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Abstract—In this paper, a robust blind source separation (BSS) 

algorithm is investigated based on a new cost function for noise 
suppression. This new cost function is established according to 
the criterion of minimum bit error rate (BER) incorporated into 
maximum likelihood (ML) principle based independent 
component analysis (ICA). With the help of natural gradient 
search, the blind separation work is carried out through 
optimizing this constructed cost function. Simulation results and 
analysis corroborate that the proposed blind separation 
algorithm can realize better performance in speed of 
convergence and separation accuracy as opposed to the 
conventional ML-based BSS.  

 
Index Terms—Blind Source Separation; Cost Function; Bit 

Error Rate; Maximum Likelihood; Natural Gradient 

I. INTRODUCTION 
 In the past few years, as a paradigm of unsupervised 

learning in machine learning, blind source separation (BSS) 
has played an increasingly important role in wireless 
communication systems for performance enhancement and 
intelligent information processing [1-14].  It contributes 
significantly to achieve high spectral efficiency, adaptive 
signal processing and anti-interference requirements due to its 
blind feature and statistical information utilization. By virtue 
of BSS technique, on the one hand, frequently used pilot 
sequences can be eliminated for enhancing spectral efficiency. 
On the other hand, it can improve the capacity of the source 
recovery and resist unpredictable interference in spite of little 
prior information acquired in advance. In wireless 
communication systems, a number of received models can be 
structured as a BSS framework, such as CDMA (code division 
multiple access) [4-6], OFDM (orthogonal frequency division 
multiplexing) [7-10] and MIMO (Multiple Input Multiple 
Output) [11-14], and so on. Generally speaking, those 
received models can be considered as mixtures of independent 
source and unknown channel. The expected signals can be 
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separated or extracted from the received mixed signals by 
using the independent component analysis (ICA) algorithm 
based BSS technique. 

In a general way, the ICA algorithms are composed of two 
steps. First, the cost function is built based on an independent 
principle. Second, the cost function is optimized for blind 
separation. Therefore, it is vital for constructing the cost 
function and implementing optimizing scheme. There are 
three popular independent principles based cost function, 
which includes maximum likelihood (ML), minimum mutual 

information (MMI) and non-Gaussian maximization [1, 3]，

respectively. So far, there has been proposed some famous 
algorithms based on those independent principles, such as 
FastICA, JADE, Infomax, and so on. Those algorithms are 
always directly used to carry out blind separation work in the 
communication system. They always take no account of the 
performance criterion of the communication system. In fact, 
those ignored criteria may be combined with independent 
principles based cost function to propose a more suitable 
algorithm for executing blind separation of communication 
mixed signals.  

Taking into account of the communication system, the bit 
error rate (BER) is a significant performance criterion. In this 
paper, the idea of a minimum BER criterion incorporated into 
ML or MMI principle is motivated to build the cost function, 
and then the natural gradient is used to optimize the built new 
cost function. Simulation results show the proposed new cost 
function based blind separation algorithm can lead to better 
performance in speed of convergence and separation accuracy 
compared with the original one.   

The remainder of the paper is organized as follows. In the 

SectionⅡ, the system model of blind source separation is 
reviewed. The new cost function of ICA and the proposed 

blind separation algorithm are both described in Section Ⅲ. 

Simulation results and discussion are presented in Section Ⅳ. 

SectionⅤdraws the conclusions. 

II. SYSTEM MODEL 
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Fig.1 The basic BSS model block diagram 
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In this section, the basic BSS model is reviewed. As shown 
in Fig. 1, the BSS model has a close relationship to MIMO 
system [1, 14].  Considering the determined BSS model, that 
is to say, the number of transmitting antennas and receiving 
antenna is the same in MIMO system. The mutually 

independent source vector is denoted as  1 2, ,
T

Ms s ss  . 

The mixing matrix isA , which describes a MIMO channel 

condition.  1 2, , ,
T

Mn n nn  is the noise vectors. The 

observed mixed signal is  1 2, , ,
T

Mx x xx  , in other 

words, the received signals in MIMO. The received mixed 
signals can be described as follows, 

  x As n                    (1) 
The goal of BSS is to separate or extract source signals only 
from observed mixed signals. The source signal estimation 
can be obtained after the separating operation is executed, 

ˆ  

 

s BAs Bn

s Bn
                (2) 

Ideally, C BA is an identity matrix, i.e., the separating 

matrix B is the inverse of the mixing matrix. In fact, the 

matrixC is a generalized permutation matrix due to inherent 

indeterminacy in BSS. However，this problem has no effect 

into the separation work. 

III. NEW COST FUNCTION FOR BSS 

A. ML principle based cost function 

The cost function of the ICA problem is usually derived via 
the maximum likelihood (ML) approach under the 
independence assumption. Suppose that sources s are 

independent with marginal distribution  i if s .  

   
i

M

s i
i

f f s s s                  (3) 

In the linear model, x As , the joint density of the 

observation vector is related to the joint density of the source 
vector as follows: 

     1 1 11
det
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f f f   x s sx A x A A x

A
  (4) 

Then our goal is to find a maximum likelihood estimation of 

A (or B  where
1B A ) to maximize (4). Noting that 

1 y A x Bx , the ML cost function can be derived from 

the log likelihood of (4) as  

   1log log det logf f   x sx A A x    (5) 

which can be also written as  

   log log det logf f x yx B y        (6) 

y is the estimation of s  with the actual distribution  fs s

replaced by a hypothesized distribution  fy y . Since sources 

are assumed to be statistically independent, the cost function 
is written as  

   
1

log det log
i

M

y i
i
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The separating matrixB is determined by  
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B. Minimum BER constrained ML principle based cost 
function 

In this subsection, the minimum BER criterion is derived 
firstly. Then the minimum BER criterion incorporated into 
ML principle based cost function is built. The BSS problem in 
MIMO is a blind equalization one. Taking into account 
communication signals in a MIMO system model, the 
transmitted symbols are equiprobable antipodal symbols (i.e.,

1 , BSPK) uncorrelated with each other, i.e.,  

 TE ss I                    (9) 

The antipodal assumption is made for simplicity, and other 
constellations can also be used to extend, such as 
4-QAM/QPSK. The noise vectorn is zero-mean, white and 
Gaussian, with covariance matrix  

  2TE nn I                (10) 

Whens is transmitted, ŝ , as given by (2), will be the received 

signal vector. The elements of this vector are then quantized 

by a threshold detector to obtain ˆ
qs , whose elements will be

1 . The average BER of the detected signal is the average of 
the probability of error of each element of the block, i.e.,  

1

1 M

e em
m

P P
M 
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In which emP  denotes the BER of the
thm source symbol. 

Since the signal power of each data symbol is unity and the 

covariance matrix of the received noise is
2 T BB , by 

following standard steps, it can be shown that the probability 

of the
thm  source symbol in ˆ

qs being in error can be written 

as  
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2 T

mm
   BB represents the noise variance in the receiver’s 

estimation of the
thm source symbol of the transmitted signal 

vector. Substituting (12) into (11), yielding  

2
1

1 1

2 2

M

e
T

m
mm

P erfc
M 

 
 
     


BB

    (13) 
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  BB . If this condition is 

satisfied for all m(i.e., if there is sufficiently large SNR at the 

receiver), the average block BER eP is also convex [15].  

Since eP is convex at moderate-to-high SNRs, the Jensen’s 
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Equality in (15) holds if and only if 
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 1,m M  . The inequality of (15) is valid only when eP is 
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The quantity ,e LBP  in (15) defines a lower bound on the 

BER eP . Note that since  erfc  is a monotonically 

decreasing function, to minimize ,e LBP in (15), we need only 

minimize  Ttr BB . That is to say, the minimum BER 

criterion can be described as follows: 
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Combined with (7), the new cost function with minimum 
BER criterion can be obtained,  
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In order to simplify the above constrained optimization 
problem (17), considering (7), the new cost function with 
minimum BER criterion in condition of the moderate-to-high 
SNRs can be described as a unconstrained optimization 
problem, i.e., 

   
1

ˆ arg min log det log
i

M
T

y i
i

f y tr
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Where  is a regulation parameter. Then the natural gradient 

search for optimizing the cost function (18) can be realized 
for BSS. 

C. Optimizing cost function by natural gradient 
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Where  is a regulation parameter. Then the natural gradient 

search for optimizing the cost function (18) can be realized 
for BSS. 

C. Optimizing cost function by natural gradient 
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Where  is a regulation parameter. Then the natural gradient 
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Where  is a regulation parameter. Then the natural gradient 

search for optimizing the cost function (18) can be realized 
for BSS. 

C. Optimizing cost function by natural gradient 
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to be adopted. In other words, using a cost function converts 
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adaptive BSS based on the natural gradient for its fast and 
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diagram for BSS is shown in Fig. 2. For any suitable smooth 

gradient-searchable the cost function  J B , the natural adaptation is defined as: 
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The new built cost function in (18), since the probability 
density function (PDF) of sources are supposed to be 

unknown, and  
iy if y is also unknown. Therefore, the 

activation or score function need be used to approximate 
probability density function of separation source signals. 

The function  i iy denotes the activation or score 

function in ML approach, which is defined as  
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Since sources in digital communication are always 
subgaussian signal, this activation function can be chose as 
follows [3], 
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Furthermore we can obtain the gradient of the cost function as 
follows: 
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The natural gradient learning law now yields  
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IV. SIMULATIONS AND DISCUSSIONS 

To demonstrate the effectiveness of the proposed algorithm 
in this paper, we conduct simulation experiments to evaluate 
the performance of the proposed ML based cost function with 
minimum BER criterion by nature gradient (called 
ML-BER-NG). For comparison, the only ML based cost 
function by nature gradient (ML-NG) is also illustrated for 
highlighting the proposed algorithm mechanism by 
comparative experiments. Considering a MIMO system, the 
number of transmitting antennas and receiving antennas is 5, 
the source symbols are from BPSK, the sample size is 4000. 
The mixing matrix is generated randomly. The performance 
index is cross talk error. The smaller is this performance index, 
the better performance is acquired. The cross talk error is 
defined as following[1, 3] 

1 1 1 1

1 1
max max

M M M M
ij ij

ct
i j j ik ik k kj

c c
E

c c   

   
      
   
   

     

where C BA , ijc is element in matrixC . The moderate 

SNR condition is considered and other parameters setting are 
same for two methods.  

The simulation results are demonstrated in Fig. 3 and Fig. 4, 
respectively. We can conclude that the proposed cost function 
by nature gradient can lead to better performance in speed of 
convergence and separation accuracy. In Fig. 3, we can see 

that the proposed ML-BER-NG algorithm has low cross talk 
error and fast convergence rate compared with the original 
ML-NG algorithm. It is noteworthy that the initial value of a 
separation matrix is randomly generated, so that the number 
of iterations is a bit larger. However, the computation 
complexity is low. It takes just 2-4 seconds to achieve the 
algorithm convergence from time complexity. From Fig. 4, we 
can see that BER performance of the ML-BER-NG is better 
than the ML-NG in moderate SNR condition.  

 

Fig.3 The cross talk error as a function of iterations  

 

Fig.4 BER performance as a function of SNR  

In Fig.5, the further performance comparison of the 
representative methods is conducted 100 experiments for 
highlighting the proposed algorithm when the moderate 
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The new built cost function in (18), since the probability 
density function (PDF) of sources are supposed to be 

unknown, and  
iy if y is also unknown. Therefore, the 

activation or score function need be used to approximate 
probability density function of separation source signals. 

The function  i iy denotes the activation or score 

function in ML approach, which is defined as  
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Since sources in digital communication are always 
subgaussian signal, this activation function can be chose as 
follows [3], 
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The natural gradient learning law now yields  
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IV. SIMULATIONS AND DISCUSSIONS 

To demonstrate the effectiveness of the proposed algorithm 
in this paper, we conduct simulation experiments to evaluate 
the performance of the proposed ML based cost function with 
minimum BER criterion by nature gradient (called 
ML-BER-NG). For comparison, the only ML based cost 
function by nature gradient (ML-NG) is also illustrated for 
highlighting the proposed algorithm mechanism by 
comparative experiments. Considering a MIMO system, the 
number of transmitting antennas and receiving antennas is 5, 
the source symbols are from BPSK, the sample size is 4000. 
The mixing matrix is generated randomly. The performance 
index is cross talk error. The smaller is this performance index, 
the better performance is acquired. The cross talk error is 
defined as following[1, 3] 
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where C BA , ijc is element in matrixC . The moderate 

SNR condition is considered and other parameters setting are 
same for two methods.  

The simulation results are demonstrated in Fig. 3 and Fig. 4, 
respectively. We can conclude that the proposed cost function 
by nature gradient can lead to better performance in speed of 
convergence and separation accuracy. In Fig. 3, we can see 

that the proposed ML-BER-NG algorithm has low cross talk 
error and fast convergence rate compared with the original 
ML-NG algorithm. It is noteworthy that the initial value of a 
separation matrix is randomly generated, so that the number 
of iterations is a bit larger. However, the computation 
complexity is low. It takes just 2-4 seconds to achieve the 
algorithm convergence from time complexity. From Fig. 4, we 
can see that BER performance of the ML-BER-NG is better 
than the ML-NG in moderate SNR condition.  
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performance is given in a boxplot form, and in Fig.5(b) the 
BER performance with error bar is drawn to exhibit the 
performance enhancement of the proposed method compared 
with other representative algorithms. We can safely obtain that 
the proposed method achieve the performance refinement in 
contrast with that of some representative BSS methods for 
MIMO signals detection. 
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Fig. 5 BER performance comparisons of different representative 
methods  
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(c) Separated detected signals (ML-NG) 

s
1

s
2

s
3

s
4

0 100 200 300 400 500 600 700 800 900 1000
-2

0

2

x
1

0 100 200 300 400 500 600 700 800 900 1000
-2

0

2

x
2

0 100 200 300 400 500 600 700 800 900 1000
-5

0

5

x
3

0 100 200 300 400 500 600 700 800 900 1000
-2

0

2

k

x
4

100 200 300 400 500 600 700 800 900 1000

-1

0

1

y
1

100 200 300 400 500 600 700 800 900 1000

-1

0

1

y
2

100 200 300 400 500 600 700 800 900 1000

-1

0

1

y
3

100 200 300 400 500 600 700 800 900 1000

-1

0

1

k

y
4

performance is given in a boxplot form, and in Fig.5(b) the 
BER performance with error bar is drawn to exhibit the 
performance enhancement of the proposed method compared 
with other representative algorithms. We can safely obtain that 
the proposed method achieve the performance refinement in 
contrast with that of some representative BSS methods for 
MIMO signals detection. 
 

 
(a) 

 

 

(b) 

Fig. 5 BER performance comparisons of different representative 
methods  

 

(a) Transmitted signals;  

 

(b) Received mixed signals; 

 

(c) Separated detected signals (ML-NG) 

s
1

s
2

s
3

s
4

0 100 200 300 400 500 600 700 800 900 1000
-2

0

2

x
1

0 100 200 300 400 500 600 700 800 900 1000
-2

0

2

x
2

0 100 200 300 400 500 600 700 800 900 1000
-5

0

5

x
3

0 100 200 300 400 500 600 700 800 900 1000
-2

0

2

k

x
4

100 200 300 400 500 600 700 800 900 1000

-1

0

1

y
1

100 200 300 400 500 600 700 800 900 1000

-1

0

1

y
2

100 200 300 400 500 600 700 800 900 1000

-1

0

1

y
3

100 200 300 400 500 600 700 800 900 1000

-1

0

1

k

y
4

performance is given in a boxplot form, and in Fig.5(b) the 
BER performance with error bar is drawn to exhibit the 
performance enhancement of the proposed method compared 
with other representative algorithms. We can safely obtain that 
the proposed method achieve the performance refinement in 
contrast with that of some representative BSS methods for 
MIMO signals detection. 
 

 
(a) 

 

 

(b) 

Fig. 5 BER performance comparisons of different representative 
methods  

 

(a) Transmitted signals;  

 

(b) Received mixed signals; 

 

(c) Separated detected signals (ML-NG) 

s
1

s
2

s
3

s
4

0 100 200 300 400 500 600 700 800 900 1000
-2

0

2

x
1

0 100 200 300 400 500 600 700 800 900 1000
-2

0

2

x
2

0 100 200 300 400 500 600 700 800 900 1000
-5

0

5

x
3

0 100 200 300 400 500 600 700 800 900 1000
-2

0

2

k

x
4

100 200 300 400 500 600 700 800 900 1000

-1

0

1

y
1

100 200 300 400 500 600 700 800 900 1000

-1

0

1

y
2

100 200 300 400 500 600 700 800 900 1000

-1

0

1

y
3

100 200 300 400 500 600 700 800 900 1000

-1

0

1

k

y
4



Minimum BER Criterion Based Robust Blind
Separation for MIMO Systems

INFOCOMMUNICATIONS JOURNAL

MARCH 2019 • VOLUME XI • NUMBER 1 43

 

(d) Separated detected signals (ML-BER-NG) 

Fig.6 4 4 MIMO；(a) Transmitted signals; (b) Received mixed 
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In the next simulation, the direct separation graphs are 
exhibited for illustration. As shown in Fig.6, it shows the 
results of blind separation of 4 4 MIMO in SNR=15dB. 
From the separated results of Fig.6, we can verify that the 
incorporation of minimum BER criterion in BSS improves the 
separation performance. 

Remarks: The ML principle with minimum BER criterion 
considers the effect of noise term in the model of the cost 
function. It is fit for communication signals circumstance. The 
original ML principle neglects the effect of noise. However, 
noise is inevitable in a wireless communication environment. 
Furthermore, the computation complexity of the proposed 
algorithm (ML-BER-NG) is nearly similar to the ML-NG 
algorithm with low computation.   

V. CONCLUSIONS 

In this paper, a minimum BER criterion is considered in 
combination with the ML independent principle for blind 
separation problem in MIMO signal detection. The effect of 
the noise term is taken into account in the process of 
constructing cost function. The proposed algorithm can lead 
to better performance in speed of convergence and separation 
accuracy in moderate SNR condition. It is strongly 
encouraged to investigate the constrained cost function for 
BSS problem in low SNR in the future work. It is promising 
idea for thinking over other communication performance 
criteria for developing advanced BSS algorithms. 
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Abstract. The non-standard opto-electronic oscillator
(OEO) operation is discussed in the generation mode of a
single-side optical harmonic on the base of external and
internal modulation of the laser signal. The OEO
mathematical model is formed basing on laser differential
equations for the closed radiofrequency network. With the
help of the model offered, the phase noise of OEO
radiofrequency oscillations is analyzed. It is shown that
phase noise reduction in the circuit with external
modulation depends not only on the increased laser power
and growth of the geometric length of the optical fiber, but
on reduction of the laser phase noise.
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I. INTRODUCTION. THE OPTO-ELECTRONIC OSCILLATOR
STRUCTURE

Development and creation of the compact ultra-low-noise
microwave signal sources, which would be impact-resistant, is
an important problem of modern radio-physics and radio
engineering. Levels of the phase noise spectral density at the
microwave source output must be for most of the applications
-120…-170 dB/Hz at generation frequency 8…12 GHz for 1-
kHz offset from a carrier. Constructions of these oscillators
must sustain the strong mechanical impact loads in
200…2000 N/cm and high accelerations up to 2…10g.
Geometrical dimensions of the modern signal sources should
often be approximately 10 10 10 cubic mm, especially for the
satellite applications.

Development and implementation of new compact
microwave and millimeter-wave oscillators with improved
performance would lead to revolutionary jump in radio
electronics, perhaps, comparable to discovery of the quantum-
dimensional lasers or (as in radio engineering) at arriving of
the high-stability quartz crystal resonator. The new type of
oscillators called as opto-electroni  oscillator (OEO) described
in this paper will permit to use in the mobile communications
and in Internet systems of new radiofrequency channels for
information transmission, including 30…75-GHz ranges at the
low power of transmitters. A number of publications devoted
to OEO experimental investigations grows each year [1-8].

Opto-electronic oscillators will undoubtedly find wide
application in the fiber-optical communication lines as well as
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in on-board radar systems on millimeter- and centimeter
ranges, in communication systems as low-noise local
oscillators in receivers and as a master clock in transmitters, in
an optical lidar technology, as sensors of different physical
quantities and in many other systems [8-11].

Let us consider the OEO structural diagram with external
modulation of optical emission, which is often called as an
opto-electroni  oscillator with the Max–Zender modulator
(OEO MZ) presented in Figure 1a.

(a)

(b)

(c)
 Figure 1.  (a) Structural diagram of OEO with external MZ
modulator; (b) OEO circuit, a laser is the energy pump; ( )

Equivalent OEO circuit with a correlator.

OEO is formed by the following principal units: a laser,
the Mach-Zender (MZ) modulator, which is connected serially
into a ring, the fiber-optical system (FOS) containing an
optical filter (OF) and the single-mode optical fiber (FO), a
photo-detector (PD), for instance, the quantum-dimension
photo-diode, a narrowband radiofrequency filter (F), a
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