
 

1 
 

XReport: An online structured reporting platform for radiologists 1 

 2 

Title / name of your software  3 

XReport 4 

 5 

Authors / main developers (incl. affiliations, addresses, email) 6 

1 Ahmed Harmouche (corresponding author), Department of Radiology, Medical School, University 7 

of Pécs; email address: ahmedharmouche92@gmail.com; mailing address: UP MS Department of 8 

Radiology: Hungary, 7624 Pécs, Ifjúság str. 13. phone number: +3630/8838435 9 

2 Ferenc Kövér, Pécs Diagnostic Center; email address: ferenc.kover@gmail.com; mailing address: 10 

Pécs Diagnostic Center: Hungary, 7623 Pécs, Rét str. 2. phone number: +3672/242312 11 

3 Sándor Szukits, Department of Radiology, Medical School, University of Pécs; email address: 12 

szukits.sandor@pte.hu; mailing address: UP MS Department of Radiology: Hungary, 7624 Pécs, 13 

Ifjúság str. 13. phone number: +3672/536197 14 

4 Tamás Dóczi, Department of Neurosurgery, Medical School, University of Pécs; email address: 15 

doczi.tamas@pte.hu; mailing address: UP MS Department of Neurosurgery: Hungary, 7623 Pécs, 16 

Rét str. 2. phone number: +3672/535900 17 

5 Péter Bogner, Department of Radiology, Medical School, University of Pécs; email address: 18 

bogner.peter@pte.hu; mailing address: UP MS Department of Radiology: Hungary, 7624 Pécs, 19 

Ifjúság str. 13. phone number: +3672/535801 20 

6 Arnold Tóth, Department of Radiology, Medical School, University of Pécs; email address: 21 

prsarn@gmail.com; mailing address: UP MS Department of Radiology: Hungary, 7624 Pécs, Ifjúság 22 

str. 13. 23 

 24 

 25 

 26 

 27 

 28 

Manuscript File Click here to view linked References

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

https://www.editorialmanager.com/softx/viewRCResults.aspx?pdf=1&docID=1407&rev=0&fileID=64141&msid=1e4d6781-6b9c-4b2b-86c2-11853617b9de
https://www.editorialmanager.com/softx/viewRCResults.aspx?pdf=1&docID=1407&rev=0&fileID=64141&msid=1e4d6781-6b9c-4b2b-86c2-11853617b9de


 

2 
 

Abstract.   29 

Currently the most widespread way of reporting in radiology is dictation mainly due to performance benefits. The 30 

output of this method is plain text, which varies in style (structure, nomenclature, abbreviations, etc.) and content 31 

between doctors even when reporting the exact same case. Templated radiology provides a structure for reporting 32 

and aims to help in generating more unified reports. We propose a web-based system for creating and using 33 

radiological structured reporting templates. 34 

We developed our software based on web technologies. We wrote the system with modular design in mind. We 35 

have separate libraries for the different functionalities: a rendering library which renders the templates based on a 36 

schema, an editor library which handles template creation, and an evaluator library, which parses, and executes 37 

our custom domain specific language, FormScript, which enables dynamic behaviour in our templates. We also 38 

developed a Single Page Application to create, browse, use and share templating reports. The backend of the 39 

application is powered by Firebase from Google.  40 

We deployed our system at a publicly accessible domain at https://app.radiosheets.com.  41 

 42 

 43 

Keywords:  44 

structured reporting; radiology; eHealth; JavaScript 45 

 46 

 47 

Required Metadata  48 

 49 

Current code version 50 

 51 

Table 1 – Code metadata (mandatory) 52 

Nr Code metadata description  Please fill in this column  

C1 Current code version v1.4.1 

C2 Permanent link to code/repository used of 
this code version 

https://github.com/wpmed92/xreport  

 
C3 Code Ocean compute capsule Not available 

C4 Legal Code License MIT License 

C5 Code versioning system used git 

C6 Software code languages, tools, and 
services used 

JavaScript, TypeScript, HTML5, CSS, Bootstrap, Firebase, npm 

C7 Compilation requirements, operating 
environments & dependencies 

 Webpack, Node.js, npm, Angular, Firebase 

C8 If available Link to developer 
documentation/manual 

https://wpmed92.github.io/xreport/ 

 
C9 Support email for questions ahmedharmouche92@gmail.com 

 53 

 54 

 55 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

https://app.radiosheets.com/
https://github.com/wpmed92/xreport
https://wpmed92.github.io/xreport/


 

3 
 

1. Motivation and Significance 56 

 57 

There is no consensus among radiologists on what a good radiological report is. Both radiologists and clinicians 58 

who receive the reports have different views on the optimal layout and content. [1] Currently the most 59 

preferred way of reporting is dictation. With the advance of speech recognition technology, it became faster, 60 

more accurate and easier to produce reports by dictating than by typing. [2] One of the key features of 61 

dictation is that it eliminates context switching. Radiologists do not have to take their eyes off the image at 62 

any point during reporting, whereas in case of typing they switch between looking at the keyboard and looking 63 

at the screen. However, the problem with both dictation and typing is that the output is plain text. Saving 64 

large amounts of reports in the Health Information System (HIS) in plain text will generate an archive which is 65 

not maintainable, and not searchable. Valuable information will be lost. Also, as mentioned earlier, no two 66 

radiologists will write the same report about the exact same image. The use of different nomenclatures, 67 

ordering of findings and abbreviations may result in confusion among doctors, and inefficiency in 68 

communication and patient management. To address these issues another form of reporting aroused: 69 

structured reporting. Structured reporting gives doctors a framework for writing reports. Mostly this 70 

framework is template based. A good example of this is the RadReport reporting template collection created 71 

by the Radiological Society of North America (RSNA). [3] The collection contains templates grouped by 72 

specialties. The templates are submitted by the users and then are reviewed by the Template Library Advisory 73 

Panel to ensure the submissions meet certain criteria. The templates are composed of sections, subsections, 74 

and input fields. The report is generated by filling the form. Using such templates for reporting have multiple 75 

benefits. They can help give radiologists a guideline on what the report should include for a given pathology or 76 

modality thus diminishing the possibility of missing some important findings or information. Furthermore, 77 

extracting data from such templates and saving it in a database is straightforward, as opposed to plain text 78 

reports.  79 

The drawback to templated radiology is that it is hard to find the optimum of how much a report should be 80 

structured. If one tried to cover all the possible cases and logical branches using built-in input fields with 81 

predefined options, it would be too time consuming to write the report. But if one used mostly text areas, the 82 

structured report would resemble a dictation template, and the benefits of structured reporting would be less 83 

significant.  84 

We propose a new radiological structured reporting software that is free, cross-platform, can be integrated 85 

into the dictation-based reporting workflow of a radiologist, enables template creation and report generation. 86 

With our solution we aim to make structured reporting more widespread and accessible, thus increasing the 87 

quality and consistency of radiological reports. 88 

 89 

 90 

 91 

 92 

2. Software Description 93 

 94 

2.1. Software Architecture 95 

 96 

The software was written as a web application to support all operating systems and devices. Two 97 

programming languages were used throughout the development process, namely JavaScript and TypeScript. 98 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 

4 
 

The project can be divided into two main parts: the library and the application. The library is a standalone 99 

module that implements the core features of the software: template building and reporting. The application 100 

can be any host that integrates the library, in our case it is a Single Page Application (SPA). Our workflow of 101 

creating reporting templates resembles intentional programming [4]. The programmer builds the foundation 102 

(template builder) of the software on top of which the domain expert (radiologist) can build the actual 103 

application (template). The programmer can later add if-else logic to the template.  104 

 105 

The library 106 

The library exposes four public methods to interact with: makeWidget, togglePreviewMode, getReportAsText 107 

and getTemplateForUpload. The entry point is makeWidget. It can instantiate a new empty template builder 108 

or load a template from a Uniform Resource Locator (URL). Internally it creates an instance of each of the 109 

following classes: XReportDOM, XReportRender, Evaluator. The XReportDOM implements a custom subset of 110 

the Document Object Model (DOM) which allows only specific elements of the DOM or compositions of DOM 111 

elements to be used. The XReportRender calls the render methods of the XReportDOM entities and uses them 112 

to assemble either a builder or a viewer component, depending on whether the library is in editor or viewer 113 

mode. In editor mode the templates can be modified, whereas in viewer mode they are read-only, and are 114 

ready to generate reports. The Evaluator is an interpreter for our Domain Specific Language (DSL) called 115 

FormScript. It adds dynamic behaviour to the templates through simple if-else logics and calculations. An 116 

example of a typical use case for FormScript is to show or hide a specific field if certain conditions are met, or 117 

to calculate a score for a scoring system. To view the generated report the library exposes the 118 

togglePreviewMode method. Calling this method will transfer the viewer from reporting state to output state 119 

or vice versa. In output state the reporter can see the textual output of the form. The generated text can be 120 

accessed by the getReportAsText function. When the library is in editor mode a template can be saved by first 121 

getting it in JavaScript Object Notation (JSON) format with getTemplateForUpload and then sending it to a 122 

web service or storing it locally. 123 

Template structure 124 

The templates are composed of rows, which may have one or more groups in it. Groups are label-entity pairs, 125 

and entities are the form’s input elements. 126 

The JSON)structure of a template is as following: 127 

{ “formScript”: “Form script source code is here”, report: [{ XFormElem #1 }, { XFormElem #2 }…]} 128 

General fields in XFormElem: 129 

 type: defines what element to render, e.g. row, group, sel, mulsel 130 
 id: a random generated unique identifier 131 
 scriptAlias: an identifier/variable name by which FormScript can reference the field; auto-generated, 132 

but can be changed by user 133 
 hideFromOutput: determines whether the value of the field should be visible in the generated text 134 

output 135 
 hidden: determines whether the field should be rendered 136 
 children: a list of groups in a row 137 
 child: the entity of a group 138 

 139 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 

5 
 

There are fields specific to each entity but they are not listed here. 140 

 141 

FormScript 142 

FormScript is a DSL that is specifically designed to run inside XReport templates. It allows custom logic to be 143 

executed safely in forms, thus adding dynamic behaviour to them. The script can be edited when the library is 144 

in editor mode and is accessible through the getScript library call. Once saved, it is stored in the same JSON file 145 

as the template itself. 146 

The FormScript syntax is similar to that of JavaScript with some syntactical differences shown in Table 1. 147 

 148 

Features JavaScript FormScript 

Logical and && and 

Logical or || or 

Power ** ^ 

if expression if (a == b) { … } if a == b { … } 

Table 1 Syntactical comparison of FormScript and JavaScript 149 

 150 

Supported binary operations: addition (+), subtraction (-), division (/), multiplication (*), modulo (%), less 151 

than (<), greater than (>), less than or equal to (<=), greater than or equal to (>=), equal to (==), logical and 152 

(and), logical or (or), to the power of (^) 153 

Unary operations: unary not (!), unary minus (-), unary plus (+) 154 

Statements: expression, assignment, if, function call 155 

Types: string, boolean, number 156 

Numerical and string literals are supported. The only variables that are allowed in FormScript are 157 

references to form elements. As mentioned earlier, variables are defined in the editor through the 158 

scriptAlias property. Function calls are defined only on variables. It is not allowed to declare functions 159 

neither are there predefined library functions without an element context. Calling a function has the 160 

following form: variable.function(…parameters). Functions should be defined for XFormElem classes. 161 

When XReport loads a report, it checks for an attached script. If there is a script attachment, it will start 162 

running it in an Evaluator instance.  163 

 164 

 165 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 

6 
 

Backend 166 

Our SPA has a backend powered by Google Firebase to store the template resources. We store the template 167 

files in storage buckets. The metadata for each template, such as date of creation, creator’s username, 168 

template name, template category is saved to Cloud Firestore documents. 169 

The process of uploading a template to our backend includes the following steps: 170 

 query template JSON from the library through getTemplateForUpload 171 
 assemble upload metadata: date of creation, category, username, template name, template URL 172 
 save the metadata to a Cloud Firestore document 173 
 upload the template JSON file to the storage 174 

 175 

Frontend 176 

The frontend is built as a SPA using the Angular [5] and the Bootstrap Cascading Style Sheets (CSS) 177 

frameworks. Every icon used in the app are taken from the Font Awesome icon library. Angular supports 178 

client-side navigation, asynchronous data binding among others, which enables us to easily fetch and render 179 

views. To retrieve templates from Cloud Firestore we use the official Firebase JavaScript Software 180 

Development Kit (SDK) and the RxJS reactive programming library. In Firebase terms the templates form a 181 

collection, and individual entries in this collection are documents. To show these documents on the screen we 182 

followed the Model-View-ViewModel pattern with data binding. 183 

 184 

 185 

 186 

 187 

 188 

 189 

 190 

 191 

 192 

 193 

 194 

 195 

3. Illustrative Examples 196 

 197 

Template viewing and building 198 

 199 

The viewer/builder page is where we load our templates and render them with our library as show in Figure 1. The 200 

form is centered horizontally and have a slight drop shadow around it. There is a button group on the right side of 201 

the form which contains different buttons based on which state the page is currently in (viewer or builder).  202 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 

7 
 

 203 

Figure 1 A COVID-19 CT template rendered in XReport 204 

 205 

Buttons in viewer state:  206 

 preview report 207 
 copy to clipboard (copies the report output to clipboard) 208 
 new report 209 
 share (copy the template link to clipboard so that it can be shared) 210 

 211 
 212 

Buttons in builder state: 213 

 save template 214 
 discard template 215 

 216 

Builder components 217 

 218 

There are 13 components to choose from when building a template:  219 

 220 

● Text field 221 
● Plain text 222 
● Number field 223 
● Calculated field 224 
● Boolean field 225 
● Single choice 226 
● Multiple choice 227 
● Textarea 228 
● Date 229 
● Header 230 
● Information 231 
● Rating scale 232 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 

8 
 

● Image 233 
 234 

If we take an oncological example, a question regarding the size of the tumor would be a number field, a TNM 235 

staging system could be created using single choice fields, or a rating scale, etc. Every component is added to the 236 

form with a label attached. A component-label combination is called a group. Groups are added to rows, and rows 237 

are added to sections. The sections make up the whole template.  238 

Component editors 239 

 240 

Every component has an editor view as shown in Figure 2. Every component type has its own editable properties.  241 

For example, the input field has a unit property (mm, cm, etc.), a single choice field has an options property, an 242 

image has an URL property. The component editor is activated by hovering the mouse over the component, then 243 

clicking on the pencil icon. Components can be deleted by clicking on the minus sign. 244 

 245 

Figure 2 A component editor for a single choice input field 246 

Row editors 247 

Row operations can be performed by clicking on the three vertical dots at the end of each row. The click event will 248 

trigger a secondary menu to open with all the components, and two actions: delete and duplicate.  249 

FormScript editor 250 

On the main builder component there is a button with a branch icon which toggles the view between template 251 
editing and FormScript editing. The FormScript editor as shown in Figure 3 is a simple resizable text area 252 
where the user can edit the dynamic logic that is attached to the template. When switching back from script 253 
editing, the script is automatically evaluated and the changes are visible. 254 

 255 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 

9 
 

 256 

Figure 3 The FormScript editor 257 

 258 

 259 
 260 

 261 

 262 

 263 

 264 

 265 

 266 

 267 

 268 

 269 

 270 

 271 

 272 

 273 

 274 

 275 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 

10 
 

4. Impact 276 

 277 

With XReport we built a free, cross-platform structured reporting platform for radiologists. It enables both creating 278 

and viewing reporting templates in an easy, user-friendly way. We built our software with modular design in mind 279 

and refactored the core features into a separate library to make embedding it into other products easy. We also 280 

built an application with the library embedded in it to demonstrate the easy integration. Furthermore, we 281 

designed a simple DSL called FormScript to add dynamic logic to our forms. The main feature of it, and the reason 282 

we created it in the first place, is security. It does not allow malicious code executions unlike the eval function of 283 

JavaScript. It is also very simple to use because of its limited feature set. Our templates are dynamic, responsive 284 

and have modern design. The templates generate easy to copy-paste structured textual output to be compatible 285 

with any HIS, and to integrate well into dictation-based workflows. Our templates help not only in precise 286 

reporting, but also serve as a guide for radiologists thanks to our custom form elements such as images and rating 287 

tables. 288 

We compared our solution to a similar free service developed by RSNA. From a technological point of view both 289 

programs are similar since they are built using web technologies but they have their differences when it comes to 290 

the ecosystem, editing process and user experience. The RSNA template library has a more mature ecosystem: 291 

there are a lot of contributors who build and upload templates, there are some nice to have features such as 292 

favouriting a template.  But the template editing itself is less advanced than ours. In the RSNA editor the screen 293 

flow to get to the actual editing is as following: click on “Create and Upload a Template button”, click on “T-Rex 294 

Template Editor”, interact with a popup which asks how the user wants to start the editing, click on one of the 295 

options. In our program the screen flow is a lot simpler: click on “Add new template”, and you are in the editor.  In 296 

the RSNA editor adding individual elements has some issues. The elements have to be drag and dropped from a 297 

side panel, which is problematic on mobile devices as there is not enough space. The element editor works as a 298 

pop-up which brings the user out of the editing context. In our app adding elements is responsive (works on 299 

mobile devices as well), and is inline, so the user remains in the editing context throughout the whole process. 300 

When it comes to how dynamic the templates are we found that RSNA templates do not allow dynamic behavior 301 

such as hiding/showing elements based on certain conditions. Through FormScript our system enables fully 302 

dynamic behaviour. The RSNA editor lacks some important elements such as images and rating tables which are 303 

essential in information sharing and oncological grading systems. 304 

 305 

 306 

5. Conclusions 307 

 308 

This paper introduces XReport, a free, web-based structured reporting platform for radiologists. It enables both 309 

creating and viewing reporting templates in an easy, user-friendly way. Our system is deployed at 310 

https://app.radiosheets.com and is ready to be used. Template creation and editing requires login, but template 311 

viewing, copying the generated reports and sharing the templates do not. The templates currently available in the 312 

app have been created and are used by our research group and by radiologists from Pécsi Diagnosztikai Központ 313 

and from the University of Pécs. 314 

 315 

 316 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 

11 
 

 317 

Conflict of Interest 318 

 319 

- No conflict of interest exists: 320 

We wish to confirm that there are no known conflicts of interest associated with this publication and there 321 

has been no significant financial support for this work that could have influenced its outcome. 322 

 323 

Acknowledgements 324 

A. T. was supported by the Bolyai Scholarship of the Hungarian Academy of Science. 325 

References 326 

 327 

[1]  D. Ganeshan, et al., “Structured Reporting in Radiology.,” Academic Radiology, vol. 25, no. 1, pp. 66-73, 2018.  

[2]  D.S. Rana, et al., “Voice recognition for radiology reporting: is it good enough?,” Clinical Radiology, vol. 60, 
no. 11, pp. 1205-1212, 2005.  

[3]  T. A. Morgan, M. E. Helibrun and C. E. Kahn, “Reporting Initiative of the Radiological Society of North America: 
Progress and New Directions,” Radiology, vol. 273, no. 3, pp. 642-645, 2014.  

[4]  C. Simonyi, M. Christerson and S. Clifford, “Intentional software,” in ACM Sigplan Notices, 2006.  

[5]  N. Jain, A. Bhansali and D. Mehta, “AngularJS: A modern MVC framework in JavaScript,” Journal of Global 
Research in Computer Science, vol. 5, no. 12, pp. 17-23, 2014.  

 328 

 329 

 330 

 331 

  332 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 

12 
 

Current executable software version 333 

Ancillary data table required for sub version of the executable software: (x.1, x.2 etc.) kindly replace examples in 334 

right column with the correct information about your executables and leave the left column as it is. 335 

 336 

Table 2 – Software metadata (optional) 337 

Nr (Executable) software metadata 
description   

Please fill in this column  

S1 Current software version 1.4.1 

S2 Permanent link to executables of this 
version  

https://app.radiosheets.com  

S3 Legal Software License MIT License 

S4 Computing platforms/Operating Systems Cross-platform, Web-based system 

S5 Installation requirements & 
dependencies 

No installation needed, works in any modern browser. 

S6 If available, link to user manual - if 
formally published include a reference to 
the publication in the reference list 

 

S7 Support email for questions ahmedharmouche92@gmail.com 

 338 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

https://app.radiosheets.com/

