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Abstract—This article examines the importance of integrat-
ing locomotion and cognitive information for achieving dynamic
locomotion from a viewpoint combining biology and ecologi-
cal psychology. We present a mammalian neuromusculoskeletal
model from external sensory information processing to muscle
activation, which includes: 1) a visual-attention control mech-
anism for controlling attention to external inputs; 2) object
recognition representing the primary motor cortex; 3) a motor
control model that determines motor commands traveling down
the corticospinal and reticulospinal tracts; 4) a central pattern
generation model representing pattern generation in the spinal
cord; and 5) a muscle reflex model representing the muscle
model and its reflex mechanism. The proposed model is able
to generate the locomotion of a quadruped robot in flat and
natural terrain. The experiment also shows the importance of a
postural reflex mechanism when experiencing a sudden obsta-
cle. We show the reflex mechanism when a sudden obstacle
is separately detected from both external (retina) and internal
(touching afferent) sensory information. We present the biological
rationale for supporting the proposed model. Finally, we discuss
future contributions, trends, and the importance of the proposed
research.

Index Terms—External sensory information, neurocognitive
locomotion, neuromusculoskeletal model.

I. INTRODUCTION

HUMANS and other animals have dynamic movement
abilities adapted to complex environments. They move

efficiently by integrating many aspects of their morphology
and central nervous system. External (visual) and internal
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(somatosensory) sensory information inform an animal’s deci-
sion to move. Likewise, a legged robot also needs a dynamic
locomotion generator if it is to cope with diverse environ-
mental conditions. The need for such a locomotion model
connects the ideas of biologists with those of roboticists.
Robot developers try to mimic human or animal locomotion
through the locomotion generator’s design. Biology-inspired
models for generating locomotion include those with central
pattern generation (CPG) [1]–[3], and may include muscle
models as the target actuator [4]. However, current models
still have not achieved dynamic locomotion faithful to that of
humans or other animals. A useful review of the current issues
and challenges in bioinspired-based locomotion is provided
in [5]–[7].

Locomotion is complicated. In addition to the actual motion
generated, locomotion integrates all balancing, reasoning, per-
ception, memorization, and embodiment. Locomotion behav-
ior can be affected by both external conditions and internal
sensory information. For example, when a legged animal
moves directly forward and encounters an obstacle, the animal
will change its movements to avoid that obstacle. Specifically,
when we swing our legs while walking, we might suddenly
notice an obstacle where we were about to step. At that
moment, we immediately try to change our leg’s swing to
land on a safe area. These illustrations demonstrate a role
for cognition in the locomotion model. The need for cogni-
tion is supported from psychological and neurophysiological
viewpoints [8]–[10].

Legged locomotion research draws together numerous
underlying principles, but it is still unclear how these prin-
ciples are integrated into animal motor control. It is therefore
essential to analyze their natural integration. Animals have
a complex neuron structure for generating locomotion. The
basic locomotion pattern is generated by CPG in the spinal
cord. From there, the pattern stimulates other neural pools
toward muscle synergies [11]–[13]. This spinal reflex process
contributes the overall movement pattern, muscle activation,
and the modulation of CPG. In quadrupeds, CPG generates
different gait patterns in walking, trotting, pacing, and gallop-
ing [14]. Spinal reflexes are able to integrate the mechanical
sensory information with the muscle activation via alpha
motor neurons without involving central inputs. There are also
other reflexes, such as the postural reflex, that affect motion
generation. The postural reflex maintains the body’s posture
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and stability. The postural reflex manages the information of
somatosensory stimuli from the body [15]. It is similar to the
stumbling reflex: when our foot falls on an unstable stone
while walking, the leg is automatically lifted in response. It
then swings rapidly forward and extends, ready to provide
support as we fall. The postural reflex similarly allows us to
avoid suddenly encountered obstacles before making contact.
However, the postural reflex is more complicated; it involves
the cognitive system. Therefore, the satisfactory generation
of dynamic locomotion must consider the role of cognitive
information.

Building on current thinking about the integration of cogni-
tive information and muscle reflex, we address three questions:
1) how does the reflex system respond to cognitive information
when perceiving a sudden obstacle? 2) what role does visual
attention play in generating locomotion? and 3) how can a bio-
logical model be implemented in a legged robot? Our overall
goal is to realize benefits from biological modeling in devel-
oping a locomotion model for a legged robot. Specifically,
this article develops a novel locomotion model by integrating
the supraspinal level from cognitive information and mus-
cle reflex system to achieve dynamic locomotion controller
for a quadruped robot. We design this model by mimicking
the descending flow of information from vision to muscle
activation, and focus especially on a control mechanism for
short-term adaptation when suddenly perceiving an obstacle.

This article is organized as follows. Section II shows the
general concept of the proposed model. Then, Section III
details the cognitive model from its external sensory input
model until it outputs information to CPG, via a particular
attention control model, affordance detection, and a command-
ing model. In Section IV, we proposed a multilayer CPG
model. After that, Section V explains the felidae-like hindlimb
and forelimb muscle model used. In order to prove the reli-
ability of the proposed model, we show several appropriate
experiments in Section VI. In Section VII, we show the result
of the proposed model using a quadruped robot. Finally, we
conclude and discuss further development in Section VIII.

A. Information From the Supraspinal Level to
Motor Neurons

In order to analyze the involvement of cognitive processing
at the supraspinal level, researchers have studied corticospinal
tract activity. When there is no obstacle, corticospinal activity
is low. When an obstacle appears during walking, corticospinal
activity rises during the leg-swing phase [16]. The animal has
to visually regulate its limb trajectory to avoid the obstacle
and to position the limb in a safe location [8]. At the limb,
there is also a significant increase in motor cortex activity dur-
ing high-attention movement, such as in narrow passages, over
rough terrain, when avoiding obstacles, and especially during
swing phases that require precise foot placement by control-
ling limb trajectory [17]–[23]. Those observations demonstrate
the effect of visual information on locomotion through motor
cortical discharge. Further insight is given by red nucleus
neuron activity in walking cats. Activity increases when cats
step over obstacles [24]. This increase shows that the red

nucleus also affects how muscle activity patterns are modified.
The red nucleus signals via the rubrospinal tract to primarily
affect the forelimb or upper limb, and performs a lesser role
than the corticospinal tract [25], [26]. However, the transfer
of visual information from the occipitoparietal area into the
corticospinal tract is not clearly understood [27].

B. Motor Neuron Command by Cognitive Information
During Obstacle Avoidance

Neuro physiological studies have found several strategies
for facing obstacles, for different environmental conditions.
Chu et al. [28] analyzed the behavior of cats avoiding obsta-
cle during walking. They found that cats tend to change their
muscle activity without altering the overall locomotion pat-
tern. This shows the effectiveness of the neuromotor process.
Humans also show similar behavior when facing obstacles,
tending to maintain the phase duration or locomotion pattern,
preferring instead to alter muscle activity [29]. This strategy
is supported by the CPG model proposed by Rybak et al.
that commands the motoneuronal pools for directly controlling
muscle, bypassing the rhythm generator in the spinal neural
network [13], [30], [31]. In contrast, when forced to step over
an obstacle, both humans and cats tend to control the trajectory
of swing as well as its duration. In cat locomotion, stimulation
from both the red nucleus and the motor cortex affect flexor
muscles in the swing phase [25], [32].

II. SYSTEM DESIGN

The aim of our proposed model is to build a dynamic
locomotion model in quadruped robots that achieves better
locomotion control than alternative approaches. We imitate
animal locomotion processes from neurophysiology and eco-
logical psychology. We incorporate influences from the cog-
nitive process in changing locomotion behavior, such as when
avoiding an obstacle, and especially when avoiding a sud-
den obstacle. In the human neural control-based locomotion
process, a locomotion command specifying a placing reflex
or a movement provision command descends from higher
centers (the brain) to the mesencephalic locomotor region
(MLR), which drives the CPG system for controlling muscle
activation.

Fig. 1 outlines how we mimic that top-down mechanism.
The mechanism begins with the processing of external sensory
information. Attention is controlled by the superior collicu-
lus (SC) with command from the cortex. The cortex builds
an understanding of the environment using external sensory
information from the retina. The movement-related command
will then be passed to the MLR. Information from the MLR
transfers to the CPG through the corticospinal tract and retic-
ulospinal tract. The corticospinal tract tends to control fine
movement, such as a specific position, while the reticulospinal
tract is mainly involved in gross control, such as the locomo-
tion pattern. The mimetic process of the above mechanism will
be detailed in Section III.

Next, based on the information transmitted through the cor-
ticospinal tract, the CPG generates the appropriate cadence and
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Fig. 1. Design of the motion control pathway from neurophysiological and ecological psychological viewpoint.

phase durations, and the pattern formation (PF) layer modu-
lates the motoneuronal outputs. We elaborate the single rhythm
generator model previously proposed by Rybak et al. [13]
A single-rhythm generator network controls the activity of
multiple-unit PF modules connected to subpopulations of
motoneurons. The spinal motor neural pools then process this
output into a spike-based signal. This spike-based signal reg-
ulates the strength of the muscle activation phase; details will
be given in Section IV. Furthermore, we also build the mus-
cle reflex model for the forelimb and hindlimb, which will be
described in Section V. Internal sensory information will affect
the movement command, CPG, and muscle reflex system.

III. COGNITIVE PROCESS TO MOVEMENT-RELATED

TRACT

In this section, we propose a process from cognition to
the movement-related tract, based on a top-down model in
mammals. Cognition involves the perception of external sen-
sory information. It also includes a way to control the attention
to external information for movement behavior. External sen-
sory information plays a big role in controlling locomotion

behavior. Visual information is received and processed by the
retina and optic nerve and transferred to the thalamus and SC.
The SC contributes to coordinating eye movement, respond-
ing to strong gaze direction commands from the cortex. The
thalamus passes visual information to the cortex. Most studies
show that there are two processing streams in the cortex: 1)
the ventral system (the “what” pathway) for recognizing and
identifying the object, and 2) the dorsal system (the “where”
pathway) for identifying the object’s location and motion. The
dorsal system is also involved in visually guided locomo-
tion [33]. Movement-related information from the motor cortex
is carried to the spinal cord by the corticospinal tract.

In order to represent this abstraction mechanism, we draw
on neurophysiology. First, we build a dynamic attention model
explained in Section III-A to represent the gaze. To recognize
objects in front of the robot, we build an object affordance
detector as explained in Section III-B. This detector provides
the object size, location, and movement, providing for possible
action at lower levels. Furthermore, we develop an interaction
between the SC and the motor cortex. Our model connects the
dynamic attention model with the affordance detection model
for controlling the gaze or attention area.
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Fig. 2. Design of the attention control mechanism and process of the external
sensory information pathway until becoming movement-related information.

A. Dynamic Attention

During movement, gaze attention is dynamic and strongly
integrated with the surrounding environment. To model that,
we imitate the SC mechanism. The SC receives data from
ganglion cells in the retina. We use time-of-flight sensors
to provide external sensory information, as in our previous
work [34], [35]. The aim of our model is to combine the
attention and action which is effectively implemented for sud-
den obstacle response. Visual information requires a large
amount of processing and knowledge building to estimate
the shape and size of the object. On the other hand, the
3-D point cloud information can provide the vector posi-
tion directly which makes easier to recognize the shape of
some object. Therefore, point cloud information can be used
directly without much processing, for example, without object
recognition. Topological map structure comprising neurons
connected with their neighbors can also reduce the memory
usage. The topological map represents the attention, with
neuron density in this map representing the attention level.
Fig. 2 shows how the SC model controls the coordination
between neck joint and the focus or density of the topological
structure entering the object affordance detection system. We
consider the neck joint in roll direction (θneck) by calculating
θ̇neck = tanh((θoff−θneck)+(Moff−My)

3)·exp (ln (0.5) · θ2
neck),

where θoff, Moff, and My are the default value of neck joint
angle, the center of frame in y-direction, and the attention posi-
tion of the frame in y-direction, respectively. The SC model
will select the area where an obstacle blocks the movement.
It controls the attention by adjusting the number of neurons
in associated areas and coordinating the neck joint to avoid
the attention in the edge area of the gaze. The illustration
of the attention model is shown in Fig. 3. In flat terrain, the
normal vector (N) is homogeneous. The model has low atten-
tion where the nodes are sparse. When we put a sudden red
box, then few nodes are shifted. There are nonhomogeneous

Fig. 3. Attention system using a topological map model.

normal vectors (red color). In this state, the object still cannot
be detected precisely. Then, the attention increases the number
of nodes around the nonhomogeneous node. After the nodes
are increased, then the object is clarified. The information is
enough for further processes.

Our topological structure is built on a dynamic density
growing neural gas model (DD-GNG) [36]. Local node density
is set by controlling the probability of finding raw data in that
neighborhood. We hence calculate the strength of each node
as influenced by the attended area. Node strength is calculated
using (1) for the discount rate, while (2) controls the probabil-
ity of finding information by local random search. Parameter
S(P) represents the value of random search probability of a
set of raw data (P). The parameter h is all nodes’s position
and hk represents the kth 3-D node’s position; r and μ are
the radius of the sphere, and the 3-D position of the sphere
received from the affordance detection

δk = e−(r+‖hk−μ‖)

1+ e−(r+‖hk−μ‖) (1)

S(P) = 0.2+ e−(r+‖P−μ‖)

1+ e−(r+‖P−μ‖)
. (2)

The attended area will be selected and calculated by the
affordance detection model that represents the cortex’s main
role. The main algorithm is shown in Algorithm 1.

B. Object Affordance Detection

The concept of affordance was proposed by Gibson [37]
in ecological psychology. Affordances connect between envi-
ronment and individual, and also represent possible actions
depending on the individual’s capabilities [38]. In this model,
affordance detection will provide possible actions. There are
two feedback flows involving object affordance detection in
the cortex. The first one commands the SC to control the
appropriate attention. The second one commands the spinal
cord and corticospinal tract.

In our model, we calculate the affordance from the vectors
of available edges in every node (N) calculated in the following
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Algorithm 1 Dynamic Topological Structure
1: Init: generate two nodes at random position
2: 0 ci,j = 0 (∀i,∀j), A = 1, 2, r = 2, t = 0, r = −1, μ = −1, N(non−H) = 0
3: while P �= NULL do
4: P← raw data from depth sensors
5: if Ni then
6: Q← raw data inside Sphere(r, μ)

7: λ← 0
8: while λ < maxλ do
9: Vλ ← a random of Q

10: if (S(Vλ) = 1 calculated in Eq. (2) then
11: λ← λ+ 1
12: h = DD-GNG main process (V) explained in [36]
13: for i← 1 to node’s number do
14: Ei ← Ei × υE
15: Ui ← UI × υE/δ

2
i

16: t← t + 1
17: (r, μ,N(non−H))← Object Affordance Detection in Section III-B

equation:

N = 1

N(edge)
i

k=Ni∑

k=0

(
(hi − ni

k)× (hi − ni
k+1)

||(hi − ni
k)× (hi − ni

k+1||

)
(3)

where Ni and hi are the number of edges and vector node
position in the ith node. ni

k is the vector position of the node
connected with the kth edge in the ith neuron.

1) Representing Cortex and SC Integration: When the den-
sity of node (α) in the nonhomogeneous vector (N(non-H))
calculated in (3) is lower than the threshold calculated in
(4), the affordance model prompts the SC to increase the
node density in a certain area explained in Section III-A.
The model sends the center of attention (Ca) the radius
size (Ra) of nonhomogeneous vectors calculated as fol-
lows: Ca = 1/N(non-H)∑i=N(non-H)

i=1 hi(for θ(Ni) > �), Ra =∑i=N(non-H)

i=1 arg max(hi−Ca), where θ(Ni) is the angle between
vector Ni and the vertical vector. N(non-H) represents the num-
ber of nonhomogeneous normal vectors of nodes The attention
area in the proposed model is limited to the pathway area of
the robot movement

α = Ra/N
(non-H). (4)

2) Representing Cortex and Movement-Related Processing
Integration: The pathway process from the cortex to
movement-related motor cortex shows how the affordances
are represented to the motor cortex. The visual cortex model
sends information about the detected object or obstacle (size
and position), where its size and position are represented by
parameter Ca, Ra in Section III-B1. In our model, the non-
homogeneous vector in the attention area will be detected as
the object or obstacle during movement. After that, the affor-
dance perception will serve the possible action and safe area
by detecting the normal vector to the vertical direction in the
attention area.

C. Movement-Related Command

Locomotion involves two command pathways: one for gross
movement mainly via the reticulospinal tract, and another for
fine movement mainly via the corticospinal tract [39]. By tak-
ing advantage of this biological process, we build an efficient
mechanism between external sensory information (cognition)

Fig. 4. Design of the movement command model integrates perception
information into the locomotion generator model. The CT (corticospinal tract)
network connects directly to the muscle reflex system. The RT (reticulospinal
tract) network drives signal to the central pattern generator.

and action (muscle model). We separate the control pathway
for gross movement (speed and direction) and fine movement
(positioning and joint control). It will be effective when the
system detects a sudden obstacle. When the system recog-
nizes a safe or flat terrain, the model communicates movement
speed and direction to the CPG model through the reticu-
lospinal pathway. In other circumstances, when the system
detects obstacles to avoid and changes the swing pattern,
associated signals are sent through the corticospinal path-
way. The model is represented by an artificial neural network
that deals with both object detection and movement com-
mands. The network structure is illustrated in Fig. 4. The main
network is represented by green neurons and separated into
the CT network representing the corticospinal tract and the
RT network representing the reticulospinal tract. The input
layer takes the perceived obstacle information (location, size),
the state parameters of each limb (phase, joint angles, limb
vector movement), and the torso’s state parameters (tilt and
speed). w(FL/HL) represents the synaptic weights and N(FL/HL)

represents the number of neurons in each layer.
When an obstacle is perceived during a limb’s swing phase,

the CT network is activated to overwrite the current mus-
cle stimulation (MN), bypassing the CPG network. If the
obstacle is perceived before the limb’s swinging phase is
activated, the RT network will be activated to send swing
commands through the CPG level. The output of the CT
network contains two parameters (lCT,1, lCT,2) and four param-
eters (lCT,3, lCT,4, lCT,5, lCT,6) transferred to the motoneu-
ron of hindlimb and forelimb, respectively, explained in
Section V. Then, the output of the RT network represented by
cRT,LEG,i parameters is transferred to PF neurons, explained in
Section IV-B. There are four parameters influence to hindlimb
leg and six parameters influence to forelimb leg.

IV. INTEGRATED CPG MODEL

The CPG model represents the neuronal circuit in the spinal
cord that generates basic rhythmic signals for locomotion.
These signals can be generated without sensory feedback [12].
Our model is inspired by the single-rhythm generator proposed
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Fig. 5. Design of the two-layered CPG with distributed rhythm generator and PF.

by Rybak et al. [13], [31]. We improve the previous CPG
model explained in [40] by adding input from the supraspinal
level. We design a two-layered CPG model with a distributed
single-rhythm generator and PF as illustrated in Fig. 5. We
design a two-layered CPG model with a distributed single-
rhythm generator and PF. Each rhythm generator represents
one leg transfer of the rhythmic signal to the pattern generator.
There are two PF neurons per joint.

A. Rhythm Generator

The rhythm generator produces an oscillating signal for
PF. The signal should be able to dynamically change its
rhythmic pattern. It uses the neural oscillator proposed by
Matsuoka [41] to introduce reciprocal inhibition effects to the
signal pattern [42]. It uses a second-order system of differential
equations

τ
d

dt
xi =

⎛

⎝υi − xi −
n∑

j=1

wijyj +
n∑

l=1

milsl − bvi

⎞

⎠τf (5)

T
d

dt
vi = (yi − vi)τf (6)

yi = max(xi, 0). (7)

Variables xi, yi, and vi represent membrane potential, firing
rate, and neuronal self-adaptation, respectively. The membrane
potential is affected by excitatory tonic input υi and inhibitory
input from other neurons

∑n
j=1 wijyj, where wij represents the

synaptic weight between the ith and jth neurons. Membrane
potential is also affected by afferent feedback and drive signals
from the supraspinal level. The RG neurons are connected with
force touch sensors in each foot and stance phase timing in
each leg to synchronize the signal pattern. The firing rate of
neuron y will be transferred as the input to the PF model.

B. Pattern Formation Model

The PF model controls the signals sent to motoneurons for
activating the muscles. The PF generates a firing-rate signal for
the muscle, and can control the timing of the muscle activation
in every cycle. In this model, we use a modified spiking neural
network (SNN) [43] as the inner state of PF neurons to control
the timing of the firing signal. The inner state of the PF neuron
in the ith joint (PFi) is calculated as

PFi,k(t) = e

(
log(0.5)×

(
|pfi−ϕ|

(μ×w×cRT,LEG,i)

3
))

(8)

pfi(t) = pfi(t − 1)+ pi (9)

where cRT,LEG,i represents the effect of the RT network to
the ith PF neuron of certain LEG. ϕ represents the starting
control calculated by ϕ = (30−φ(LEG)

i )/30, and w represents
the time of activation signal calculated as w = ψ

(LEG)
i /50.

φ
(LEG)
i and ψ(LEG)

i are the parameters for controlling the swing
activation and timing of the ith PF neuron in certain LEG. The
value of φ and ψ will be optimized using a multiobjective
evolutionary algorithm. pi is the spike signal calculated in the
supplementary material—1. The value PFi is then transmitted
to the muscle model to implement the actual swing.

V. MUSCULOSKELETAL MODEL

All mammals have a similar skeleton which includes both
forelimb and hindlimb structures. In general, mamallian loco-
motion has both stance and swing phases. Several decades
ago, some researchers proposed that rhythmic alternating con-
tractions of muscles brought about cycling between the stance
phase (extensor muscles) and the swing phase (flexor muscles).
The rhythm can be generated without any sensory information
from receptors in the skin, joints, and muscle [44], [45].
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Fig. 6. Muscle reflex structure during its phase. (a) Muscle reflex structure
in the swing phase. (b) Muscle reflex structure in the stance phase. F+leg and

F−leg represent the positive and negative feedback of the force afferent.

Research on the stanceswing transition has yielded a sub-
stantial body of evidence that this transition is controlled by
sensory signals from leg proprioceptors and has identified
some of the receptors providing these signals [44].

The swing-to-stance transition unifies the two phases of
stepping, rendering them inseparable [46], [47]. Based on
this evidence, the swing-to-stance phase transition is activated
automatically in response to stimuli from ground forces and
hip positions. Thus, the swing-to-stance transition is the best
phase in which to control the locomotion pattern. We control
the swing stimulation using the signal pattern modulation from
a neural oscillator proposed by Matsuoka. One CPG neuron
represents one joint. The signal will stimulate the muscle to
perform the swing phase. The muscle model is separated into
two submodels for hindlimb and forelimb control depicted in
Fig. 6. The detailed mathematical model can be seen in our
previous work [48] and supplementary material—2.

From Fig. 6b, we can see the effect of CT directly to the
muscle activation during the swing phase. It affects the value
of the length offset in certain MN. Equations (10)–(13) show

MN for hindlimb during the swing phase. The effect of CT
network to hindlimb is in lCT,1 and lCT,2 parameters

SBFA(t) = S0,BFA − Gy
BFAYIP

+Gl,S
BFA

(
lCE,BFA − loff,BFA − lCT,1

)
(10)

SIP(t) = S0,IP + Gy
IPYIP + Gl,S

IP (lCE,IP − loff,IP − lCT,2)

(11)

SVA(t) = S0,VA − GY
VAYIP + CVA (12)

SBFP(t) = S0,BFP + GY
BFPYBFP − CBFP + GF

BFPFleg. (13)

Furthermore, (14)–(19) show MN for the forelimb during
swing phase. The effect of the CT network to forelimb is in
lCT,3 to lCT,6 parameters

SSF(t) = S(0,SF + GY
SFYSF + Gl

SF(lCE,SF − loff,SF − lCT,3)

(14)

SSE(t) = S0,SE − GY
SEYSE + Gl

SE(lCE,SF − loff,SF − lCT,4)

(15)

SEE(t) = S0,SE − GY
EEYEE + Gl

EE · YEE

· (lEE − (−loff,EF − lCT,5) (16)

SEF(t) = S0,EF − GY
EF(1− YEF)+ Gl

EF · YEF

· (lEF − loff,EF − lCT,6) (17)

SWE(t) = S0,WE + GY
WEYWE (18)

SWF(t) = S0,WF + GY
WF(1− YWF). (19)

In the robot implementation, we convert the muscle activa-
tion to joint angle by calculating the resulting muscle torque
to drive the joint motor. The calculation of the torque can be
seen in [49, Appendix II].

VI. EXPERIMENTAL RESULTS

We implemented the proposed model in a cat-like robot sim-
ulation using open dynamics engine with its musculoskeletal
model.

A. CPG and Muscle Reflex Optimization

We defined the intervals of the parameters empirically
to specify the parameter search space for the optimization
process. Furthermore, synaptic weights in the CPG model
and muscle reflex parameters must be optimized to generate
appropriate signal patterns and activation signals. We opti-
mized 32 parameters representing MN and PFs (CPG) using a
multiobjective evolutionary algorithm (NSGA-II) [50], where
the fitness function is calculated as follows:

f1 =
√
(dl − ltotal)2 (20)

f2 =
T∑

t=1

4∑

leg=1

Nm∑

m=1

S(leg)
m (t)[43] (21)

where f1 is the evaluation function for the distance traveled
and f2 is the total MN. In this optimization, we set the value
of the desired distance traveled (dl) as 3 m.

We trained 128 individuals through 200 generations, with
crossover and mutation probability set at 0.3. To evaluate
the fitness, we ran the robot simulation through 1000 time
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Fig. 7. Evolution of Pareto front in certain generation.

cycles (5 s). Then, we calculate the total distance traveled of
the robot (ltotal). In the CPG structure, discrete signals from
rhythm generation to the PF model are defined into a cer-
tain movement pattern. The RG structure is set similar to the
previous model in [51]. As the optimization proceeded, the
Pareto front evolved as shown in Fig. 7.

To coordinate the swing pattern of each limb, we opti-
mized the RG structure with similar settings to our previous
work [52]. We used a single-objective genetic algorithm
(SSGA) as in our previous work [52]. In this optimization, we
also optimized the influence of sensory feedback to the RG
neurons in the CPG model. The resulting optimized parame-
ters used for further robot performance in this article can be
seen in Table I of the supplementary material. The signal out-
put of the RG, PF, and MN in basic condition can be seen in
the supplementary material—3.

B. Optimization Process for the Movement Command Model

Once the lower spinal level has been optimized, we can
optimize the movement command model for controlling the
appropriate signal for either the corticospinal pathway or retic-
ulospinal pathway. We optimize the network for hindlimb
and forelimb separately. Each network separates the optimized
parameters into three groups: 1) A: weights parameter asso-
ciated with green neurons only; 2) B: weights parameters
associated with CT neurons; and 3) C: weights parameters
associated with RT neurons. In the case when the fitness
related to RT has a good result and the CT has a bad result,
then the SSGA optimization evaluates the parameter of group
B only. In the case when the fitness related to CT has a good
result and RT has a bad result, then the SSGA optimization
evaluates the parameter of group C only. The number of
parameters optimized can be seen in Table I.

TABLE I
TOTAL NUMBER OF OPTIMIZED PARAMETERS

Fig. 8. Sample of the result of affordance detection. PFL is the position of
forelimb left foot and PRF is the position of forelimb right foot.

Fig. 9. Snapshot of the robot’s performance of the locomotion generator
model without supraspinal commands. (a) On flat terrain. (b) On natural grass.

Before that, we show the result of the attention control pro-
cess and the object recognition as the input of the optimized
model. A sample affordance detection with movement com-
manding result taken from the experiment in Section VII-B
can be seen in Fig. 8.

1) Optimization for the CT Network: The CT network stim-
ulates the muscular stretch reflex. We optimize the network to
control the swing acceleration when facing a sudden obstacle.
We evaluate the congruence of step length commands to the
CT network and the resulting robot step length. In one evalu-
ation, the robot performed 1000 time steps on flat terrain. We
supply the network of CT with nine different command val-
ues, I = {−0.8,−0.6,−0.4,−0.2, 0, 0.2, 0.4, 0.6, 0.8} in the
middle of the swing, when the feet are at or near their highest
phase. We evaluate using the following measure:

f =
9∑

i=1

(
1

1+ exp(si − si+1)

)
, s5 = S(nor) (22)

where S(nor) is the average step length in normal swing; si is
the step length of the ith command. We assume the value of
s5 = 0 when I5 = 0. We optimized using a single-objective
evolutionary algorithm.

2) Optimization of the RT Network: The RT network
will drive the CPG network, RG neurons, and/or PF neu-
rons. We optimize the network to avoid obstacles with a
certain height and a certain step length. We evaluate the
congruence of step length and step height commands to the
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Fig. 10. Signal generated by components of the central pattern generator and internal sensory feedback. xHR, xFR, xHL, xFL represent the inner state of
rhythm generator neurons. Y and P are the output of RG neurons and PF neurons. swHL, swFL, swHR, and swFR are the swing phase condition of the
hindlimb-left, forelimb-left, hindlimb-right, and hindlimb-right, respectively. (a) On flat terrain and (b) on natural grass. The differences show the effect of
sensory feedback to the rhythm generator during movement on natural terrain.

Fig. 11. Robot’s performance in simulation. The detailed robot performance can be seen in the Supplementary video. (a) Time-series snapshot from side
view. (b) Snapshot of the robot performance in certain condition from perspective view. 1) Robot performs in normal walking. 2) First sudden obstacle is
given during left forelimb swing. 3) The left-forelimb changes the swinging pattern by reflex placing (see green line trajectory). 4) Right forelimb steps over
the obstacle. 5) Right hindlimb decreased the step length because stepping over would have been too far. 6) Second sudden obstacle is given during the right
forelimb swing phase. 7) Placing reflex to avoid the obstacle (see red line trajectory). 8) Right forelimb steps over the obstacle by increasing step length.
9) Right hindlimb increases step height and step length to avoid the second obstacle.

RT network with robot performance. In one evaluation, the
robot performed 1000 time steps on flat terrain. We sup-
ply the network of RT with nine different command values,
I = {−0.8,−0.6,−0.4,−0.2, 0, 0.2, 0.4, 0.6, 0.8} when the
feet start swinging. The evaluation function is

f =
9∑

i=1

(
1

1+ exp(si − si+1)

)
+

9∑

i=1

(−hSi)s5 = S(nor) (23)

where hSi is the height of step of the ith command.

VII. RESULT OF ROBOT PERFORMANCE

In order to test the effectiveness of the proposed model,
the robot was assessed in several phases. First, we tested
the synchronization of the internal sensory information, reflex
system, and the CPG model without any commands from the
supraspinal level. We tested the robot both in simulation and
in a real implementation. After that, we examined the role of
command signals from the supraspinal level. The robot per-
forms on flat terrain and slope terrain and is given some sudden
obstacles.
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Fig. 12. Recorded torque when avoiding the sudden obstacle. (a) Right-hindlimb. (b) Right-forelimb. (c) Left-forelimb. (d) left-hindlimb.

Fig. 13. Result of affordance detection. (a) First obstacle affordance
detection. (b) Second obstacle affordance detection.

A. Robot Performance Without Supraspinal Commands

We tested on flat terrain in simulation and with a real robot.
After that, we tested on natural terrain (grass) using the real
quadruped robot. In order to evaluate individual legs, we set
the CPG model to generate a walk-type gait. The snapshot of
the robot performance can be seen in Fig. 9. We show the
recorded signal of CPG and the locomotion event (touching
condition) in Fig. 10 to evaluate the relationship between CPG
and locomotion events. On flat terrain, the timing of swinging
(detected from the touching condition) is similar in the whole
performance. However, we can see many changes of swing-
ing time when the robot performed on the natural terrain. The
sensory feedback has an impact to the inner state of RG neu-
ron. Then it changes the pattern of gait. Here, we can see
the synchronization process between CPG and the locomotion
event.

B. Robot Performance When Suddenly Encountering
Obstacle

In order to show the effectiveness of the proposed model,
we run the quadruped robot both in simulation and in real
performance.

1) On Flat Terrain: In testing scenario, we twice
put sudden obstacles, of different sizes, in the robot’s
way while it was walking. The obstacles were cuboids
of size (length×width× height) 700 mm× 230 mm× 40 mm,
and 300 mm× 200 mm× 40 mm. In the simulation, we put the
first obstacle at time step equals 555 and the second obsta-
cle at time step equals 1000. The robot performance snapshot
can be seen in Fig. 11. Fig. 11 illustrates the whole robot
performance avoiding the obstacle from side view and snap-
shots of the robot’s behavior when avoiding the obstacle under
several conditions. To analyze the effect of muscle force, we
show the recorded robot performance in Fig. 12.

In Fig. 11(b): 1) the robot moved in the normal condi-
tion from the starting condition; 2) the sudden obstacle is
given at time step 541, when the left forelimb is swinging;
and 3) the robot perceived the sudden obstacle at time step
555. It required 15 time samplings (0.070 s) for the cogni-
tive model to perceive the model (see Fig. 13a, perceiving
processing) and generate the overwriting MN signal from the
CT network. It stimulated the shoulder extensor (SF) muscle
to advance the limb (see Fig. 14 in fourth signal, for stimu-
lation). 4) Since the existing obstacle did not affect the next
foothold position, the right forelimb stepped over the obstacle
without any overwriting command. 5) There was no possibil-
ity for the right hindlimb to step over the obstacle due to the
limitation of the possible step length; the robot decreased the
step length. 6) At time step 990, a second sudden obstacle
was given when the right forelimb was in the swing phase.
7) At time step 1000, the robot perceived the obstacle (see
Fig. 13b, perceiving processing) in 12 time steps (0.05 s). It
stimulated the shoulder flexor (SF) muscle to draw back the
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Fig. 14. Analysis of signal commanding and its effect on the CPG and movement timing.

limb (see Fig. 14 in second signal, for stimulation). 8) The
right forelimb step length was increased by command from
the RT network. 9) The right hindlimb received a command
signal from the CT to change the swing pattern to avoid the
obstacle by increasing step height and step length [see white
line trajectory in Fig. 11(b)-9].

Furthermore, in order to evaluate the robustness of the
proposed model, the robot performed 50 times, where
in each trial, we put one sudden obstacle (300 mm×
200 mm× 40 mm) in a random position in front of the robot.
The robot successfully avoided the obstacle 41 times, that is,
in 82% of the trials.

2) On Sloped Terrain: The robot performed on sloped
terrain with five obstacles which are listed as follows.

1) 700 mm× 230 mm× 40 mm.
2) 300 mm× 200 mm× 40 mm.
3) 500 mm× 140 mm× 45 mm.
4) 200 mm× 100 mm× 50 mm.
5) 600 mm× 200 mm× 45 mm.

We placed the first and second sudden obstacles during uphill
movement. After that, we put the third, fourth, and fifth dur-
ing downhill movement. A sample snapshot of the robot’s
performance can be seen in Fig. 15 and a detailed video can
be seen in the supplementary video.

Furthermore, to confirm the robustness on terrain at 20◦
inclination, the robot performed 25 times uphill and 25 times
downhill terrain. We conducted similar trials to evaluate the
robustness on flat terrain. The robot successfully avoided the
obstacle 17 times uphill (68% success) and 22 times (88%
success) downhill. The difference is due to the fact that, when
walking uphill, the robot needs a higher swing to avoid the
obstacle than when walking on the flat or downhill.

3) Real Robot Implementation: After successfully imple-
menting the simulation, we tested the proposed model in a
medium-size cat-like robot. The robot has several internal sen-
sors, such as IMU sensors and force sensors in each leg, and
an external time-of-flight sensor. The robot uses an Intel core
i5 CPU without any GPU. Joints have an angle-based actua-
tor. Therefore, we converted the value of muscle force to joint
angle. In the first performance, we placed an obstacle before
the robot started. In the second performance, we put the sudden

obstacle exactly in front of the robot three times. In the third
performance, we put a bigger obstacle, a further distance in
front of the robot. The result can be seen in Fig. 16. The robot
successfully avoided the obstacle in all three performances.
The video demonstration can be seen in the supplementary
material.

VIII. DISCUSSION

We proposed a model for neurocognitive locomotion in a
neuromusculoskeletal model. Our model integrates the external
sensory information process with the locomotion generator.
In this article, we focus on modeling the placing reflex to
generate behavior for avoiding sudden obstacles in a muscle-
based model. Our results suggest that it is worth viewing the
cognitive and MN models as a single, unified system, rather
than separately

We began this article by analyzing human and animal loco-
motion from a physiological view point that showed the role
of cognition in locomotion [8]–[10]. Our viewpoint is also
supported by neuroactivity experiments that demonstrate the
contribution of supraspinal activity to motor neuron activa-
tion. Specifically, analysis of the corticospinal tract has shown
that there is a low activity of CT in the uniform area or on
flat paths but, when obstacles stand in the way, CT activ-
ity is higher especially in the swing phase [16]. Thus, limb
control to avoid obstacles requires cognitive processing of
external sensory information [8]. From these foundations, we
sought to mimic nature as we developed a locomotion model
that included supraspinal commands to the locomotion gener-
ator. We implemented a descending process from the external
sensory process to limb movement generator. We applied the
proposed model to a quadruped robot.

We implemented an attention model mimicking that of
humans. The robot’s external input uses point cloud data
instead of visual information, however, this choice of rep-
resentation does not influence the attention mechanism’s
implementation. Attention was represented using nodal den-
sity in a topological map structure, as had been successfully
implemented in our previous research [35]. In this article, we
built a dynamic attention model inspired by visual processing
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Fig. 15. Time-series snapshot of the simulated robot performance in slope
terrain with sudden obstacles given. The detailed robot performance can be
seen in the supplementary video.

Fig. 16. Snapshot of real robot performance (a) with obstacle in front of
the robot, (b) with sudden obstacle exactly in front of the robot, and (c) with
bigger obstacle a little bit far in front of the robot.

processes in nature. Topological structure has a low density for
walking across flat, clear surfaces, and the density increases
when there are obstacles. This mechanism is computationally
efficient, with one process costing 0.00314 s. As the number
of obstacles increased, the processing cost also increased. Our
mechanism is, in this way, similar to the human visual pro-
cess: when there are a lot of obstacles, cortex activity also
increases [53].

The topological information is then processed to detect
object affordances. In our proposed system, we do not need to
recognize objects in detail: our model successfully avoided the
obstacles without detailed obstacle recognition. In the experi-
ments, we assume that the objects should be avoided. However,
the way to avoid depends on the object affordance detection.
The robot avoids the obstacle by shortening the swing, chang-
ing the swing direction, lifting the swing, and changing the
walking direction. Our results show that the locations and sizes
of suddenly appearing obstacles can be recognized in 0.07
and 0.06 s for the first and second object, respectively. Our

results also show an interesting integration of attention control,
object affordance recognition, and movement commanding. In
the case of unclear recognition, the object recognition stimu-
lated increased attention to the suspected area. Once the object
is recognized, the object affordance detector provides for an
appropriate motor response.

The command process successfully commanded the fore-
limb to avoid sudden obstacles by stimulation through the
CT network. While avoiding the obstacle, changes to the RG
and PF signals modify the timing of the swing phase. In the
robustness evaluation, the robot had a success rate of 82%
on flat terrain, 68% on uphill terrain, and 88% on down-
hill terrain. The robot could easily avoid the obstacle when
going downhill because it does not need much higher swing-
ing movement. Vice versa, on the uphill terrain, the robot needs
to swing its legs higher. A large experimental trial would
be required to investigate the applicability of the proposed
model. However, the present experimental results show the
effectiveness and the importance of integrating cognition with
the locomotion generator. For future work, the stability of
the system should be improved in order to increase the
success rates.

We have proved and showed that our model combines the
cognitive information and musculoskeletal model by integrat-
ing exteroceptive sensory information and low-level control
muscle control in Section VII. The system can therefore
respond to environmental changes in every time cycle. Existing
systems that integrate perception and locomotion mostly deal
with foothold planning, which limits adaptation to the much
longer timescale of whole footsteps [54]–[61]. While [62] and
[63] dealt with real-time obstacle avoidance, their system is
unable to cope with obstacles that suddenly block an already-
swinging limb. Furthermore, the bioinspired-based locomo-
tion model’s short-term adaptation controllers consider only
internal sensory information, such as from posture, touch-
ing, and inertial information. Thus, the robot cannot respond
to an obstacle before touching it. Our proposed system has
the advantage in controlling the locomotion in every time
cycle, which has been proved in several experiments avoiding
unknown sudden obstacles.

Generally, our neurocognitive locomotion model shows a
way to integrate neuromusculoskeletal models with cognitive
models for achieving dynamic locomotion. Such integra-
tion may have a sizeable impact not only in robotics but
also in medical applications, such as in the development of
active prosthetic limbs. Active prosthetics have been shown
to increase patient confidence during ambulation [64]. By
monitoring eye movement signals from the posterior parietal
reach region, [65], [66] and using visual priority map [67],
the neurocognitive locomotion model can be integrated into
knee prosthetics to actively avoid sudden obstacles or suddenly
changing swing patterns.
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