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Abstract 21 

 Traumatic brain injury (TBI) induces the formation of cerebral microbleeds (CMBs), which are 22 

associated with cognitive impairment, psychiatric disorders and gait dysfunction in patients. Elderly 23 

people frequently suffer TBI, especially mild brain trauma (mTBI). Interestingly, aging is an 24 

independent risk factor for the development of CMBs, as well. However, it is not well established how 25 

TBI and aging may interact to promote the development of CMBs. In order to test the hypothesis that 26 

mild TBI exacerbates the development of CMBs in the elderly we compared the number and cerebral 27 

distribution of CMBs assessed by analysing susceptibility weighted (SWI) magnetic resonance 28 

imaging (MRI) in young (25 +/- 10 year-old, n=18) and elder (72 +/- 7 year-old, n=17) patients after 29 

mTBI and in aged matched healthy subjects (young: 25 +/- 6 year- old, n=20; aged: 68 +/-5 year-old, 30 
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n=23). We found significantly more CMBs in elder patients after mTBI compared to young patients, 31 

however, we did not observe a significant difference in the number of cerebral microhemorrhages 32 

between aged and aged + mTBI patients. The majority of CMBs were found supratentorially (lobar 33 

and basal ganglion). Lobar distribution of supratentorial CMBs showed that aging enhances the 34 

formation parietal and occipital CMBs after mTBI. This suggests that aging and mTBI do not synergize 35 

in the induction of the development of cerebral microbleeds and that different distribution of mTBI-36 

induced CMBs in aged patients may lead to specific age-related clinical characteristics of mTBI.  37 

  38 

1 Introduction 39 

Traumatic brain injury (TBI) has been shown to induce the formation of cerebral microbleeds 40 

(CMBs) (1-6). CMBs are hemosiderin deposits of 5 to 10 mm in diameter resulting from bleeding from 41 

injured small cerebral arteries, arterioles or capillaries, which are associated with the development of 42 

cognitive impairment, psychiatric disorders and gait dysfunction (1, 3, 5-14). Due to orthostatic 43 

hypotension, dehydration and impaired balance the elderly population frequently suffers TBI (3, 15, 44 

16). The most common form of TBI affecting elderly people is mild brain trauma (mTBI) (15-17). 45 

Similarly to TBI, aging is an independent risk factor for the development of CMBs, as well (3, 5, 6, 46 

10). The number of CMBs increases with age, and they are causally linked to age-related cognitive 47 

decline and gait disturbances. Interestingly, mechanisms leading to the formation of CMBs, such as 48 

cerebrovascular oxidative stress, activation of matrix metalloproteinases, modification of the content 49 

of the cerebrovascular wall, are all induced by both aging and TBI (4, 6, 12, 14, 17-20). However, it is 50 

not well established and characterized how TBI and aging interact to promote the development of 51 

CMBs, especially after mild brain trauma. In this brief study we tested the hypothesis that mild TBI 52 

exacerbates the development of CMBs in the elderly compared to young patients, and aimed to 53 

characterize the location and distribution of CMBs in elder patients after mTBI.  54 

 55 

2 Materials and Methods 56 

2.1 Study population  57 

The study was approved by the Regional Ethic Committee of the University of Pecs, Medical 58 

School, Hungary (7270-PTE 2018). We retrospectively analysed the medical history and 3 Tesla 59 

susceptibility weighted (SWI) MRI of 35 patients’ (15 males, 20 females), who had suffered mTBI 60 
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(GCS 14-15) and were admitted to the Department of Neurosurgery, Medical School, University of 61 

Pecs, Hungary between April of 2014 – September of 2019. We also analysed the SWI MRI images of 62 

43 aged matched control patients (17 males and 26 female) without TBI in medical history. For the 63 

TBI groups the inclusion criteria were: young: age between 18 – 40 years, aged: above 60 years old at 64 

the time of the injury; mild TBI in the history within 6 months to MRI; mild TBI according to Mayo 65 

criteria: GCS 14-15, absence or maximum 30 minutes of loss of consciousness, absence of 66 

posttraumatic amnesia (PTA) (21). Exclusion criteria: any conditions associated with CMB formation 67 

in the medical history as: epilepsy, previous TBI, stroke, transient ischaemic attack, cavernous 68 

malformations, cerebral amyloid angiopathy, chronic hypertensive encephalopathy, acute 69 

haemorrhagic leukoencephalitis, cerebral autosomal dominant arteriopathy with subcortical infarcts 70 

and leukoencephalopathy (CADASIL), Alzheimer disease, cerebral vasculitis, cerebral metastases, 71 

haemorrhagic micrometastases, intracranial embolism, intravascular lymphoma, posterior reversible 72 

encephalopathy syndrome (PRES), progressive facial hemiatrophy, thrombotic microangiopathies, 73 

intracranial infection, COL4A1 brain small-vessel disease (6, 22, 23). For the control group additional 74 

exclusion criteria was TBI in the medical records. Both in the TBI and control group, two age groups 75 

were defined in a 2x2 study design: young (Y): n=20, 10 females, 10 males, age: 25 +/- 6 years; young 76 

+ mTBI (Y+mTBI): n=17, 11 females, 6 males, age: 25 +/- 10 years ; aged (A): n=23, 16 females, 7 77 

males, age: 68 +/-5 years; aged + mTBI (A+mTBI): n=17, 9 females, 8 males, age: 72 +/- 7 years..   78 

2.2 Imaging protocol  79 

Brain MRI was performed using 3T (Magnetom Trio/Prismafit) Siemens MR scanners. SWI, 80 

T1-weighted magnetization-prepared rapid acquisition with gradient echo (MPRAGE) and Fluid-81 

attenuated inversion recovery (FLAIR) images were obtained. T1-weighted high-resolution images 82 

were obtained using a three-dimensional (3D) MP-RAGE sequence (TI=900-1100 ms; TR=1900-2530 83 

ms; TE= 2.5-2.4 ms; slice thickness=0.9-1.0 mm; field of view (FOV) = 256 mm*256 mm; matrix size 84 

= 256*256, 3D SWI images were acquired as follows: TR=27-49 ms; TE= 20-40 ms; slice 85 

thickness=1.2-3.0 mm; FOV= 137-201mm*230-240 mm; matrix size= 125-182* 256-320, with no 86 

inter-slice gap. For image evaluation 3D Slicer 4.8.1 (http://www.slicer.org) software was used.    87 

2.3 Microbleed analysis 88 

Three independent neuroradiologists evaluated the images individually, blinded to medical 89 

history. In order to precisely identify CMBs, exclusion of SWI lesions that mimic CMBs (intersection 90 
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of veins, bottom of sulci, calcium deposits, artefacts caused by air-tissue interfaces or macroscopic 91 

bleeding caused by e.g., an intraventricular drain) was carried out (22, 23). The number and location 92 

of CMBs were obtained, according to the clinically validated Microbleed Anatomic Rating Scale 93 

(MARS) (24). MARS distinguishes the number of definite and possible lesions and precisely localises 94 

the CMBs according to anatomic regions as follows: 1) infratentorial: brainstem or cerebellum; 2) 95 

deep: basal ganglia, thalamus, internal or external capsule, corpus callosum, either the periventricular 96 

or deep white matter, and 3) lobar: cortex or subcortical white matter. In this study we present only the 97 

definite lesions (Fig.1).  98 

2.4 Statistical analysis  99 

Kolmogorov-Smirnov test was used to determine whether sample data have the characteristics 100 

of a normal distribution.  In order to compare the presence of microbleeds, the number of lesions and 101 

specific distribution in different sample groups Kruskal-Wallis with post hoc Dunn's Multiple 102 

Comparison Tests and Mann-Whitney U tests were used. To evaluate the effect of comorbidities on 103 

number of CMBs, Fisher’s exact tests were applied. Differences were considered significant at p<0.05. 104 

Statistical analysis was performed using Origin Pro 2018 software.   105 

3 Results 106 

3.1 The effect of mild traumatic brain injury on the formation of cerebral microbleeds in aging 107 

 Characteristics of patients in each group are shown in Table 1. There were no differences in the 108 

assessed cerebrovascular risk factors between the groups.  109 

We found that aging exacerbated the formation of CMBs significantly (p<0.05) compared to young 110 

patients (Fig 2A) confirming the results of previous studies showing that aging is an independent risk 111 

factor for the development of CMBs (3, 10, 22). Importantly, the number of CMBs in elder patients 112 

was not further increased by mTBI (Fig 2A). mTBI did not enhance the number of CMBs in young 113 

patients, either (Fig 2A). We found that aging also exacerbated significantly (p<0.05) the incidence of 114 

patients with CMBs regardless the number of bleedings (per cent of patients with CMBs in the given 115 

group of patients) compared to young patients (Fig 2B), which was not affected by mTBI (Fig 2B).  116 

3.2 Location characteristics of aging and mild traumatic brain injury-induced cerebral microbleeds 117 
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We found the majority of CMBs in the supratentorial compartment (lobar and basal ganglion), 118 

however a small number of microbleeds appears in infratentorial location in aged patient after mTBI. 119 

The difference did not reach statistical significance (Figure 2C). Analyzing the distribution of 120 

supratentorial CMBs across cerebral lobes (frontal, temporal, parietal, occipital) we found that aging 121 

enhances the number of parietal and occipital CMBs after mTBI (P<0.05 vs. Y+mTBI), and that mTBI 122 

leads to the formation of more CMBs in the parietal lobes in aging (P<0.05 vs. A) (Figure 2D).  123 

4 Discussion 124 

It has been shown previously that both TBI and aging induces the development of CMBs (1, 3, 125 

4, 6, 8, 10). In both cases CMBs are associated with long term cognitive deficit and gait dysfunction 126 

and determine the outcome of patients (1, 3, 5-7, 10-14, 23). Previous epidemiological studies proposed 127 

that TBI-related development of CMBs is exacerbated in aging (3). However, the effect of mTBI on 128 

the development of CMBs in aging, which is the most frequent form of brain trauma, has not been 129 

established (9, 15, 16). Here we show (Figure 2) that significantly more microbleeds can be found in 130 

the aging human brain than in young healthy individuals, confirming the results of previous studies (7, 131 

8, 10, 14, 22). We also found significantly more CMBs in elder patients after mTBI compared to young 132 

mTBI patients, however, we did not observe a significant difference in the number of cerebral 133 

microhemorrhages between aged and aged + mTBI patients. This suggests that aging and mTBI do not 134 

synergize in the induction of the development of CMBs.  135 

Clinical consequences of CMBs, such as the development of cognitive decline is most likely 136 

due to the cumulative effects of the lesions as well as damage in specific anatomical locations (6, 14, 137 

25). For example, damage of fronto - subcortical circuits linking prefrontal areas to basal ganglia is 138 

associated with impairment in executive function, and disarrangement of pathways from the mentioned 139 

areas projecting to thalamus results in memory disturbances (14, 25, 26). Although morphological 140 

characteristics based on MRI examination are not helpful to distinguish between CMBs of different 141 

etiologies, specific locations suggest the pathophysiological reasons of CMBs formation (6, 9, 22, 23, 142 

25). For example typical brain areas for traumatic CMBs are corona radiata and longitudinal fasciculus 143 

(5, 6, 9). Cerebral microbleeds in deep cerebral areas are thought to be due to cerebral angiopathy 144 

induced by hypertension, and lobar CMBs are likely due to amyloid angiopathy (6, 9, 23, 25). We 145 

found that aging alters the distribution of CMBs after mTBI (Figure 2). Namely, in elder patients 146 

following mTBI the number of occipital and parietal bleedings were exacerbated compared to young 147 

patients. This may affect the functional consequences of these bleedings. Accordingly, occipital and 148 
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parietal lobes are responsible for integrating visual and cognitive information, playing an important 149 

role in voluntary coordination, posture and motor control, spatial cognition and rapid corrections of 150 

movements (27-30). Specific tests should be part of patient characterization after mTBI to assess the 151 

region-specific consequences of CMBs in aging (and young patients, as well), such as the trail making 152 

test, the Beck’s depression test, Montreal Cognitive Assessment test etc. This possibility should be 153 

verified in the future.  154 

Limitations and perspectives 155 

The major limitations of our studies are the retrospective design and the relatively small sample size. 156 

Future prospective studies should verify our findings on a large number of control healthy volunteers. 157 

We used the Mayo criteria to define mTBI. Since other guidelines suggest slightly different scoring 158 

systems, it would be important to compare CMB formation in TBI groups defined by various scoring 159 

systems. Aging and mTBI may interact in altering regulatory mechanisms of cerebral blood flow (CBF) 160 

in a functional manner. Accordingly, changes in neurovascular coupling, autoregulation of CBF and 161 

cerebrovascular reactivity should be assessed and correlated with cognitive and gait function in 162 

different age groups after mTBI. Finally, the possible mechanisms through which aging and TBI may 163 

interact to alter cerebrovascular function and formation of CMBs should be studied, with special focus 164 

on mitochondrial oxidative stress, activation of redox-sensitive matrix metalloproteinases, 165 

modification of the cerebrovascular wall, production of proinflammatory cytokines and disruption of 166 

the blood-brain barrier (5, 10-12, 14, 20, 22, 23, 26).   167 
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Figure 1. Axial susceptibility weighted (SWI) magnetic resonance images (MRI, 3 Tesla) of a young 298 

control patient (Y, 38-year-old, male), a young patient following mild traumatic brain injury (Y+mTBI, 299 

36-year-old male GCS:15), an aged control patient (A, 67-year-old male) and an aged patient with mild 300 

TBI (A+mTBI, 65-year-old male, GCS:15). Cerebral microbleeds (CMB) appear as ovoid, hypointense 301 

lesions indicated by the red squares (R: right, L: left).  302 

 303 

 304 

 305 

 306 

 307 

Figure 2. The effect of mild traumatic brain injury on the development and characteristics of 308 

cerebral microbleeds in the elderly. A: Mean number of cerebral microbleeds (CMB) in young 309 

control (Y) patients (n=20, age: 25,09 +/- 5,63  years), young patients after mild traumatic brain injury 310 

(Y+mTBI) (n=17, age: 24,65 +/- 10,22 years), aged control patients (A) (n=23, age: 68,36 +/-4,88 311 

years) and aged patients with mTBI (A+mTBI, n=17, age: 71,86 +/- 7,31 years). Data are mean  312 

S.E.M., *P<0.05 vs. YC, ns: non-significant. B: Number of patients with CMBs in the studied groups 313 

is expressed as per cent of total number or patients in each group (young control (Y) patients (n=20, 314 

age: 25,09 +/- 5,63years), young patients after mild traumatic brain injury (Y+mTBI) (n=17, age: 24,65 315 

+/- 10,22 years), aged control patients (A) (n=23, age: 68,36 +/-4,88) and aged patients with mTBI 316 

(A+mTBI) (n=17, age: 71,86 +/- 7,31 years). *P<0.05 vs. YC. C depicts localization of CMBs in each 317 

group as number of lobar, deep seated (basal ganglion) and infratentorial CMBs expressed as per cent 318 

(%) of total number of CMBs. Note that the majority of CMBs can be found supratentorially (lobar 319 
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and basal ganglion), however a small number of microbleeds appears in infratentorial location in aged 320 

patient after mild traumatic brain injury (mTBI). The difference did not reach statistical significance. 321 

D: Lobar distribution of supratentorial CMBs in each studied group of patients (frontal, temporal, 322 

parietal, occipital). Please note that aging enhances the number of parietal and occipital CMBs after 323 

mTBI (P<0.05 vs. Y+mTBI), and that mTBI leads to the formation of more CMBs in the frontal, 324 

parietal and occipital lobes in aging (P<0.05 vs. A).  325 

(Y): n=20, 10 females, 10 males, age: 25,09 +/- 5,63 years; young + mTBI (Y+mTBI): n=17, 11 326 

females, 6 males, age: 24,65 +/- 10,22 years ; aged (A): n=23, 16 females, 7 males, age: 68,36 +/-4,88 327 

years; aged + mTBI (A+mTBI): n=17, 9 females, 8 males, age: 71,86 +/- 7,31 years..   328 

 329 

Table 1. General description and main cardiovascular comorbidities of the study groups.  330 

Group 
Age  

(Mean+/- 
SD) 

Sex Hypertension Smoking Urea  Creatinine Total Cholesterol 
Low Density 
Lipoprotein 

Female Male Yes No Yes No Normal Abnormal Normal Abnormal Normal Abnormal Normal Abnormal 

Young 
control 

(Y) 

25,09 +/- 
5,63 

50% 50% 10,0% 90,0% 5,0% 95,0% 85,0% 15,0% 85,0% 15,0% 90,0% 10,0% 95,0% 5,0% 

Young 
trauma 

(Y+mTBI) 

24,65 +/- 
10,22 

61,1% 35,3% 5,88% 94,12% 0% 100% 88,24% 11,76% 76,47% 26,53% 94,12% 5,88% 100,0% 0% 

Aged 
control 

(A) 

68,36 +/-
4,88 

69,6% 30,4% 60,87% 39,13% 4,35% 95,65% 91,3% 8,7% 91,3% 8,7% 56,52% 48,43% 78,26% 21,74% 

Aged 
trauma 

(A+mTBI) 

71,86 +/- 
7,31 

52,9% 47,1% 88,24% 11,76% 17,65% 82,35% 82,35% 17,65% 52,94% 47,06% 82,35% 17,65% 100,0% 0% 

 331 

 332 

 333 


