurodegenerative
480disorders such as AD.
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Figure 7. Fluorescence monitoring of the formation of dityrosine bridges from Cu(II)/H2O2 oxidation of the tau dGAE fragment. Reactions were
prepared using μM dGAE mixed with Cu(II) at a 1:10 ratio or in combination with 2.5 mM H2O2 to induce oxidation and dityrosine cross-linking.
A separate dGAE reaction was prepared with Salpyran at a 1:10 ratio or Salpyran in combination with Cu(II) at a 1:1 ratio alone and in
combination with 2.5 mM H2O2. The reactions were quenched after 1 h with the addition of 2 mM EDTA.
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