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Abstract: Silicon nitride (SiNx) and hydrogenated silicon nitride (SiNx:H) thin films enjoy wide-

spread scientific interest across multiple application fields. Exceptional combination of optical, me-

chanical, and thermal properties allows for their utilization in several industries, from solar and 

semiconductor to coated glass production. The wide bandgap (~5.2 eV) of thin films allows for its 

optoelectronic application, while the SiNx layers could act as passivation antireflective layers or as 

a host matrix for silicon nano-inclusions (Si-ni) for solar cell devices. In addition, high water-imper-

meability of SiNx makes it a potential candidate for barrier layers of organic light emission diodes 

(OLEDs). This work presents a review of the state-of-the-art process techniques and applications of 

SiNx and SiNx:H thin films. We focus on the trends and latest achievements of various deposition 

processes of recent years. Historically, different kinds of chemical vapor deposition (CVD), such as 

plasma enhanced (PE-CVD) or hot wire (HW-CVD), as well as electron cyclotron resonance (ECR), 

are the most common deposition methods, while physical vapor deposition (PVD), which is primar-

ily sputtering, is also widely used. Besides these fabrication methods, atomic layer deposition (ALD) 

is an emerging technology due to the fact that it is able to control the deposition at the atomic level 

and provide extremely thin SiNx layers. The application of these three deposition methods is com-

pared, while special attention is paid to the effect of the fabrication method on the properties of 

SiNx thin films, particularly the optical, mechanical, and thermal properties. 

Keywords: SiNx thin films; chemical vapor deposition; radio frequency sputtering; atomic layer 

deposition 

 

1. Introduction 

Silicon nitride and hydrogenated silicon nitride thin films attract widespread scien-

tific interest across multiple application fields. They are characterized by an outstanding 

combination of optical, mechanical, and thermal properties, allowing for their application 

in different industrial branches. In solar cell applications, they serve as antireflection and 

passivating coatings [1,2]. The standard method for opening SiNx passivating films is 

screen printing [3]. However, Bailly et al. [4] reported laser ablation as a promising alter-

native method of opening SiNx layers on alkaline-textured crystalline Si to make contact 

with Si solar cells. This indirect method allows for the mitigation of surface defects, thus 

enhancing the performance of the device. Since solar cells typically consist of multilayer 

structures, including the substrate, the layer responsible for sealing, and the transparent 

conductive oxide layer, light management involves the reduction of reflectivity loss not 

only at the glass surface but also at the other interfaces. Due to the tunable refractive index 

of SiNx, it can effectively mitigate the reflectivity loss at the glass/TCO surface on scalable 

industrial sizes that extend up to the theoretical limit of 1.6%. [5] Moreover, Si-rich SiNx 

layers could act as host materials for nanometer-sized Si crystals (NCs). Multilayer stacks, 
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including alternating silicon-rich nitride (SRN) layers with embedded Si NCs and thin 

Si3N4 layers, are advantageous for photovoltaic applications since the thin Si3N4 layers en-

able better electrical conductivity and simultaneously allow for the growth of Si NCs with 

the desired size [6]. 

In the heterostructure field effect transistor (HFET) application field, in which GaN 

is utilized, a crucial role is played by the heterostructure surface passivation in order to 

decrease the influence of dispersion [7]. Capacitance-voltage [C(V)] characterization of the 

boundary of the heterostructure and the passivation thin film revealed that SiNx layers 

deposited by different methods are able to reduce the density of interface traps; however, 

the preparation method of the layer affects its passivation properties [8]. 

Photonic integrated circuits (PIC) could have a significant contribution to meet the 

ever-growing requirements of communication networks. Despite the fact that the high 

price of PICs compared to that of electronic-integrated circuits currently acts as a barrier 

for its application, scientific interest in this technology is continuously emerging [9]. 

Sharma et al. [10] provided an overview of the latest achievements of SiNx-based PICs, 

highlighting the benefits of these devices such as the small signal loss or the ability to 

work with wide-wavelength ranges. Frigg et al. [11] found that SiNx thin films deposited 

by direct current sputtering is able to further decrease the loss, which is attributed to the 

lack of hydrogen bonds compared to its other chemical vapor deposited counterparts. 

Improvement of non-volatile memories is particularly driven by the growing popu-

larity of mobile electronic devices. In this field, SiNx is applied as a dielectric layer to trap 

charges. To avoid heat induced charge migration from one trap to another, as well as to 

avoid the shift of the threshold voltage due to non-eliminated electrons and holes, Mine 

et al. [12] suggested the application of silicon-rich silicon nitride thin films in non-volatile 

memory devices. 

High hardness as well as the attractiveness of other mechanical and tribological prop-

erties make SiNx thin films potential candidates for hard coating applications under chal-

lenging environmental and thermal conditions [13]. Nano-indentation, micro-scratching, 

and tribological tests proved the hardness of SiNx to be similar to that of sintered Si3N4 

and elastic modulus near to that of cobalt chromium. Moreover the wear resistance of 

SiNx even exceeded that of cobalt chromium, approaching the wear resistance of bulk 

silicon nitride [14]. 

Apart from the photovoltaic devices, which have enhanced transmittance in the vis-

ible wavelength range and increased reflectance in the far infrared range, SiNx layers are 

a suitable material for low-emissivity (LowE) glass coatings, which are utilized in archi-

tectural glazings to mitigate heat losses in architectural applications. In this case, multi-

layer stacks, which usually composed of dielectric/metal/dielectric layers, are deposited 

on the glass surface, where the role of the silver layer is to reflect IR radiation back to the 

inside of the building and the dielectric materials protect the silver as well as act as anti-

reflection layers. SiNx thin films usually deposited by magnetron sputtering are often 

used as dielectric layers in such applications [15]. 

Stochiometric silicon nitride (Si3N4) exists in three different crystallographic struc-

tures, namely α, β, and γ phases [16]. While the most common α and β phases can be 

synthesized under normal pressure, the formation of the γ phase requires high pressure 

and temperature conditions [17]. Amorphous silicon nitride (a-SiNx) presents a wide 

range of layer properties that are a function of the structure and bonding configuration as 

well as of the composition of the film. Tailoring the refractive index of a-SiNx is feasible 

by controlling the N/Si ratio of the films [18–20]. 

Fabrication technologies of SiNx layers are generally divided into two main tech-

niques, namely the chemical vapor deposition (CVD) technique and the physical vapor 

deposition (PVD) technique, which are based on the types of involved reactions during 

deposition. In the case of CVD methods, the material introduced to the deposition cham-

ber in the gas phase is deposited as a result of chemical reactions on the substrate surface 

where a thin film is grown. Additionally, a common feature of PVD methods is that the 
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material, which is initially typically in the solid phase, is transformed to the gas phase, 

after which the material then returns to a solid phase by creating a layer on the desired 

substrate. In the case of PVD techniques, sputtering is the method predominantly used, 

while for CVD technologies, several different processes, e.g., hot wire (HW-CVD) [21,22], 

expanded thermal plasma (ETP-CVD) [23], electron cyclotron resonance (ECR-CVD) [24–

27], and both plasma enhanced (PE-CVD) [28–30] and remote plasma enhanced (RPE-

CVD) [31], are applied for the deposition of silicon nitride thin films. Due to the demand 

for extraordinary thin SiNx layers with precisely controlled composition and layer prop-

erties, increasing scientific interest appeared for a subset of CVD, namely the atomic layer 

chemical vapor deposition (ALCVD) or atomic layer deposition (ALD). In these processes, 

the thin film is formed on the substrate by atomic layers using chemical reactions in the 

gas atmosphere. For the deposition of SiNx thin films that are thermal [32–34], plasma-

assisted (PA), and plasma-enhanced (PE) [35–38], ALD are the method most often used. 

Considering the growing scientific interest ALD methods are receiving in recent years, we 

discuss them separately from other CVD methods. 

Kaloyeros et al. [39,40] provided excellent review articles on the field of SiNx and 

SiNx-rich thin films, including SiNx with carbon inclusions as well as hydrogenated SiNx 

thin films. They paid special attention to the precursor gas chemistry by overviewing the 

properties (e.g., bond dissociation energies) of the most common as well as most rarely 

used Si and N sources. They have emphasized that recently a new trend appeared in pro-

cessing technology that aims to lower deposition temperature. Guided by this objective, 

Si–N bonds and C-containing precursors were recognized and begun to be applied in re-

cent years. In addition, they highlighted that precursors which are able to react with sub-

strate defects are gaining more scientific interest. 

The aim of this study, on one hand, is to provide an overview on the latest achieve-

ments and trends of various deposition techniques of silicon nitride and hydrogenated 

silicon nitride. On the other hand, our intent is also to capture the effect of the preparation 

technique on the film properties, particularly the optical properties. The latter mentioned 

correlation between process parameters and film properties is considered to be useful as 

a detailed analysis of the composition and microstructure of SiNx and SiNx:H thin films is 

often not available in the literature. 

2. Chemical Vapor Deposition 

CVD is a widespread vacuum deposition method to prepare high quality thin films, 

where the desired film is created by the chemical reactions between precursor gases (raw 

materials) on the substrate surface. Many variants of CVD technology are known, of 

which the hot wire (HW-CVD) [21], expanded thermal plasma (ETP-CVD) [23], electron 

cyclotron resonance (ECR-CVD) [24], and plasma-enhanced (PE-CVD) [28] types are the 

most common for the deposition of SiNx and SiNx:H thin films. Figure 1 presents a sche-

matic overview of a typical PE-CVD reactor. 
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Figure 1. Schematic drawing of a PE-CVD reactor. 

2.1. Precursor Gas Atmosphere and Deposition Temperature 

Regardless of which of the abovementioned CVD methods are applied, one of the 

key governing factors of film properties is the precursor gas atmosphere. Torchynska et 

al. [41] investigated the photoluminescence and structural characteristics of Si-rich silicon 

nitride layers deposited by PE-CVD. They applied SiH4 and NH3 as precursor gases, with 

the R = [ammonia]/[silane] flow ratio varying between 0.45 and 1.0. Their systematic study 

on the layer properties revealed that the pattern of photoluminescence (PL) spectra is gov-

erned by the precursor gas ratio. They found that the PL peak is shifted down from 2.7–

3.0 eV to 1.9 eV, while R is decreased from 1.0 to 0.63. 

Lee et al. [42] performed a comparative study on the passivation and optical charac-

teristics of SiNx:H layers fabricated by PE-CVD from three different precursor mixtures: 

SiH4 + NH3 + N2 and SiH4 + NH3, SiH4 + N2. In terms of optical (antireflection) properties, 

they found minor changes between the reflectance spectra at the short wavelength range 

(300–550 nm). The absorption coefficient showed significant variations in the case of the 

different gas mixtures. The SiH4 + NH3 + N2 atmosphere was proved to result in the lowest 

absorption coefficient, while the highest value was obtained for SiH4 + N2. In the case of 

the passivation properties, they studied the lifetime of the minority carrier and the capac-

itance–voltage (C–V) correlation as a function of gas mixtures. In conclusion, films depos-

ited from the SiH4 + NH3 + N2 gas mixture were proved to be the best choice according to 

the optical and passivation properties for solar cells application. 

Jasruddin et al. [43] systematically investigated the effect of ammonia concentration 

with two specified silane gas flows on the optical bandgap and dark conductivity of 

PECVD SiNx:H layers, applying a gas mixture of ammonia, hydrogen, and silane gases. 

The highest optical band gap and lowest dark conductivity they have achieved were 3.97 

eV and 1.05 ∙ 10���  
�

���, respectively. These parameters were obtained by the lower (5 

sccm) silane gas flow and with 25% ammonia gas fraction. A similar trend was found by 

Vet et al. [44] who deposited SiNx:H layers by the same method, varying the gas ratio of 

silane while the amount of ammonia gas was fixed. In accordance with the results of 

Jasruddin et al., they have found that while the silane gas flow was decreased, the optical 

band gap was increased. 

Besides the precursor gas atmosphere, the deposition temperature was proved to be 

an influencing factor of several layer properties. K. Jhansirani et al. [45] studied the optical 

behavior and chemical bonds of silicon nitride layers deposited at temperatures 750, 800, 
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and 850 °C. They found a rising trend of the refractive index while the deposition temper-

ature was increased, which could be explained by the densified growth of the layer at 

increased temperatures. Furthermore they studied the evolution of the Fourier trans-

formed infrared spectroscopy (FTIR) peak corresponding to the Si-N-Si stretching mode. 

The move of the peak location from 942 to 881 cm−1 as well as the increase of the full width 

at the half maxima of the peak, with respect to the increase of temperature, were revealed. 

Reflectance calculations proved that the deposition temperature of 800 °C is optimal for 

fabrication antireflection coating for solar cell applications. Conversely, different applica-

tions require much lower deposition temperatures of SiNx thin films. For instance, plastic 

substrates for organic electronic devices (such as organic light-emitting diode (OLED)) are 

receiving more attention, wherein one of the key challenges concern that plastics are per-

meable for gases found in the atmosphere, such as water vapor or oxygen. Alpuim et al. 

[46] investigated SiNx multilayer stacks fabricated by HW-CVD and the special treatment 

by means of Ar-plasma between single layers as potential permeation barrier layers for 

these applications. Approximately 30 eV ion energy and the low-temperature (~100 °C) 

deposition process were found to result in a minimal water vapor transmission rate 

(WVTR) for polyethylene terephthalate coated by SiNx multilayer stacks. 

2.2. Mechanical Properties 

Outstanding mechanical properties of SiNx thin films allow for its use in component 

fabrication of microelectromechanical systems (MEMS) [47], where they act as carrier 

membranes. In these devices, the intrinsic state as well as the magnitude of film stress 

were proved to directly affect the performance and reliability of the devices. Toivola et al. 

[48] studied the deposition stress and hardness of low-pressure CVD SiNx films by means 

of ammonia (NH3) and dichlorosilane (DCS) at different deposition temperatures (813–

876 °C), pressures (208–615 mTorr), and [DCS]/[NH3] precursor gas ratios (4.5–8.7). Dep-

osition (tensile) stress was varied in the range of 135–235 MPa and showed a decreasing 

trend with higher fabrication temperatures, pressures, and precursor ratios. Nanoinden-

tation tests utilizing a Berkovich (three-sided diamond-shape pyramid) tip revealed that 

the hardness of the films (28.0 ± 2.3 GPa) is almost independent from the film stress ob-

tained by the fabrication at room temperature. 

Slightly lower hardness was found by Taylor [49] who investigated the Si/N ratio 

effect on the mechanical behavior of PECVD SiNx layers. Their work revealed that chang-

ing the ratio of the precursor flow (e.g., NH3, N2, and SiH4), while all other processing 

parameters were kept constant led to SiNx films with different stoichiometries with the 

Si/N ratio varying between 1.04 and 1.53. Measured hardness values were in the range of 

16.1–19.8 GPa and showed an increasing trend against the increasing Si/N ratio. 

King et al. [50] studied the hardness of SiNx thin films among other mechanical pa-

rameters. It was revealed that the distribution of H-bonds between Si–H and N–H bonds 

affects the hardness of the layer. According to their results, hardness varied between 13 

and 23 GPa, while the densities of Si–H and N–H bonds were in the range of 0.5–1.2 × 1022 

cm−3 and 0.8–2.0 × 1022 cm−3, respectively. Higher N–H bond density was found to contrib-

ute to enhanced hardness, while increasing Si–H bond densities resulted in decreased 

hardness values. For the investigation of apparent fracture toughness, they applied 

nanoindentation (Kind) and examined SiNx:H films with film stress varying from 300 MPa 

tensile to 950 MPa compressive stress. Kind was found to vary in a wide range from 

0.2 to 8.0 MPa ∙ √m, which was attributed to mainly the intrinsic stress of the films. Near 

linear correlation was revealed between Kind and the intrinsic film stress. Using empirical 

values from the linear regression analysis, the 1.8 ± 0.7 MPa ∙ √m stress-free fracture 

toughness was also determined for SiNx:H films fabricated by PECVD. 

Since SiNx layers are increasingly used as flexible membranes, characterization of the 

two important elastic moduli, namely the Poisson’s ratio (v) and Young’s modulus (E), is 

necessary. Direct measurements of these parameters for submicron thick layers are un-

reachable for most of the conventional techniques. Brillouin light scattering (BLS) serves 
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as a non-destructive tool to overcome these difficulties [51]. BLS was exploited by Carlotti 

et al. [52] to study E and v for dielectric films such as SiNx, silicon oxynitride, and silicon 

oxide fabricated by various techniques on the (100) Si-substrate. Of all the layers they ex-

amined, E and v were proved to be the highest for LPCVD SiNx layers, with values of 256 

GPa and 0.28, respectively. 

2.3. Thermal Properties 

The ability to dissipate heat is frequently a restrictive factor of microelectronic de-

vices, therefore high thermal conductivity is desirable for thin films such as SiNx, as used 

in this application field. Mastrangelo et al. [53] investigated thermal properties of low-

residual stress LPCVD SiNx layers by means of composite microbridge resistors built up 

from two layers. In this arrangement, the composite bridge consisted of SiNx as the bot-

tom layer and polycrystalline silicon as the top layer, and each bridge laid on two 3 µm 

thick phosphosilicate glass (PSG) pedestals. They found a thermal conductivity of 3.2 ±

0.5 Wm��K�� , thermal diffusivity of 1.3 ∙ 10�� ± 1 ∙ 10��cm�s�� , and heat capacity of 

0.7 ± 0.1 Jg��K��. Table 1 shows the thermal conductivity values reported in the literature 

for other commonly used materials in microelectronic devices for comparison. 

Table 1. Thermal conductivity of widely used materials in microelectronics devices. 

Material Thermal Conductivity (Wm−1K−1) 

SiNx 3.2 [53] 

a-Si 1.7–2.24 [54] 

a-SiO2 1.1–1.26 [55] 

a-HfO2 0.49–0.95 [56] 

a-Al2O3 1.18–1.70 [57] 

a-TiO2 0.7–1.7 [58] 

The effective transverse thermal conductivity of dielectric layers was proved to de-

crease significantly while the film thickness is reduced, which is attributed to the interfa-

cial thermal resistance developed at the interface of the thin film and Si substrate. [59] The 

research of Griffin et al. [60] focuses on the effect of the CVD SiNx film thickness and the 

temperature on its experimentally determined thermal conductivity. It was revealed that 

the effective transverse thermal conductivity of SiNx layers decreases substantially 

against the reduced film thickness, while conductivity increases from 

2.0 �� 2.5 W m��K�� due to the increase of temperature from 70 to 200 °C. 

A similar correlation between temperature and thermal conductivity was found by 

Lee et al. [61] who characterized 20–300 nm thick PECVD SiNx films using the 3ω method. 

In this process, a metal strip is in contact with the thin film (acting as heater and thermom-

eter). The strip heats the sample periodically by means of AC current, which causes a de-

layed periodic temperature response of the sample. Then, the amplitude-modulated sig-

nal of the voltage drop across the strip is analyzed. The name of the method (3ω) refers to 

the fact that if the angular frequency of the current applied to the strip is signed with ω, 

then a small part at the third harmonic 3ω of the voltage drop signal is used to determine 

the thermal properties of the thin film. Lee et al. found increasing thermal conductivity 

from ~0.25 to ~0.7 Wm��K��, while the temperature was increased from 77 to 350 K. They 

compared their results with data of atmospheric pressure CVD (APCVD) SiNx layers. It 

was revealed that thermal conductivity of even relatively thick PECVD SiNx is reduced 

relative to APCVD SiNx films with a temperature-independent factor of 2. 

A significant effect of layer thickness on thermal conductivity was also proved by the 

study of Bogner et al. [62] who have investigated PECVD SiNx films with various thick-

nesses. Thermal conductivity of the layer characterized by the 3ω technique was found to 

vary from 0.8 to 1.7 Wm��K��, while the film thickness changed from 298 to 1001 nm. The 

obtained value was significantly lower than that reported for bulk Si3N4 [63]. 
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2.4. Optical Properties 

One of the widest application fields of SiNx thin films concern solar cells. In these 

photovoltaic applications, SiNx layers act as antireflective coatings (ARC) by means of its 

tunable optical properties. Besides a single layer, stacking ones can be also employed by 

adjusting the thickness and refractive index of the layers. Joshi et al. [64] investigated the 

refractive index of LPCVD and PECVD SiNx layers by means of ellipsometry. In the case 

of the LPCVD technique, the refractive index of 2.01 was found to be characteristic, while 

for PECVD, the effect of the precursor flow ratio, thus the Si/N atomic concentration ratio 

of the films on the refractive index, was experienced. It was revealed that the decrease of 

the silane to ammonia ratio (Rx) led to decreasing the Si/N atomic concentration from 0.92 

to 0.70 and thus resulted in a decreasing trend of the refractive index as well from 1.96 to 

1.8. A similar correlation was found by Lowe et al. [65] who investigated the optical prop-

erties of SiNx films prepared by the PECVD technique, varying the ammonia to silane 

flow ratio from 0 to 20. They found that the refractive index was reduced monotonously 

from ~2.7 to ~1.6, while the N/Si atomic concentration ratio was increased in the range of 

0–1.2. The work of Maeda et al. [66] highlighted that in addition to the N/Si atomic con-

centration ratio, substrate temperature and radio frequency (rf) power density also play 

significant roles in determining the refractive index of PECVD-deposited SiNx layers. In 

terms of substrate temperature, the refractive index of the layers were increased from 

~1.91 to ~1.98, while substrate temperature was increased from 250 °C to 350 °C. Their 

results showed that the refractive index of the thin films was able to be tuned over an even 

wider range by adjusting the rf power density. In applying the substrate temperature of 

350 °C, an increase of the refractive index from 1.98 to 2.09 was experienced, while the rf 

power density was changed from 0.5 to 1.5 W/cm2. Of the samples they studied, those 

with a refractive index of 1.98, N/Si ratio of 1.32, and density of 2.8 g/cm3 were proved to 

be optimal for the fabrication of SiNx layers as final passivation films for silicon-integrated 

circuit technology. A similar trend of the refractive index was found by Mei et al. [67] who 

have investigated the optical behavior of as-deposited and annealed PECVD SiNx layers, 

varying the deposition temperature from 300 °C to 500 oC. The refractive index of the lay-

ers at a certain wavelength (632.8 nm) showed an increasing trend from 2.05 to 2.11, while 

the deposition temperature was raised from 300 °C to 500 °C. Investigation of SiNx films 

annealed for 30 min at 690 °C revealed that the refractive index slightly decreases due to 

annealing, while the correlation between the deposition temperature and refractive index 

remains after annealing. 

Charifi et al. [68] characterized how the ammonia to silane ratio (R = [NH3]/[SiH4] in 

the range of 0.5 to 5 influences the refractive index of SiNx layers prepared by ECR-

PECVD. It was revealed that the refractive index at 633 nm increased from 1.95 to 3.35, 

while R was decreased from 5 to 0.5. This trend can be interpreted by the fact that increas-

ing silicon content of the layers due to higher silane concentration of the precursor gas 

mixture (R < 2) results in the reflective index approaching ~3.42, which is a value charac-

teristic for c-Si, while lower silane content (R > 2) leads to a quasi-constant refractive index 

close to that of Si3N4(n = ~ 1.97). 

An ideal SiNx layer, such as ARC of crystalline silicon solar cells, should enhance 

transmittance, while, in parallel, suppressed surface recombination is also desirable. The 

key challenge in this area is that the high limit of effective surface recombination velocity 

(Seff,UL) can be reduced at the cost of increasing the refractive index of the SiNx layers [69]. 

Since SiNx layers with a high refractive index absorb well light in the short wavelength 

range, thus reducing the optical transmission, the trade-off is outlined between the trans-

mittance and surface passivation. The work of Wan et al. [70] aimed to optimize these two 

parameters simultaneously by circumventing the abovementioned trade-off. They inves-

tigated SiNx layers prepared by the PECVD method, varying the temperature and pres-

sure of the fabrication, as well as the precursor flow ratio and total gas amount. They also 

examined the effect of microwave plasma power and radio-frequency (RF) bias voltage. 

They found that the key process is to deposit at higher pressures in a microwave/RF 
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PECVD reactor, which provides the simultaneous decrease of n and Seff,UL. The latter was 

found to depend mostly on the defect density of the interface between silicon and SiNx. 

Furthermore, by optimizing the deposition parameters, a comparatively constant and low 

Seff,UL was obtained on p and n-type c-Si substrates, with low resistivity in the wide range 

of n = 1.85–4.07 at 632 nm wavelength. 

2.5. Post-Deposition Treatment 

SiNx layers grown by different types of the CVD method tend to be rich in hydrogen, 

therefore post-deposition thermal treatment is often applied to reduce the hydrogen con-

tent of the films. Heat treatment after layer deposition can take place under different con-

ditions (e.g., with or without vacuum break, in situ/ex situ, and various annealing types, 

atmospheres, and lengths). Alpuim et al. [46] applied in situ annealing for SiNx thin films 

with 50 nm thickness prepared by HWCVD on c-Si substrates and investigated the effect 

of the power density, duration, and pressure of 13.56 MHz Ar plasma treatment on the 

features of the layer stacks. They found that 2.1 nm as a deposited surface roughness could 

be decreased to 0.7 nm by applying optimized plasma conditions (30 eV plasma energy, 8 

min treatment duration). In contrast, treatment with high energy (100 eV) plasma resulted 

in 2.7 nm surface roughness, which could be attributed to the damaged surface due to the 

sputtering of atoms. 

An alternative annealing method is the rapid thermal annealing (RTA) method, 

which involves rapid heating usually provided by an indirect infrared lamp as a heating 

source for high temperatures (~500–1000 °C) of the deposited layer and substrate. Once 

the required temperature is reached, it is held for a certain time, typically for 30–60 s. Ren 

et al. [71] investigated the density of the charge-trapping centers in PECVD SiNx layers as 

a function of the film stoichiometry and temperature of the post-deposition RTA with a 

fixed duration of 30 s. They found that as a result of the heat treatment at temperatures 

varying between 500 and 800 °C, the defect density of the layers increased regardless of 

the N/Si ratio; however, the most expressed raise was experienced for the sample, which 

was the most rich in Si. They found that high temperature annealed N-rich layers were 

more suitable for solar cells as effective surface passivation layers. In terms of the impact 

of RTA on the optical behavior of SiNx layers, Keita et al. [72] performed a comparative 

analysis wherein they studied the influence of the annealing atmosphere and temperature 

on the optical parameters of PECVD SiNx thin films. They considered three different (850, 

950, and 1050 °C) RTA temperatures and found that the dielectric function (DF) follows 

minor variation below 950 °C; however, above this temperature, more stressed change 

was observed. Comparing the optical properties of the Si nano inclusions of films after 

RTA treatment revealed that the imaginary DF was increased with the annealing temper-

ature, which could be attributed to the enhanced ability to form crystal lattices at elevated 

temperatures higher than 950 °C, resulting in more active contributions of Si nanoinclu-

sions to the absorption. Additionally, higher RTA temperature leads to a significant de-

crease of the gap energies, which should be attributed to structural modifications of the 

embedded silicon. Finally, the effect of the annealing atmosphere was investigated. It was 

found that the introduction of oxygen to the argon slightly affected the properties of the 

films as well as the volume of the Si nanoinclusions; however, the effect of the annealing 

gas mixture or the precursor gas flow ratio during deposition was much more pro-

nounced. 

Jafari et al. [73] performed hydrogen effusion measurements for SiNx:H thin films 

prepared by PE-CVD from NH3 and SiH4 gases. Additional FTIR measurements revealed 

that the peak corresponding to the hydrogen effusion was shifted from 550 °C to 800 °C 

due to the change of the hydrogen bonding from Si–H to N–H bonds. Furthermore, it was 

found that the N-gradient SiNx stacking layer showed s 50% less hydrogen evolution rate, 

which was attributed to the not fully effused hydrogen. Finally, they observed that the 

annealing process caused a surface change (blistering), which appeared in the form of 

dark spots with a diameter of roughly 80 µmon as depicted in light microscopy images. 
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In terms of the background of such a layer surface change, the peak related to early hy-

drogen effusion and the formation of the surface blistering correlated clearly. 

3. Physical Vapor Deposition 

Physical vapor deposition (PVD) refers to a method used for thin film deposition in 

microtechnology and nanotechnology. A common feature of PVD methods is that an ini-

tially typically solid or liquid material is transformed to the vapor phase, which then re-

turns to the solid state on the surface of the substrate. PVD can be carried out in several 

ways. Figure 2 shows the schematic drawing of an RF sputtering chamber. 

 

Figure 2. Schematic drawing of an RF sputtering chamber. 

In the case of SiNx deposition, sputtering is the most common technique in which the 

solid state material (which is called the target in this process) is brought to the vapor phase 

by means of bombarding the material with electrically charged particles, causing atoms 

and groups of atoms to escape from its surface. The advantage of sputtering in the SiNx 

deposition process is the ability to fabricate hydrogen-free layers due to the lack of hydro-

gen-containing precursor gases. Additionally, this technique also allows for the fabrica-

tion of hydrogenated silicon nitride (SiNx:H) films by introducing hydrogen as an addi-

tional process gas. It was proven in one of our previous works [74] that the hydrogen 

incorporation into RF sputtered SiNx layers has a significant effect on the layer porosity. 

As shown in Figure 3, high-angle annular dark field scanning transmission electron mi-

croscopy (HAADF STEM) confirmed denser SiNx films for hydrogen-free sputtering than 

for the hydrogenated sputtering process, which resulted in a porous structure of the thin 

films with homogenously distributed nanometer-scale porosities. 
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(a) (b) 

Figure 3. HAADF-STEM images of a-SiNx layers: (a) hydrogen-free a-SiNx layer and (b) a-SiNx:H. 

3.1. Effect of the Power Supply 

SiNx layers can be deposited by a sputtering system, utilizing either direct current 

(DC) or radio frequency (RF) power delivery systems. Dergez et al. characterized SiNx 

layers sputtered by DC [75] and RF [76] power supplies. They found that in the case of the 

DC power supply, the deposition rate was proportional to the utilized power. In addition, 

the power normalized deposition rate was decreased from 0.041 to 0.037, while the back 

pressure of nitrogen was increased from 3 to 9 µbar during the deposition, which was due 

to the enhanced number of collisions of the atoms leaving the target. The same behavior 

of the deposition rate against the power and back pressure of nitrogen was revealed for 

RF sputtering as well; however, the deposition rate for the RF power supply was found to 

be lower by a factor of 1.5–2 than the deposition rate for the DC power supply, whose 

behavior was attributed to the disparate power distribution in the sheath and plasma, 

known as the “deposition rate paradox” in the literature [77–79]. 

Kiseleva et [80] al. investigated the effect of the power supply characteristics on the 

properties of sputtered silicon nitride layers. A comparison was performed on thin films 

obtained by a DC power source and pulsed current power source with 100 and 134 kHz 

frequencies. They found that the deposition rate decreased while the nitrogen flow in-

creased, regardless of the applied power supply type; however, in the case of low nitrogen 

flow (~4.5–6 sccm), the pulsed current source with 134 kHz provided a significantly higher 

deposition rate. The refractive index of the layers decreased from 2.7 to 1.9, while the ni-

trogen flow was increased from 4.5 to 10.5 sccm for all three types of power sources. Ina 

addition, clear differences were revealed in the morphology of the thin film surfaces ob-

tained by different power supplies. It was found that in the case of DC power, electrical 

arcs on the target surface caused droplet fractions formed on the film surface, which may 

have resulted in the decadence of the efficiency of the film. It was proved that pulsed 

current mode avoids the formation of droplets. 

In certain applications, the simultaneous use of different power supplies and/or tar-

get types (co-sputtering) is advantageous to obtain the desired layer performance. So et 

al. [6] investigated how ultrathin stochiometric SiNxbarrier layers influence the formation 

and luminescence of Si nanocrystals (NCs) in multilayer stacks, which consist of alternat-
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ing Si-rich nitride (SRN) and ultrathin Si3N4 films. They applied the co-sputtering tech-

nique from a metal Si target and DC power source, and from a Si3N4 ceramic target and 

RF power source to control the Si content (ratio of N to Si atoms) in SRN thin films. In-

creased DC power of the Si target resulted in higher Si content of the SRN film. Following 

the deposition of 25 alternating SRN layers with 5 nm thickness and Si3N4 layers with 1 

nm thickness, the multilayer structure was covered by a Si3N4 layer with 10 nm thickness 

and was annealed in the N2 environment at higher than 900 °C temperatures. It was found 

that uniformly sized Si NCs were created during the annealing process. Furthermore, the 

Si3N4 barrier layers with 1 nm thickness were proved to be able to retain the Si NCs’ for-

mation within the SRN layers. Improved photoluminescence (PL) performance could be 

related to the enhanced crystallization and nitride passivation in the coatings. 

3.2. Mechanical Properties 

Vila et al. [81] characterized the hardness and Young’s modulus of SiNx layers pre-

pared by reactive sputtering, utilizing pure Si and Si3N4 sputtering targets as well as Ar/N2 

gas mixtures. They found that hardness and Young’s modulus were varied in the range 

of 8–23 and 100–210 GPa, respectively, depending on the preparation parameters. A clear 

inverse correlation between the oxygen concentration and the mechanical properties was 

proved, which was attributed to the fact that Si–O bonds in the SiNx layers tended to 

decrease the hardness and elastic modulus towards the values typical for silicon oxide. 

Additionally, they investigated a model for estimating the mechanical properties of SiNx 

from the elastic constants of Si–O and Si–N bonds. The calculations yielded 23.9 and 215 

GPa high limits for the hardness and elastic moduli, respectively, which represented ox-

ygen-free pure silicon nitride. Finally, they found that the hardness of the layer can be 

effectively improved by altering amorphous SiNx into partially crystalline forms, which 

can be achieved either by applying higher substrate temperatures during the fabrication 

or by post-deposition annealing. It was revealed that the substrate temperature of 850 °C 

results in increased hardness and an elastic modulus of up to 23.4 and 220 GPa, which are 

similar to the values that were foreseen by the abovementioned model for the high limit 

of mechanical properties. In the case of post-depositon thermal treatment, the vacuum 

level of the annealing atmosphere could be a limiting factor considering poor vacuum 

conditions lead to the oxidation of films, thus degrading the mechanical properties. A 

similar correlation between the nitrogen concentration and the hardness was found by 

Schmidt et al. [82] who investigated the mechanical properties of SiNx layers deposited 

by high power impulse magnetron sputtering against the N2/Ar gas amount ratio. It was 

revealed that increasing the N concentration of the films resulted in increased film densi-

ties of up to 2.98 g/cm3. In parallel, hardness and Young’s modulus also showed an in-

creasing trend, which should be the result of higher SiNx density due to the enhanced N 

concentration.  

3.3. Thermal Properties 

SiNx thin films with various excess silicon are hopeful candidates for light sources, 

which are compatible with silicon-based electronics [83]. In such an application device, 

operation and stability can be enhanced by improving the thermal conductivity, thus re-

ducing the heating of the photonic crystal. Marconnet et al. [84] investigated thermal con-

ductivity by time-domain thermoreflectance (TDTR) measurements of ~400 nm thick 

amorphous SiNx samples with various excess Si concentrations deposited by nitrogen re-

active magnetron sputtering. They found that the thermal conductivity of the samples 

showed a decreasing trend in the range of 2.66–1.25 W/mK against the silicon concentra-

tion. The investigation of the effect of the post-thermal annealing temperature (600–1100 

°C) revealed that for a certain level of excess Si concentration (45.5%), the thermal conduc-

tivity increased with the increasing annealing temperature. 

In magneto-optical (MO) recording applications, amorphous SiNx layers are used as 

protecting dielectric films for amorphous rare earth-transition metal (RE-TM) coatings, 
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which are the functional layers of the MO medium. In such an application, the process 

wherein the device writes is a thermal writing process in which thermal cycles are ap-

pended to MO disks. As a result of the thermal expansion coefficient difference between 

the layers and substrates, thermal stress could appear within the thermal cycle. Lai et al. 

[85] characterized the thermal stress of SiNx films at temperatures varying between 25 

and 400 °C. During the heating processes, the stress was almost constant, while after the 

second thermal cycle, the residual stress switched from compressive (~−780 MPa) to ten-

sile (~1050 MPa). 

During heat treatment, a part of the silicon–hydrogen (Si–H) and nitrogen–hydrogen 

(N–H) bonds of the SiNx:H thin films broke. Consequently, molecular hydrogen was 

formed, which was then released either to the environment or towards the substrate, play-

ing an important role in the densification of the layer as well as in the formation of its 

passivation behavior [31]. A similar surface deformation (surface blistering) was found by 

Jafari et al. [73] for PE-CVD SiNx:H thin films (presented in Section 2.5.), wherein RF sput-

tered SiNx:H thin films at an even lower temperature (~65 °C). Figure 4 presents the scan-

ning electron microscope (SEM) images of the a-SiNx:H layer surfaces prior to and after 

the heat treatment. 

  
(a) (b) 

  
(c) (d) 

Figure 4. Hydrogen formation in RF-sputtered a-SiNx:H thin films. SEM image of a layer surface (a) before annealing and 

(b) after annealing at 65 °C. Schematic representation of the layer surface (c) before annealing and (d) after annealing. 

The creation of blisters with a ~100 nm diameter at such a low temperature should 

be attributed to a similar effect reported by Serényi et al. [86] for a-Si:H layers. Due to the 

hydrogen and/or nitrogen release from the layer, bubbles filled with gases containing hy-

drogen and/or nitrogen molecules were created on the layer surface. During annealing, 

thermal expansion resulted in the increase of the volume of these bubbles, which at a crit-

ical point burst caused blister creation on the surface. 
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3.4. Optical Properties 

Paule et al. [87] examined the optical behavior of SiNx thin films with thicknesses 

between 200 and 300 nm, deposited by reactive sputtering, utilizing a pure Si target. They 

applied N2/Ar atmosphere, wherein the total pressure was kept constant at 0.3 Pa, while 

the PN2/(PN2 + PAr) relative partial pressure of nitrogen varied between 0 and 0.5. The re-

fractive index at 1000 nm varied between ~3.2 and 2.2, and showed a decreasing trend 

similar to the absorption coefficient, while the nitrogen flow was increased, which refers 

to the compositional change of the layers from nitrogen-doped silicon to stochiometric 

silicon nitride. Strong dependence of the optical behavior of the sputtered SiNx layers on 

the partial pressure of N2 is also supported by the work of Signore et al. [88] who charac-

terized SiNx thin films deposited by RF sputtering from N2 and Ar gas mixtures, with the 

nitrogen flow ratio varying between 10 and 100%. They found that the higher nitrogen 

content of the gas mixture resulted in the increase of the refractive index at 1800 nm from 

1.6 to 1.73, and this behavior was assigned to the presence of (oxygen and hydrogen) con-

tamination. The possibility of tuning the refractive index of the SiNx layer by the modifi-

cation of the nitrogen flow enables the fabrication of multilayer structures of silicon ni-

trides with different refractive indices, providing the antireflection effect for solar cell ap-

plications. 

Although the refractive index of silicon nitride is usually tuned by adjusting the ni-

trogen and argon gas flow ratio, other deposition parameters could also have significant 

effects on the refractive index of the layer. Guruvenket et al. [89] studied direct current 

(DC) magnetron sputtered SiNx layers and explored how the substrate bias voltage influ-

ences the refractive index, measured at 650 nm. They found that the refractive index var-

ied between ~2.04 and ~1.87, while the bias voltage was changed from 0 to −120 V, and 

cathode current density as well as the nitrogen partial pressure were kept constant at the 

value of 2.5 mA/cm2 and 3 × 10−2 Pa, respectively. It was revealed that the increase of the 

bias voltage from 0 to −40 V first caused the decrease of the refractive index from ~2.04; 

afterwards, it was saturated at a value of about 1.92. 

In the case of the deposition of SiNx:H thin films by the introduction of molecular 

hydrogen to the chamber, control of the hydrogen pressure serves as an alternative tech-

nique for tuning the refractive index of the thin films. Mokkedem et al. [90] studied the 

correlation of the hydrogen gas pressure and the refractive index of DC magnetron sput-

tered SiNx:H layers. It was revealed that when the partial pressure of H2 increased from 

4.5 to 9 mPa, the refractive index showed a decreasing trend from 1.92 to 1.78. Considering 

that, in parallel, the increase of the nitrogen to silicon ([N]/[Si]) ratio from 1.03 to 1.22, as 

well as the increase of the hydrogen to silicon ([H]/[Si]) ratio from 1.47 to 1.65 were 

proved, the experienced variations of the refractive index should be attributed to the in-

corporation of H and N atoms into the layers. We experienced a similar correlation be-

tween the partial pressure of the hydrogen applied to the chamber and the refractive index 

at 550 nm of SiNx:H layers prepared by RF sputtering, as shown in Figure 5 [74]. 
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Figure 5. Refractive index at 550 nm against H2 partial pressure. 

The refractive index at 550 nm of the layers decreased from 1.96 to 1.89, while the 

partial pressure of H2 was increased from 0 to 7.9 × 10−4 mbar. These variations of the 

refractive index should be attributed to the incorporation of H and N atoms into the layers 

[90]. Table 2 presents the comparison of the mechanical, thermal, and optical properties 

of CVD, PVD, and ALD SiNx layers. 

Table 2. Comparison of mechanical, thermal, and optical properties of CVD and PVD SiNx thin 

films. 

Layer Properties CVD PVD ALD 

Mechanical  

properties 
- - - 

Deposition stress 135–235 MPa [48] - 700-1300 GPa [91] 

Hardness 

28.0 ± 2.3 GPa [48] 

16.1–19.8 GPa [49] 

13–23 GPa [50] 

8–23 GPa [81] - 

Young’s modulus 256 GPa [52] 100–210 GPa [81] - 

Poisson’s ratio 0.28 [52] - - 

Thermal  

properties 
- - - 

Thermal conduc-

tivity 

3.2 ± 0.5 ������� [53] 
2.0 −  2.5 � ������ 

[60] 

~0.25–~0.7 ������� 

[61] 

0.8–1.7 ������� [62] 

2.66-1.25 ������� 

[84] 
- 

Thermal diffusiv-

ity 

1.3 ∙ 10�� ± 1 ∙

10�������� [53] 
- - 

Heat capacity 0.7 ± 0.1 ������� [53] - - 

Optical  

properties 
- - - 
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Refractive index 

1.96–1.8 [64] 

~2.7 to–1.6 [65] 

~1.91–~1.98 [66] 

2.05–2.11 @632.8 nm [67] 

1.95 to 3.35 @633 nm 

[68] 

3.2–2.2 @1000 nm [87] 

1.6–1.73 @1800 nm 

[88] 

2.04–1.87 @650 nm 

[89] 

1.92–1.78 [90] 

1.96–1.89 @550 nm 

[74] 

1.86–2.0 @633 nm [91] 

~1.77–1.87 @633 nm 

[92] 

2.01 [93] 

4. ALD 

The atomic layer deposition (ALD) is a subclass of CVD based on sequential gas-

phase chemical processes. Since this method allows for low temperature deposition as 

well as for the control of the film thickness with precision in the atomic scale, it has at-

tracted great scientific interest concerning SiNx layer fabrication in recent years. In this 

section, current research progress, the most important trends, and future prospects are 

summarized.  

4.1. Thermal ALD 

Thermal ALD relies on the heating of the deposition chamber and the substrate to 

drive the surface reaction kinetics; therefore, higher deposition temperature (typically 

above 450 °C) is required. In the majority of the related works, chlorosilanes as silicon-

containing precursors and ammonia as a nitrogen source are applied. [94–99] Addition-

ally, Morishita et al. [100] revealed that SiNx can be also deposited by thermal ALD from 

Si2Cl6 between temperatures of 525 and 650 °C. It should be also noted that we are not 

aware of any thermal ALD SiNx which was produced from non-chlorosilane-based pre-

cursors. Riedel et al. [98] investigated thermal ALD SiNx layers deposited at various sub-

strate temperatures varying from 310 to 500 °C, utilizing octachlorotrisilane (OCTS, Si3Cl8) 

as an alternative Si-containing precursor gas and NH3 as a N source. They found that the 

wet etch rates in diluted HF (100:1–0.49%) decreased versus the raising substrate temper-

ature and thus increasing film density. Significant amounts of oxygen were also found, 

the quantity of which shows a decreasing trend with an increasing deposition tempera-

ture. In the absence of an oxygen source, we can assume that the layers were oxidizing 

because of the contact with the ambient air. Park et al. [97] also found that thermal ALD 

SiNx layers are non-stochiometric and can be simply oxidized by air exposures, leading 

to approximately 7–8 atomic % O content of the thin film. 

4.2. PE ALD 

In order to overwhelm the difficulties of the increased deposition temperature of 

thermal ALD methods and to meet the requirements of modern (e.g., interconnect and 

spacer) applications [93,100,101], plasma-enhanced ALD is utilized in several cases. This 

technique was proved to be an appropriate method to deposit silicon nitride at T < 400 °C 

by several researchers [102–105]. Furthermore, the enhanced reactivity of the plasma al-

lows for the application of precursors which don’t contain halogen atoms [106–109]. Dep-

osition temperature can be further decreased by remotely generated plasma, which is then 

transported to the chamber [110–115]. In Figure 6, a schematic drawing of a PE-ALD re-

actor is presented. 
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Figure 6. Schematic drawing of a PE-ALD reactor. 

In addition to the lower deposition temperature, this method is also advantageous in 

minimizing plasma-induced damages and surface nucleation time, as well as in avoiding 

undesirable gas-phase reactions. Several reports studied how the substrate temperature 

influences the PE ALD process. Andringa et al. [116] characterized the refractive index 

and the chemical composition of SiNx moisture permeation barrier layers fabricated by 

PE ALD with the SiH2(NHtBU)2 precursor and by nitrogen-fed plasma at different depo-

sition temperatures. It was revealed that the refractive index (at 633 nm) was increased 

from 1.8 to 1.9, while the deposition temperature was raised from 80 to 200 °C. In contrast, 

carbon, oxygen, and hydrogen impurity levels showed decreasing trends against increas-

ing deposition temperatures. In terms of porosity, they found that there were no open 

pores with diameters bigger than 0.3 nm independently from the deposition temperature. 

Jang et al. [108] studied the effect of temperature on SiNx deposition by PE-ALD from 

trisilylamine [TSA, (SiH3)3N] and NH3 in the range of 250–350 °C. However, it was re-

vealed that all films are near-stochiometric and the N/Si stochiometric ratio slightly in-

creases (from 1.32 to 1.35) due to the increase of the deposition temperature (from 250 to 

350 °C). Higher temperatures resulted in higher refractive indices as well as lower hydro-

gen contents. The effect of the temperature on the defect density was also proved since 

increased deposition temperatures led to enhanced trap densities, which should be at-

tributed to the lower hydrogen content. The latter behavior allows for adjusting the defect 

densities to meet the requirements of charge trap flash memory applications by control-

ling the fabrication temperature. Another work [117] introduces low-temperature (250–

300 °C) PE-ALD of SiNx, utilizing neopentasilane [NPS, (SiH3)4Si] with a direct N2 plasma. 

The thin film deposition was compared to a more frequently used source gas, specifically 

trisilylamine [TSA, (SiH3)3N], as a reference. In terms of the growth behavior and N2 

plasma saturation, no significant differences were found. However, higher growth rates 

were observed for NPS. It was revealed that increased N2 plasma exposure time caused a 

decrease in the refractive index for both precursors. Koehler et al. [118] investigated SiNx 

thin films deposited at higher temperatures (400–500 °C) by ALD for spacer and gate en-

capsulation applications. They found that the SiNx film quality and growth conditions 

have important roles in shaping the performance of high-k metal gate technology. 
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5. Conclusions 

A combination of advantageous layer properties establishes SiNx thin films a prom-

ising candidate for several application fields. In this work, an overview of the latest pub-

lished works for SiNx thin films was presented with a focus on the applications and ob-

tainable layer properties by applying different deposition methods. The latest achieve-

ments of CVD and PVD depositions technologies were highlighted with a comparison of 

their characteristic mechanical, thermal, and optical properties. In view of the growing 

demand for ultrathin SiNx layers with precise control of the composition, a group of CVD 

methods (ALCVD) was reviewed in a separate section. 

In terms of deposition temperature, a trend towards lower processing temperatures 

was observed due to efforts to minimize the damage of thermally instable substrates, such 

as IC applications or polymer materials of OLED devices. Another trend of the develop-

ment of SiNx thin films concerned targeting to achieve better mechanical properties, 

driven by hard coating applications under challenging environmental conditions. 

Obviously, SiNx layer properties are affected by several parameters such as the fab-

rication method, precursor gas chemistry, type of power supply used for the plasma gen-

eration, and the substrate temperature. However, the exact correlation between the pro-

cess parameters and the layer properties could depend on the actual deposition equip-

ment. The results reviewed in this paper could act as a guideline for the development and 

further tuning of SiNx layer properties to meet the expectations of certain applications. 
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