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Transient receptor potential cation channel subfamily M
member 4 (TRPM4) is a Ca®'-activated nonselective cation
channel that mediates membrane depolarization. Although, a
current with the hallmarks of a TRPM4-mediated current has
been previously reported in pancreatic acinar cells (PACs), the
role of TRPM4 in the regulation of acinar cell function has not
yet been explored. In the present study, we identify this TRPM4
current and describe its role in context of Ca”* signaling of
PACs using pharmacological tools and TRPM4-deficient mice.
We found a significant Ca**-activated cation current in PACs
that was sensitive to the TRPM4 inhibitors 9-phenanthrol and
4-chloro-2-[[2-(2-chlorophenoxy)acetylJamino]benzoic acid
(CBA). We demonstrated that the CBA-sensitive current was
responsible for a Ca>*-dependent depolarization of PACs from
a resting membrane potential of -44.4 + 2.9 to -27.7 + 3 mV.
Furthermore, we showed that Ca®* influx was higher in the
TRPM4 KO- and CBA-treated PACs than in control cells. As
hormone-induced repetitive Ca®* transients partially rely on
Ca®* influx in PACs, the role of TRPM4 was also assessed on
Ca®" oscillations elicited by physiologically relevant concen-
trations of the cholecystokinin analog cerulein. These data
show that the amplitude of Ca>* signals was significantly higher
in TRPM4 KO than in control PACs. Our results suggest that
PACs are depolarized by TRPM4 currents to an extent that
results in a significant reduction of the inward driving force for
Ca**. In conclusion, TRPM4 links intracellular Ca** signaling
to membrane potential as a negative feedback regulator of Ca>*
entry in PACs.

Pancreatic acinar cells (PACs) are the major cell types of the
exocrine pancreas. They are responsible for secretion of
digestive enzymes and primary fluid. Stimulation by endoge-
nous secretagogues, such as acetylcholine and cholecystokinin,
causes inositol 1,4,5-trisphosphate (IP3) generation, and
consequent Ca”* release from the endoplasmic reticulum (ER)
through the IP; receptor (IPsR) Ca®* channels. The subse-
quent increase in intracellular Ca®* concentration ([Ca®'];)
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triggers the exocytosis of digestive enzymes (1-4). During this
process, termed stimulus—secretion coupling, changing [Ca**];
may exhibit various spatiotemporal patterns, depending on the
magnitude of secretagogue stimulation, which eventually de-
termines the quality and quantity of secretion. Threshold
concentrations of secretagogues induce transient and repeti-
tive elevations (oscillations) of [Ca®*];, highly localized to the
apical pole of PAC, which was demonstrated to elicit exocy-
tosis of enzyme containing vesicles (5-9). The spatial limita-
tion of Ca®" release was explained by the higher density of
IP4Rs in this region and the large Ca®* buffering capacity of a
mitochondrial belt surrounding the apical area (10, 11). Higher
secretagogue concentrations cause higher [Ca®']; that breaks
through the mitochondrial firewall and generates propagating
Ca®* waves, which initiate transepithelial fluid secretion as well
(12—-14). These patterns of Ca* signals represent the physio-
logical function of Ca** signaling, whereas unduly high con-
centrations of secretagogues initiate a pathological chain of
reactions, beginning with an initial [Ca®*]; peak, followed by a
lower, but sustained Ca* plateau (9, 15). These, peak—plateau-
type signals overload the cell with excess amount of Ca®*,
which is enough to trigger intra-acinar zymogen activation,
self-digestion, leading to acute pancreatitis (16—18). However,
both long-lasting oscillatory- and peak—plateau-type Ca>*
signals require Ca®* influx from the extracellular environment
(19-22). The mechanism for Ca** entry may be either store
independent or store-operated Ca** entry ([SOCE] or capaci-
tative Ca®* entry) (23-26). The trigger for SOCE is the sig-
nificant depletion of the ER Ca** content, and its role is to fuel
further Ca®* release during strong stimulation. Otherwise,
either type of Ca®* entry channels are assembled from different
isoforms of the ORAI protein, with possible contribution of
transient receptor potential canonical 3 (TRPC3) channels to
SOCE (27-29).

Following [Ca®']; elevation, Ca®* is pumped out from the
cytosol by the plasma membrane Ca** ATPase (PMCA) or
transferred back to the ER by the sarco-ER Ca®* ATPase
(SERCA) (30-33).

Since the spatiotemporal characteristics of Ca®" signaling
fundamentally determine cell behavior and disordered Ca**
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signaling is directly linked to pancreatic pathology, the major
challenge of research in this field is to learn more about the
regulation of [Ca*]; and to find new pharmacological targets
and compounds to prevent Ca®* overload (34, 35). In our ef-
forts to find new effectors of Ca** signaling in PACs, we
examined whether Ca”*-regulated ion channels from the
transient receptor potential family (transient receptor potential
cation channel subfamily M member 4 [TRPM4] and transient
receptor potential cation channel subfamily M member 5
[TRPM5]) are expressed in PACs and whether they affect Ca**
signaling. First, we performed a comprehensive quantitative
PCR (qPCR) analysis using murine pancreas and got a positive
result for the TRPM4.

TRPM4 is an [Ca®*];-activated nonselective cation channel
mediating a significant amount of depolarizing current in
several cell types (36). Accordingly, plasma membrane depo-
larization because of TRPM4 activation was demonstrated to
control various physiological processes through the activation
of voltage-gated Ca>* channels (in breath pacemaker neurons
and cerebral arterioles) or by decreasing capacitative Ca>*
entry by limiting the electrochemical driving force for Ca®*
influx (in mast cells and T-lymphocytes) (37-40). A cation
current with the hallmarks of TRPM4 was also reported in
PAC by Maruyama and Petersen in 1982 (41, 42); however,
studying the role of the current in PAC function was impeded
by the lack of pharmacological and genetic tools at that time.
Nevertheless, the cation current was suggested to be respon-
sible for the Ca**-dependent transepithelial Na* and water
transport required for fluid secretion. Importantly, the fact that
the current is controlled by extracellular Ca”> implies that it
may serve as a negative feedback regulator of Ca®* influx.
Presuming that the inward cation current was carried by
TRPM4, its role in the feedback regulation of Ca®* influx was
tested in this study.

Results

In preliminary experiments, RT-qPCR analysis was per-
formed from murine whole pancreas lysates using DNA
primer probes designed to recognize the two types of Ca**-
dependent cation channels TRPM4 and TRPM5. Parallel ex-
periments were done using primer pairs against the three
isoforms of IP3R, the three isoforms of the ryanodine receptor
(RyR) Ca®* release channel and TRPC3, which served as in-
ternal control. The housekeeping gene GAPDH expression
was used as reference (Fig. 1). IP3R isoforms showed high and
identical expression, whereas RyR expression was relatively
low, with RyR1 being the major isoform. These results are in
accordance with previous results showing that all IP;R iso-
forms are equally highly expressed and that RyR has only a
complementary role in the Ca%* signaling of PACs (13, 14,
43-45). TRPM4 expression was comparable to IP3R expres-
sion and was significantly higher than that of TRPC3, the Ca®*
permeable channel partially responsible for SOCE in PACs
(29). TRPM5 expression level fell below the detection
threshold. As TRPM5 has been shown to be highly expressed
in the endocrine pancreas (46), our negative result also implies
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Figure 1. Relative expression of ion channel genes in murine pancreas.
mRNA expression of the ion channels indicated were determined using
quantitative real-time PCR. Transcripts of GAPDH were used as internal
control. The assay included three replicates.

that mRNA contamination of our whole pancreas lysate by
Langerhans islets did not bias our data. Therefore, we
conclude that TRPM4 mRNA is highly expressed in PAC.

In the next series of our experiments, functional expression
of TRPM4 was tested using the voltage-clamp method in
whole-cell configuration of the patch clamp technique. The
ionic composition of the extracellular and intracellular solu-
tions was designed specifically for the measurement of
nonselective cation currents. To this end, much of CI™ was
replaced by glutamate in the recording medium, and Cs™ was
added to the intracellular solution in order to prevent Cl™ and
K" currents, respectively. Averaged current traces, recorded in
course of voltage ramp protocols applied between -60
and +120 mV, are shown in Figure 2, A and B. Under control
conditions, a cation current appeared as a small inward
background current displaying a slight voltage dependence at
positive voltages. When the same cell was treated with cyclo-
piazonic acid (CPA), a specific inhibitor of SERCA (47), the
current significantly increased. CPA is a common tool used to
create elevated [Ca®*];, as it inhibits Ca®* reuptake and leaves
resting ER Ca?* leak uncompensated. As a result, CPA treat-
ment raises [Ca>*]; (35). The reason why we used CPA instead
of secretagogue stimulation for this purpose is that CPA in-
creases [Ca®*]; while saving the PIP, content of the plasma
membrane, so it prevents rundown of TRPM4 current during
the experiment (48). After reaching steady-state current, cells
were treated with a solution containing CPA together with the
widely used TRPM4 inhibitor 9-phenanthrol (9-ph; 100 uM)
(49), which diminished the current (Fig. 24). Unfortunately, 9-
ph is not a fully selective inhibitor of TRPM4 as it is known to
suppress also the Ca®*-dependent Cl~ current (50). This issue
makes 9-ph problematic to apply with PACs, as both currents
show significant depolarizing capacity in these cells. In order
to overcome selectivity problems, a more specific TRMP4 in-
hibitor,  4-chloro-2-[[2-(2-chlorophenoxy)acetyl]amino]ben-
zoic acid (CBA), was applied. About 10 uM of CBA inhibited
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Figure 2. Biophysical and pharmacological properties of the Ca**-
activated cation current in mouse pancreatic acinar cells. Average of
whole-cell current recordings obtained using the patch clamp technique
with a ramp voltage protocol. Measurements were performed on single
pancreatic acinar cells or small clusters of 2 to 3 cells isolated from WT (A
and B) or TRPM4-KO (C) mice. Most of CI~ was omitted from the recording
solutions, and K* was substituted with Cs* in order to selectively measure
Na* and Cs* currents of TRP channels. Ca®*-dependent currents were eli-
cited using the Ca** mobilizer cyclopiazonic acid (CPA). Average of cur-
rents under control conditions (black line, CTRL), in the presence of 30 uM
CPA (blue line) and during the application of TRPM4 inhibitors 9-
phenanthrol (100 uM) and CBA (10 pM) along with CPA (red line, CPA +
CBA) are displayed. (A, n = 7; B, n = 5; and C, n = 6). Mean currents
measured at 120 mV were compared with repeated-measures ANOVA, and
pairwise comparisons between the indicated groups were carried out us-
ing paired-sample t tests with Bonferroni correction. Asterisks indicate
significant (p < 0.05) differences. CBA, 4-chloro-2-[[2-(2-chlorophenoxy)
acetyllamino]benzoic acid; TRPM4, transient receptor potential cation
channel subfamily M member 4.
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the Ca®*-dependent cation current as potently as 100 pM 9-ph
(Fig. 2B) (49) without affecting the CI™ current (Fig. 3, A and
B), indicating that CBA is an appropriate drug for selectively
inhibiting TRPM4 even under the experimental conditions of
live-cell Ca®* imaging, when both cation and anion currents
operate simultaneously in PACs.

Cation current was also measured in PACs isolated from
animals in which the gene encoding the TRPM4 was disrupted
(TRPM4 KO) (39), using the same experimental arrangement.
Although, the mean current was somewhat higher comparing
to control, it failed to increase during CPA treatment and was
not sensitive to CBA either (Fig. 2C). These results strongly
suggest that TRPM4 is functionally expressed in WT PACs in
significant amounts.

In order to determine the impact of TRPM4 current on
membrane potential, perforated patch clamp experiments
were performed using the current clamp technique. The
membrane potential was -44.4 £ 2.9 mV under control con-
ditions, and the membrane slowly depolarized to —27.7 + 3 mV
when 30 uM CPA was applied. The membrane potential
returned close to the resting value (-42.9 + 1.6 mV) when the
perfusion solution was supplemented with 10 uM CBA (Fig. 4,
A and B). Based on these results, we propose that PAC plasma
membrane depolarizes in a Ca®*-dependent manner, involving
the activation of TRPM4.

Furthermore, we hypothesized that the driving force for
Ca”* influx at these depolarized membrane potentials is low
enough to significantly decrease Ca®* entry. To test this hy-
pothesis, ratiometric Ca>* imaging was performed in clusters
of PACs, which were exposed to long-term stimulation with
low dose (10 pM) of cerulein, which is equivalent to a physi-
ological stimulation with cholecystokinin (51). Parallel exper-
iments were performed in Ca**-containing and Ca®*-free
solutions (when the source of Ca®* can be only intracellular)
using control and TRPM4 KO cells as well. Continuous
application of 10 pM cerulein evoked periodic fluctuation
(oscillation) of [Ca®*]; in all groups (Fig. 5, A and B). Ca**
spikes emerging between 8 and 10 min of cerulein treatment
were analyzed because Ca®* entry was expected to already
contribute to the Ca* signaling by this time (21). While the
average amplitude of Ca®* spikes in control PACs was very
similar in Ca**-containing and Ca**-free media, the value was
markedly higher in Ca**-containing medium in the case of
TRPM4 KO preparations (Fig. 5C; ARsp0_g00 s values: CTRL
0 Ca**: 0.111 + 0.008; CTRL 2.5 Ca®": 0.091 + 0.007; TRPM4
KO 0 Ca®": 0.087 + 0.004; and TRPM4 KO 2.5 Ca*": 0.14 +
0.011). These data indicate that Ca** entry is significant after
8 min cerulein treatment in TRPM4 KO PACs but not in
control cells. Importantly, the spike amplitudes in control and
TRPM4 KO PACs were essentially the same in Ca**-free saline
solution, suggesting that the Ca®* content of ER was similar at
the end of cerulein treatment in both types of cells. Area under
the curve (which is believed to be proportional to the sum of
intracellular Ca**) followed a same trend, but the differences
were not different significantly (data not shown). Otherwise,
the temporal characteristics of Ca>* transients were not
apparently different in control and TRPM4 KO PACs. In
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Figure 3. CBA does not affect the ClI™ current in pancreatic acinar cells.
A, representative current traces of whole-cell currents of a cell under control
conditions and during the application of 10 uM CBA. Stee depolarizations
were applied between —60 and +120 mV with 1 uM Ca** in the pipette
solution. Averaged data are shown in panel B (n = 5). CBA, 4-chloro-2-[[2-(2-
chlorophenoxy)acetyllJamino]benzoic acid.

conclusion, the difference between control and KO PAC Ca**
spikes in Ca”**-containing solution indicates that TRPM4 is
likely involved in the negative feedback regulation of Ca**
entry in PACs. Unfortunately, testing the role of TRPM4 using
CBA in a similar experimental setting was not possible because
of a strong off-target effect, that is, 30 pM CBA completely
abolished Ca”* oscillations in Ca**-free bath solution (data not
shown), suggesting that CBA inhibited Ca®" release in PACs.

The hypothesis that TRPM4 is involved in the negative
feedback regulation of Ca®* entry was further investigated in
experiments designed to cause significant Ca>* depletion from
the ER in order to turn SOCE on. Therefore, PACs were
stimulated with 20 pM cerulein for 10 min in Ca**-free external
solution. Cerulein treatment caused rather sustained Ca>* sig-
nals with fluctuations of gradually decreasing amplitudes
(Fig. 6A). This behavior is an obvious sign of ER depletion and
Ca** unloading because of the activity of PMCA. Afterward, the
solution was exchanged to a solution containing 2.5 mM Ca%,
which resulted in a tonic elevation of [Ca**];, attributed to the
activation of SOCE (Fig. 6A). The amplitude of the SOCE-
related fluorescence signal ratio (AR) was compared with
those measured in TRPM4 KO PACs and found to be signifi-
cantly higher in KO cells (Fig. 6B; ARsocg values: CTRL [WT]:
0.091 + 0.005; TRPM4 KO: 0.126 + 0.004).

To verify these results, SOCE was more specifically inves-
tigated, by using CPA in order to cause ER depletion in a
receptor-independent manner. This experimental approach
avoids possible additional reactions that might interfere with
the Ca’**-signaling machinery during secretagogue
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Figure 4. Ca>*-dependent depolarization of pancreatic acinar cells re-
lies on TRPM4 activity. A, representative membrane potential (MP)
recording obtained under current-clamp conditions in control extracellular
solution, during CPA (30 uM) and CPA + CBA (10 uM) treatment, respec-
tively. Averaged membrane potentials recorded at different experimental
conditions are shown in panel B. Mean values were compared with
repeated-measures ANOVA, and pairwise comparisons between the indi-
cated groups were carried out using paired-sample t tests with Bonferroni
correction, asterisks indicate significant (p < 0.05) differences (n = 5). CBA, 4-
chloro-2-[[2-(2-chlorophenoxy)acetyl]lamino]benzoic  acid; CPA, cyclo-
piazonic acid; TRPM4, transient receptor potential cation channel subfamily
M member 4.

stimulations. About 30 uM of CPA was applied in Ca®*-free
saline to induce Ca>* leak from the ER (Fig. 7A). In the
beginning of treatment, [Ca®*]; increased, which was followed
by a slow decrease, indicating that the ER depleted and Ca**
was eliminated from the intracellular space by PMCA. The
amplitude of Ca®* signals was not significantly different be-
tween control, CBA-treated, and KO PACs (0.18 + 0.02, 0.22 +
0.01, and 0.21 + 0.03, respectively). After reaching basal fluo-
rescence values, the Ca®*-free solution was replaced by
2.5 mM Ca®*-containing solution, which resulted in a robust
increase in [Ca®*]; (Fig. 74, left panel). Similar experiments
were performed in the presence of CBA or using TRPM4 KO
PACs. In these experiments, CBA was appropriate to use for
the specific inhibition of TRPM4 because the ER was already
depleted and the SERCA pump was inhibited; therefore, CBA
could not affect Ca* release or the content of the ER. Analysis
of Ca**-influx—related alterations of fluorescence intensity
ratios revealed that the slope and amplitude of the change of
fluorescence (AR) was higher in TRPM4 KO PACs compared
with control. In addition, CBA treatment significantly
enhanced the rate of rise (but not the amplitude) of the fluo-
rescence signal (Fig. 7, B and C) (slope, CTRL: 0.76 + 0.04;
CBA: 1.06 + 0.03; KO: 1.88 + 0.1 AU; ARgocg: CTRL: 0.065 +
0.004; CBA: 0.071 + 0.002; KO: 0.103 + 0.005). These data are
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Figure 5. TRPM4 affects the Ca>* signaling of mouse pancreatic acinar
cells during CCK receptor stimulation. Ratiometric fluorescent Ca* im-
aging was performed using Fura-8 AM-loaded pancreatic acinar cells isolated
from WT or TRPM4 KO mice. Representative traces of fluorescence intensity
ratios (AR) are displayed in A and B. Fluorescence was recorded in single cells
of multiple individual cells of acinar cell clumps. Periodic fluctuations of
[Ca%*]; in response to 10 [ZJM cerulein were recorded in extracellular saline
containing 0 or 2.5 mM Ca** (A and B). Signal intensities of the spikes arising
between 500 and 600 s were analyzed (ARsgo_g00 s)- Individual data (circles)
and mean * SE values (square) are shown in C (n = experiments/cells; ncrre
0 ca2+ = 3/23; Ncrre 25 caze = 4/33; Nko 0 caz+ = 6/44; Nko 25 cazs = 3/23).
Asterisk indicates significant differences (p < 0.05 one-way ANOVA, Bonfer-
roni post hoc) as marked in the figure. CCK, cholecystokinin; TRPM4, transient
receptor potential cation channel subfamily M member 4.

in accordance with those presented in Figure 6 and support
our hypothesis that TRPM4 is a negative feedback regulator of
Ca®* entry in mouse PACs.

TRPM4 in pancreatic acinar cells
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Figure 6. TRPM4 activity regulates Ca>* entry during CCK receptor
stimulation. Ca®* signals of WT and TRPM4 KO acinar cells treated with 20
pM cerulein in Ca**-free extracellular solution and following a solution
change to 2.5 mM Ca** (black and green lines, A). Statistics of the fluores-
cence amplitudes measured in 2.5 mM Ca®* (B, ARsocg; N = experiments/
cells; ncrre = 6/37; ntrema ko = 7/50). Asterisk indicates significant differences
(p < 0.05, Student's t test for independent samples). CCK, cholecystokinin;
TRPM4, transient receptor potential cation channel subfamily M member 4.

Discussion

In this study, we provide the first direct evidence that the
TRPM4 current depolarizes PACs in a Ca**-dependent
manner and acts as a negative feedback regulator of Ca®* entry
under physiological conditions. However, our data may also
have pathological implications. Ca®>* overload of PACs is
believed to be the critical early pathological event, leading to
premature intracellular zymogen activation, self-digestion, and
eventually, acute pancreatitis (16—18). As SOCE is essential to
develop sustained and pathological elevation of [Ca**]; and
ORAI1 inhibitors were reported to mitigate the severity of
acute pancreatitis, our data raise the possibility that TRPM4
plays a preventive role in the pathophysiology of Ca** signaling
(34). This hypothesis should be further investigated using
animal models of the disease. The translational and thera-
peutic potential of TRPM4 should be also evaluated.

Similar physiological functions of TRPM4 have been
observed in T-lymphocytes and mast cells earlier. TRPM4
silencing transformed Ca®* oscillations to sustained elevations
of [Ca®*]; and led to increased interleukin-2 production in
Jurkat T cells, which is in accordance with the idea that
TRPM4 reduces Ca®* entry by depolarizing the plasma
membrane and decreasing the driving force for Ca** influx
(39).

Similarly, our results also imply that TRPM4 current sup-
presses Ca®" entry by creating a depolarized membrane po-
tential, where the driving force for Ca% entry is lower;
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Figure 7. TRPM4 activity regulates Ca>* entry evoked by CPA treat-
ment. A, Ca®* signals of control, CBA-treated, and TRPM4 KO acinar cells
during 30 uM CPA application in Ca**-free extracellular solution and
following a solution change to 2.5 mM Ca?*. Statistics of the slope and
amplitude of the signal (AR) recorded in 2.5 mM Ca?* (Band C n = ex-
periments/cells; ncrr. = 5/35; Ncpa: 4/29; and ngo: 5/41). Asterisks indicate
significant changes (p < 0.05, one-way ANOVA, Bonferroni post hoc) from
control values. CPA, cyclopiazonic acid; TRPM4, transient receptor potential
cation channel subfamily M member 4.

however, an alternative mechanism is offered by Park et al.
(52). They showed that TRPM4 physically interacts with
TRPC3, a Ca®" release—activated Ca®>* channel, in human
embryonic kidney 293T cells, which results in reduction of
channel activity. Since TRPC3 is highly expressed in PACs, this
is a possible explanation for our results. In addition, although
CBA was expected to block TRPM4, the compound failed to
increase the amplitude of SOCE significantly, which might also
be explained by the allosteric inhibition of TRPC3 by TRPM4-.
We presume that the inhibitory interaction between TRPM4
and TRPC3 is not affected by CBA; so TRPC3 is still inhibited
by TRPM4 in the presence of CBA, which accounts for the
unaltered SOCE amplitude. However, another reason might be
that the TRPM4 inhibition is not complete in the applied
concentration.

Apparently, the ClI” current (mediated by the recently
identified TMEM16a) also acts as a significant depolarizing
current in PACs (53-58), which raises the question why acinar
cells express functionally redundant ionic currents. The Ca®*-
dependent cation current was hypothesized earlier to have an
additional function as a Na" uptake channel of the basolateral
membrane, which would supply a plausible transcellular Na*
transport mechanism with Na*. However, current measure-
ments recorded at the equilibrium potential of CI” did not
show increased cation current when [Ca®*]; was elevated in the
extreme apical region of the cell but only after [Ca%*]; was
increased in the whole intracellular space (59). Although in the
lack of suitable TRPM4 antibodies for our immunofluores-
cence studies, we failed to demonstrate TRPM4 expression in
PACs, this earlier study strongly suggests that Ca**-activated
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cation channels are expressed only in the basal region of the
plasma membrane. The results of Kasai and Augustine also
imply that the apical membrane does not carry significant
cation currents. Consequently, transepithelial fluid secretion is
driven by a paracellular (not transcellular) Na* transport, that
is, TRPM4 does not participate in the fluid secretion process of
PACs. Therefore, we conclude that TRPM4 functions only as a
complementary depolarizing current, which is specifically
localized in order to negatively regulate Ca** entry in the vi-
cinity of Ca** release—activated Ca®* channels.

Experimental procedures
PAC isolation

All experiments complied with the Hungarian Animal
Welfare Act and the 2010/63/EU guideline of the European
Union and were approved by the Animal Welfare Committee
of the University of Debrecen.

Two types of mice were used in this study. The standard
strain was C57Bl6, and we also used mice in which the gene
encoding the TRPM4 was disrupted (TRPM4 KO). About 3- to
6-month-old mice of both genders were sacrificed by cervical
dislocation, and the pancreas was removed immediately.
Acinar cells were isolated as described earlier (60). The
pancreas was injected with 100 U/ml collagenase P, 0.1 mg/ml
trypsin inhibitor, and 2.5 mg/ml bovine serum albumin, dis-
solved in F12/Dulbecco’s modified Eagle’s medium (DMEM).
The tissue was incubated in 5 ml of this solution in a shaking
water bath at 37 °C for 25 min while continuously gassed with
carbogen. The medium was replaced with fresh medium after
10 min. The tissue was dissociated by trituration performed by
4 to 6 cycles of pipetting through a 10-ml serological pipette,
then filtered through a 150 pm mesh. Cells were layered on the
top of 2 x 5 ml F12/DMEM, containing 400 mg/ml bovine
serum albumin and collected by gentle centrifugation. The
pellet was washed in 2 ml DMEM and collected by slow
centrifugation. Acinar cell clumps were gently resuspended in
DMEM and kept at room temperature until use in Ca®* im-
aging experiments.

In order to gain single acinar cells for electrophysiological
measurements, the resulting acinar cell clumps were subjected
to an additional digesting step in Ca** and Mg**-free PBS
containing 100 U/ml collagenase P for 10 min. Thereafter, cells
were dissociated with pipetting using a 5-ml serological
pipette.

Intracellular Ca** imaging

Acinar cell clumps were loaded with 2 pM Fura-8 AM (AAT
Bioquest) Ca®* sensitive dye for 30 min at room temperature.
Acinar cells were plated on glass-bottom dishes (Bioptechs)
and allowed to attach to the bottom. Cells were perfused with
Tyrode’s solution containing (in millimolar): 140 NaCl, 5 KCl,
2 MgCl,, 2.5 CaCl,, and 10 Hepes, and pH 7.38. Some ex-
periments were performed with a Ca**-free Tyrode’s solution,
which contained 0.5 EGTA, but no CaCl,. Ratiometric mea-
surement of Fura-8 fluorescence was performed at room
temperature using a Zeiss Axiovert 135 microscope equipped
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with a 40x Fluor (1.3 numerical aperture) objective. Fura-8 was
excited at 360 and 405 nm at 1 Hz using an light-emitting
diode light source (FuraLED; Cairn Research Ltd), and the
emitted light was passed through a 520-nm longpass filter and
collected using a Qimaging Retiga R3 charge-coupled device
camera. The imaging hardware setup was controlled by
Micromanager software (an open source software program)
(61, 62) through an interface. Fluorescence values were
determined using Image] (National Institutes of Health) soft-
ware with Fiji plugins. Fluorescence ratios of emissions elicited
by excitations at 360 and 405 nm were calculated after back-
ground subtraction in single cells. Changes of ratios (AR) were
determined for each cell, averaged, and presented as mean +
SEM.

Electrophysiological recordings

Whole-cell currents were recorded at room temperature
using an Axopatch 200B amplifier and a Digidata 1320A
digitizer (Molecular Devices) at a 50-kHz sampling rate and
filtered online at 5 kHz using a low-pass Bessel filter. Patch
pipettes of 5 to 7 MQ resistance were pulled from borosilicate
glass capillaries (Warner Instruments). In TRPM4 current
measurements, pipettes were filled with a solution containing
(in millimolar): 144 Cs-glutamate, 1 MgCl,, 0.1 EGTA, 0.0486
CaCl, (100 nM ionized Caz+), 3 K-ATP, 10 Hepes, at pH 7.3.
The external solution contained (in millimolar): 140 sodium
glutamate, 4 CsCl, 2 MgCl,, 10 Hepes, at pH 7.4.

In CI” current measurements, the pipette solution contained
(in millimolar): 140 N-methyl-p-glucamine chloride, 1 MgCl,,
1.72 CaCl,, 2 EGTA (1 uM ionized Ca®*), at pH 7.2. The
extracellular solution contained (in millimolar): 140 N-methyl-
D-glucamine chloride, 1 MgCl,, 5 glucose, 10 Hepes, at pH 7.3.
All ingredients of the solutions were purchased from Sigma-—
Aldrich (Merck).

TRPM4 current was measured using a ramp voltage pro-
tocol applied from -100 to +120 mV, whereas Cl~ current was
recorded during 1 s long step depolarizations applied be-
tween —60 and +120 mV. At least 70% of the series resistance
was compensated in these measurements.

Membrane potential was measured under current-clamp
condition using the perforated patch clamp technique. The
cells were bathed in Tyrode’s solution, whereas the tip of the
pipette was filled with a solution containing (in millimolar): 85
potassium glutamate, 45 KCl, 15 NaCl, 2 MgCl,, 0.1 EGTA,
0.0486 CaCl, (100 nM ionized Ca**), 10 Hepes at pH 7.3. The
pipette was back-filled with the same solution, supplemented
with 300 pg/ml amphotericin B.

RNA isolation, RT, and quantitative real-time PCR

qPCR was performed on a Roche LightCycler 480 System
(Roche) using the 5" nuclease assay (63). Total RNA was iso-
lated using TRIzol (Life Technologies Hungary Ltd), DNase
treatment was performed according to the manufacturer’s
protocol, and then 1 pg of total RNA was reverse-transcribed
into complementary DNA using High-Capacity ¢cDNA Kit
from Life Technologies Hungary Ltd. PCR amplification was
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performed using the TagMan Gene Expression Assays (assay
IDs: Mm01175211_m1 for RYR1, Mm00465877_m1 for RYR2,
MmO01328421 m1l for RYR3, MmO00439907_m1l for inositol
1,4,5-trisphosphate receptor (ITPR) type 1, Mm00444937_m1
for ITPR type 2, MmO01306070_ml for ITPR type 3,
Mm00613173_m1 for TRPM4, Mm01129032_m1 for TRPMS5,
and Mm00444690_m1 for TRPC3) and the TagMan universal
PCR master mix protocol (Applied Biosystems). As internal
control, transcripts of the housekeeping gene (GAPDH; assay
ID: Mm99999915_g1) were determined. The amount of the
transcripts was normalized to the housekeeping gene using the
ACT method.

Chemicals

Fura-8 AM was purchased from AAT Bioquest. CBA was
from Tocris Bioscience (Bio-Techne Corporation). All other
chemicals (including collagenase P, 9-ph, CPA, and cerulein)
were obtained from Sigma-Aldrich (Merck).

Statistical analysis

Analysis was made in Origin 7.0 (Microcal Software) or in
Microsoft Excel. Data are presented as the average of cells
obtained from at least three independent experiments and at
least three animals. Averages are expressed as mean + SEM.
Statistical analysis was performed by using Student’s ¢ test or
one-way ANOVA with Bonferroni post-test. Related samples
were analyzed using repeated-measures ANOVA, and pairwise
comparisons were carried out with Bonferroni-corrected
paired sample ¢ test. Differences were considered significant
when p was less than 0.05.

The number of experiments (n) denotes the number of
experimental repeats/total number of cells in the case of Ca**
imaging and the number of cells in patch clamp measurements
as indicated in the legends to the figures.

Data availability

All data are contained within the article and available upon
request.
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