
Journal of Quantitative Spectroscopy & Radiative Transfer 272 (2021) 107756 

Contents lists available at ScienceDirect 

Journal of Quantitative Spectroscopy & Radiative Transfer 

journal homepage: www.elsevier.com/locate/jqsrt 

autoECART: Automatic energy conservation analysis of rovibronic 

transitions 

Roland Tóbiás a , ∗, Kristóf Bérczi b , Csaba Szabó c , Attila G. Császár d 

a Laboratory of Molecular Structure and Dynamics, Institute of Chemistry, ELTE Eötvös Loránd University and ELKH-ELTE Complex Chemical Systems 

Research Group, Pázmány Péter sétány 1/A, Budapest H-1117 Hungary 
b MTA-ELTE Egerváry Research Group, Department of Operations Research, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest H-1117, 

Hungary 
c Department of Algebra and Number Theory, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest H-1117, Hungary 
d Laboratory of Molecular Structure and Dynamics, Institute of Chemistry, ELTE Eötvös Loránd University and MTA-ELTE Complex Chemical Systems Research 

Group, Pázmány Péter sétány 1/A, Budapest H-1117, Hungary 

a r t i c l e i n f o 

Article history: 

Received 16 April 2021 

Revised 16 May 2021 

Accepted 17 May 2021 

Available online 24 May 2021 

Keywords: 

Network theory 

Constrained empirical energies 

autoECART 

GEISA 

a b s t r a c t 

Despite decades of diligent work on their development, line-by-line (LBL) spectroscopic information sys- 

tems, widely employed by scientists and engineers, may still contain a number of incorrect rovibronic 

lines. A novel heuristic protocol, relying on cycle bases of spectroscopic networks (SN) and a system of 

linear constraints, is proposed to unravel incorrect transitions present in the database. The algorithm is 

named autoECART, standing for automatic Energy Conservation Analysis of Rovibronic Transitions. The 

autoECART method is tested on synthetic SNs constructed from spectroscopic databases of nine water 

isotopologues. The systematic numerical tests demonstrate the outstanding capability of the autoECART 

procedure to identify almost all of the outliers generated randomly in these synthetic SNs. As a ‘real-life’ 

example, the GEISA-2019-H 2 
18 O database is scrutinized, revealing 17 rough outlier lines. Developers of 

spectroscopic information systems are encouraged to utilize autoECART for cleansing the huge number of 

transitions deposited in LBL databases. 

© 2021 The Author(s). Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license 
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. Introduction 

Accurate and detailed knowledge of rovibronic spectra of small 

olecules is crucial to numerous scientific and engineering appli- 

ations. Description and understanding of combustion [1,2] , radia- 

ive transfer [3,4] , chemical vapor deposition [5] , (exo)planetary 

tmospheres [6] , etc. , require dependable line-by-line (LBL) spec- 

roscopic information for a variety of chemical species. Extensive 

pectral knowledge is needed to find traces of molecules in the 

nterstellar medium and in atmospheres of (exo)planets. Experi- 

ental lines, augmented with first-principles transitions, are of- 

en employed to deduce the complete, highly accurate energy- 

evel structure of species [7–9] , which in turn provides their parti- 
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ion functions [10–17] for the determination of accurate ideal-gas 

emperature-dependent thermochemical quantities. 

These often interdisciplinary applications acted as drivers of 

everal significant advancements in the field of high-resolution 

olecular spectroscopy [18] . As a result, millions of observed and 

illions of first-principles transitions have been determined, some 

f which have been deposited in spectroscopic information sys- 

ems, such as HITRAN [19] , GEISA [20] , and CDMS [21] . Admin-

stration, annotation, and maintenance of these popular spectro- 

copic databases call for sophisticated theoretical and computa- 

ional procedures during the construction, accumulation, confirma- 

ion, treatment, visualization, and distribution of LBL data. Efficient 

lgorithms for these tasks are not readily available, partly because 

ctive management of an excessive number of occasionally con- 

icting rovibronic lines and states deduced by various laboratories 

oes not have a long history [22] . 

Incompatibilities ( e.g. , misassignments, calibration errors, mis- 

rints, or underestimated uncertainties) in rovibronic LBL datasets 
under the CC BY-NC-ND license 
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re repeatedly revealed both by the developers and the users of 

pectroscopic information systems. Despite the fact that flawed en- 

ries are corrected during the periodic updates of spectroscopic 

atabases, contradictory transitions might appear upon the inclu- 

ion of new data sources. Consequently, it is a highly important 

uestion whether a universal and almost automatic protocol can 

e devised that is suitable for identifying and treating the conflicts 

mong the processed lines right after the extension of the LBL cat- 

logues with new data. 

Needless to say, there are traditional methods for the detection 

f incompatible transitions, including effective Hamiltonian fitting, 

ombination difference analysis, and different multivariate outlier 

ests [23] . These approaches are generally too cumbersome and in- 

ffective in localizing all the erroneous lines among hundreds of 

housands of LBL entries. As advocated here, the concept of spec- 

roscopic networks (SN, see Ref. [24] ) offers an elegant way to re- 

olve the outlier problem via the exploitation of all the interde- 

endencies among the elementary data types (wavenumbers, un- 

ertainties, and rovibronic assignments) of the LBL records. In this 

tudy, internal conflicts are sought exclusively for these elementary 

arameters. 

The mathematical theory of SNs is well founded and by now 

mply discussed in the literature [22,24–28] . As shown repeat- 

dly, viewing rovibronic transitions and energy levels as edges and 

odes, respectively, of a huge, directed, loop-free multigraph may 

ive a better insight into the characteristics of and interconnections 

mong rovibronic states. 

The principle of SNs and the active database [29] approach pro- 

ided the basis for the development of the MARVEL (Measured Ac- 

ive Rotational-Vibrational Energy Levels) procedure [30–33] . MAR- 

EL has been deployed for the critical evaluation of experimental 

igh-resolution spectra of 24 small molecules [14,31,34–51] . 

A highly useful property of SNs is that they possess a very large 

umber of cycles, all of which should satisfy the law of energy 

onservation (LEC, see Ref. [28] ). LEC prescribes that the discrep- 

ncy (absolute signed sum of the transition wavenumbers) must 

ot be greater than the threshold (sum of the wavenumber uncer- 

ainties) for any cycle. Undoubtedly, violation of LEC within a cycle 

ndicates that at least one of the underlying transitions is incorrect. 

hus, LEC gives an excellent opportunity to evaluate the compati- 

ility of spectral lines participating in cycles, without an explicit 

eference to the energy values of the rovibronic states. 

In Ref. [28] , a cycle-basis-based strategy, called Energy Conser- 

ation Analysis of Rovibronic Transitions (ECART), was proposed 

o facilitate the exploration of incorrect LBL entries in a semi- 

utomated way. The principal objective of the present paper is to 

ormulate a significantly improved and fully automatic version of 

he ECART algorithm, named autoECART, which is able to unveil 

ll of the contaminating lines causing serious conflicts in spec- 

roscopic databases. As shown below for synthetic SNs and for 

he GEISA-2019-H 2 
18 O [52] database, autoECART works remarkably 

ell and enables the complete utilization of the available spectral 

nformation that can be extracted from the rovibronic transitions. 

. Theoretical background 

.1. Spectroscopic networks (SN) 

SNs are weighted, directed, loopless multigraphs, where (a) the 

odes denote energy levels (states), (b) the edges are rovibronic 

ransitions (lines), oriented from their lower-energy states to the 

pper ones, and (c) (task-dependent) edge weights can be assigned 

o the lines. Since LBL datasets are often composed of experimen- 

al, empirical, and theoretical transitions in a heavily mixed form, 

he term ‘spectroscopic network’ is used here in its fully general 

eaning. 
2 
To extract the full experimental and theoretical information ac- 

essible, one should investigate certain network elements (for in- 

tance, components, paths, cycles, and bridges) of the SN. Unlike in 

raditional network theory, these elements are defined here with- 

ut considering the edge directions. 

A component is a maximal connected collection of energy levels. 

 path stands for a series of linked, unrepeated transitions with 

istinct states. A cycle consists of a path and a line connecting the 

rst and last energy levels of this path. As multiple edges are also 

ermitted, cycles of length two may also occur in SNs. If a transi- 

ion is not part of any cycle, then it is named a bridge . 

A specific component of a SN is a principal component (PC) if it 

olds the lowest-energy state of a molecular nuclear-spin isomer; 

therwise, it is called a floating component (FC). It should be em- 

hasized that SNs often contain two or more PCs and several FCs. 

or every component, there is a (not necessarily unique) minimal 

ubset of transitions, a spanning tree (ST), making the energy levels 

onnected within that component. A set comprising STs for each 

omponent forms a spanning forest (SF) of the SN. All the lines 

utside a SF specify basic cycles with some transitions of this SF, 

hose collection is a cycle basis (CB). Each cycle can be written as 

 symmetric difference of the basic cycles [53] . 

SFs can be restricted such that various conditions hold for the 

dge weights. SFs can be obtained, e.g. , by the depth-first search 

DFS) and breadth-first search (BFS) techniques, as well as by the 

ruskal and Dijkstra methods [53] . Hereafter, BFS will be applied, 

ith unit weights, to build a SF of the SN. 

Subnetworks are important graph structures for network-based 

nalyses. A subnetwork N is (a) built from certain transitions and 

ll the energy levels of the SN and (b) represented by a partici- 

ation matrix , P = diag (P 1 , P 2 , . . . , P N T ) , where N T is the number of

ransitions in the SN, and P i denotes the participation coefficient 

 P i = 1 if the i th line of the SN is ‘inserted’ into N , otherwise

 i = 0 ). Since N embraces all the energy levels and only a few tran-

itions of the SN, some states may be isolated points (energy levels 

ithout incident lines) within N . Additionally, as each subnetwork 

f the SN contains the same nodes, the set operations (union, inter- 

ection, subtraction, symmetric difference, and so forth) and rela- 

ions ( e.g. , membership and inclusion) specified over the transition 

ets of subnetworks can be transferred to the subnetworks them- 

elves. For example, N 1 ∪ N 2 is also a subnetwork, comprising all 

he lines of the subnetworks N 1 and N 2 . Moreover, N 1 ⊆ N 2 means 

hat N 2 covers all the transitions of N 1 . 

For the purposes of the present study, two special subnetworks 

hould be defined. The leading subnetwork , N LS , is a subnetwork of 

ransitions not rejected by the user nor discarded algorithmically 

uring the outlier analysis of the SN. The atomic subnetwork , ♦, is 

 subnetwork without lines. 

.2. Empirical energy values 

Relying on the Ritz principle [54] , the exact transition wavenum- 

ers ( ς i ; 1 ≤ i ≤ N T ) are given as 

 i = E up (i ) − E low (i ) , (1) 

here up (i ) and low (i ) are the indices of the upper and lower en-

rgy levels of the i th line, respectively, E j is the exact energy of 

he jth state ( 1 ≤ j ≤ N L ), while N T and N L are the number of tran-

itions and energy levels in the SN, respectively. Since Eq. (1) is 

nvariant under a shift of E up (i ) and E low (i ) with the same constant 

or all the components of the SN, it is standard practice to replace 

 j with 

 j = E j − E core ( comp ( j)) , (2) 

here e j and comp ( j) are the relative energy and the component 

ndex of the jth state, respectively, and core (k ) is the index related 
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o the lowest-energy level ( core ) of the k th component within N .

rivially, 

 core (k ) = 0 (3) 

s valid for all 1 ≤ k ≤ N c , where N c is the number of components

n N . Thus, ς i can be rewritten as 

 i = e up (i ) − e low (i ) . (4) 

To simplify the characterization of SNs, we decided to slightly 

buse our notation and language by replacing ‘ e j ’ with ‘ E j ’ and us-

ng the term ‘energy’ rather than ‘relative energy’. Since in SNs 

he energies of the rovibronic states are always related to the 

ore energies of the components in a subnetwork N , this prac- 

ice should not cause any distortion in conveying the scientific 

essage. 

Instead of ς i , only its measured or computed estimate, σi , can 

e derived, which is augmented, in an ideal case, with its δi uncer- 

ainty. Assuming uncorrelated errors with zero expected values for 

he σi s, the energies can be obtained by minimizing the following 

bjective function: 

( ε) = ( σ − R ε) T PW ( σ − R ε) , (5) 

here (a) ε = { ε1 , ε2 , . . . , εN L 
} T symbolizes the variable vector, 

b) σ = 

{
σ1 , σ2 , . . . , σN T 

}T 
is the wavenumber vector, (c) P sym- 

olizes the participation matrix of subnetwork N , (d) W = 

iag (w 1 , w 2 , . . . , w N T 
) is a diagonal ( statistical ) weight matrix with

lements w i = δ−2 
i 

, and (e) R = { r i j } is the Ritz matrix [27] . The pa-

ameter r i j is +1 / − 1 if the jth energy level is the upper/lower

tate of the i th line, otherwise r i j = 0 . Taking Eq. (3) into consid-

ration, a minimum of �( ε) , denoted with Ē = { ̄E 1 , Ē 2 , . . . , Ē N L } T ,
an be obtained by solving an overdetermined system of inhomo- 

eneous linear equations: 

¯
 core(1) = Ē core(2) = . . . = Ē core (N c ) = 0 , (6) 

 ̄E = F , (7) 

here G = R 

T PW R is the weighted Gram–Schmidt matrix of R and 

 = R 

T PW σ is the vector of free terms . Note that Eqs. (6) and (7) ,

here the Ē j entries are known as empirical energies , are instru- 

ental in the conventional MARVEL procedure [30,32] . Employing 

he Ē j values, an empirical wavenumber , σ̄i = Ē up (i ) − Ē low (i ) , can be 

ssigned to the i th line. 

.3. Constrained empirical energies 

Unfortunately, unique wavenumber uncertainties are not pub- 

ished in most spectroscopic data sources, only typical values for 

egments (sets of lines of the same data source with similar un- 

ertainties) are provided. For this reason, where unavoidable, these 

verage-case uncertainties, quoted as estimated segment uncertain- 

ies (ESU, see Ref. [33] ), are adopted as approximations for the real 

i values in N . 

It was shown in Ref. [33] that this approximation may lead 

o distortions in the empirical energies. To mitigate these harm- 

ul distortions, a restrictive procedure ( constrained MARVEL algo- 

ithm ) was proposed in Ref. [33] for experimental SNs. Within this 

cheme, (a) a kernel subnetwork ( N k ) is formed from the accu- 

ate (trustworthy) lines of N , (b) empirical wavenumbers are de- 

ermined for these reliable transitions by evaluating Eqs. (6) and 

7) with N = N k , and (c) the empirical energies are calculated 

or N under the restriction that the empirical wavenumbers de- 

ived in (b) are unchanged. This method facilitates the treatment 

f arbitrarily long, embedded N 

(1) ⊆ N 

(2) ⊆ . . . ⊆ N 

(q ) sequences 

y gradually setting N k = N 

(p−1) and N = N 

(p) ( p = 2 , 3 , . . . , q ). In

he rest of this section, a brief description is given for the calcula- 

ion of constrained empirical energies. 
3 
Designate the core indices of subnetwork N k with core k (1), 

ore k (2), ..., core k (N k , c ) , where N k , c ≥ N c means the number of 

omponents in N k . Considering that the cores of N are also the 

ores of N k , one can rearrange the components of N k such that 

ore k (l) = core (l) is met for all 1 ≤ l ≤ N c . Based on this rearrange-

ent, the following linear constraints can be imposed upon the Ē j 
alues for all 1 ≤ j ≤ N L : 

¯
 j − Ē core k ( comp k ( j)) = β j , (8) 

here the jth state is associated with (a) its component index in- 

ide N k , comp k ( j) , and (b) the β j bound , which is the jth entry

f the β vector representing the solution of Eqs. (6) and (7) under 

 = N k . With these constraints, only the core energies of N k are

inearly independent variables, while all the other energies can be 

xpressed from Eq. (8) . These constraints can also be written as 

 = C H + β, (9) 

here H̄ = { ̄H 1 , H̄ 2 , . . . , H̄ N k , c 
} T including H̄ m 

= Ē core k (m ) , and C = 

 c jm 

} together with 

 jm 

= 

{
1 , if m = comp k ( j ) , 
0 , otherwise . 

(10) 

Substituting Eq. (9) into Eqs. (6) and (7) and performing some 

lgebraic manipulations, the following system of linear equations 

s obtained: 

¯
 1 = H̄ 2 = . . . = H̄ N c = 0 , (11) 

 C ̄H = F C , (12) 

here 

 C = C 

T GC , 

F C = C 

T 
(
F −G β

)
. (13) 

fter solving Eqs. (11) and (12) for H̄ , the constrained empirical en- 

rgy values can be deduced from Eq. (9) . 

If N k = ♦, each state forms a distinct component within N k , im-

lying that none of the energy values are constrained by Eq. (9) . 

n this case, C = I N L ×N L 
and β = 0 N L , where I N L ×N L 

is the N L 

N L identity matrix, and 0 N L is the N L × 1 zero vector, reducing 

qs. (11) and (12) to Eqs. (6) and (7) , respectively. 

.4. Consistency types 

The consistency of SNs is a crucial notion for the network- 

heoretical analysis of outliers (transitions with incorrect elemen- 

ary parameters). A subnetwork N of the SN is called consistent if 

here is an η = { η1 , η2 , . . . , ηN L 
} T , potential vector obeying 

σi − ηup (i ) − ηlow (i ) 

∣∣ ≤ δi (14) 

or every 1 ≤ i ≤ N T (with P i = 1 ). It is proved in Appendix A that

 is consistent if and only if all the cycles are regular within sub- 

etwork N . A regular cycle, comprising transitions with indices 

 1 , I 2 , . . . , I L and signs S 1 , S 2 , . . . , S L , should be subject to 

 ≤ T , (15) 

here 

 = 

∣∣∣∣∣
L ∑ 

k =1 

S k σI k 

∣∣∣∣∣ and T = 

L ∑ 

k =1 

δI k (16) 

re the discrepancy and the threshold of the investigated cycle, re- 

pectively, and L is the length of this cycle. Here the signs S k need

o satisfy 

L 
 

k =1 

S k row I k (R ) = 0 N L , (17) 
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here row q (R ) is the transpose of the q th row in R . This equa-

ion carries the most transparent algebraic formulation of the law 

f energy conservation (LEC, see Ref. [28] ) for a cycle. 

A fundamental feature of consistency is that it is balanced: if 

 is consistent, then any N 

∗ ⊆ N is also consistent [due to the 

xclusive presence of cycles adhering to Eq. (15) ]. This balanced 

haracteristics connotes that the same η potential vector can be 

pplied in Eq. (14) to verify the consistency of N 

∗ and N . 

By restricting Eq. (14) , two special forms of consistency can be 

efined. A consistent N subnetwork is strongly consistent if the en- 

ries of η are empirical energy values [ i.e. , η satisfies Eqs. (6) and 

7) ]. If N is a consistent subnetwork, and the entries of η are 

onstrained empirical energies [namely, η follows the structure of 

q. (9) ], N is conditionally consistent . In these cases, Eq. (14) takes

he form of 

 i ≤ 0 , (18) 

here d i = | Δi | − δi and Δi = σi − σi are the defect and the residual 

f the i th transition, respectively. In Appendix B , five potential mis- 

onceptions about the three versions of consistency are discussed. 

Due to the use of approximate δi values, the consistency of SNs 

ight be compromised. To suppress these mild deformity effects, 

q. (14) should be relaxed to 

σi − ηup (i ) − ηlow (i ) 

∣∣ ≤ δr ,i , (19) 

here δr ,i ≥ δi is called the relaxed uncertainty . To keep the ancil- 

ary input data to a minimum, it is advisable to set the same δr ,i 

alue for the transitions of each segment within a given database. 

f each transition of N follows Eq. (19) , then N is termed quasi-

onsistent . Evidently, quasi-consistency of subnetwork N holds ex- 

lusively in the case that each cycle of N complies with 

 ≤ T r , (20) 

here the T threshold of Eq. (16) is substituted with its relaxed 

orm, 

 r = 

L ∑ 

k =1 

δr , I k . (21) 

 cycle is labelled as bad if it contradicts Eq. (20) ; otherwise, it is

abelled as good . 

Similarly to ‘simple’ consistency, quasi-consistency can also be 

estrained in two distinct ways. If N is quasi-consistent, and η is 

omprised of empirical energies matching Eqs. (6) and (7) , then 

 is strongly quasi-consistent . Analogously, a quasi-consistent sub- 

etwork N is conditionally quasi-consistent if η is a vector of con- 

trained empirical energy values [derived from Eqs. (11) to (12) ]. In 

hese cases, Eq. (19) can be written in the form 

 r ,i ≤ 0 , (22) 

here d r ,i = | Δi | − δr ,i designates the relaxed defect of the i th tran-

ition. It should be stressed that the replacement δi → δr ,i is not 

pplied during the evaluation of Eqs. (6) and (7) or (11) and (12) .

ince Eqs. (14) and (19) differ only in their right-hand side, the 

hree quasi-consistency types exhibit the same properties as the 

hree variants of simple consistency. 

.5. Difficulties of outlier detection in SNs 

Regrettably, the identification of outliers in SNs is far from be- 

ng trivial. The most severe problem is that, due to the ill-defined 

haracteristics of outliers from a mathematical viewpoint, no ex- 

ct condition can be provided for their presence, which is further 

ggravated by the diversity of the underlying SNs. 

There is no doubt that if quasi-consistency is infringed in a SN, 

hen this SN should contain at least one outlier. Nevertheless, as 
4 
ttested in Appendix B (see misconceptions M4 and M5), quasi- 

onsistency is not sufficient for the absence of flawed transitions. 

hus, so-called latent outliers , that is incorrect lines not producing 

ositive relaxed defects, cannot be eliminated merely via network- 

heoretical tools. For this reason, following the detection of non- 

atent outliers, the transitions of the SN must be subjected to ex- 

ernal justification, like selection-rule analysis or EH modeling, in 

rder to catch latent outliers. 

Thanks to the robustness of large SNs [22] , they include a huge 

umber of short (2- and 4-membered) cycles and only few bridges. 

his robustness induces a notable decrease in the number of latent 

utliers, increasing the utility of network-based analyses. 

To ensure the automatic detection of non-latent outliers, one 

hould look for an effective heuristic algorithm, which is able to 

econtaminate the SN by assembling a blacklist of hypothetical out- 

iers (BHO) from the faulty lines. In this BHO list, (a) most (if not 

ll) of the non-latent outliers of the SN should appear, and (b) the 

umber of pseudo-outliers , ascribed to deficiencies of the applied 

rocedure, is as small as possible. Within this approximate pro- 

ocol, quasi-consistency needs to be confirmed by checking con- 

itional quasi-consistency, which provides an easy-to-assess (but, 

ndeed, a slightly strict) criterion for the fulfillment of Eq. (19) for 

ll 1 ≤ i ≤ N T . 

. The autoECART algorithm 

Following the introduction of the ECART (Energy Conservation 

nalysis of Rovibronic Transitions) procedure [28] , efforts have 

een made to train this approach for the automatic generation of 

ptimal BHOs. Our first attempt to determine a trustworthy BHO 

as based on the reduction of the outlier problem to a mixed inte- 

er linear programming (MILP) model (see Appendix C ), assuming 

hat the SN can be made free of outliers by neglecting a handful of 

ines with a minimum total weight. Nevertheless, during the nu- 

erical tests, the resulting system of equations turned out to be 

verly ill-conditioned and numerically too ineffective for SNs con- 

aining in excess of 200 000 transitions. 

To produce a suitable BHO, we also tried to evaluate the num- 

er of good and bad basic cycles, n good and n bad , respectively, for 

ach transition and perform a simple statistical analysis of the 

 bad / (n bad + n good ) ratios. Although this method indicated properly 

everal outliers in our test SNs, it was not able to minimize the 

umber of pseudo-outliers in the BHO compiled. 

Finally, we devised a successful algorithm, built upon the joint 

tilization of BFS-type CBs and constrained empirical energies. In 

he remainder of this section, our autoECART protocol, capable of 

ielding a reliable BHO, is described in detail. 

As clear from the modular structure of the autoECART method 

see Fig. 1 ), its scheme is founded on a purity check and the dou-

le execution of the supervised outlier expulsion ( SOE ). The purity 

heck is employed to test the conditional quasi-consistency of N LS 

ith respect to N anc , where N anc represents the anchor subnetwork 

ncluding those lines of N LS whose blacklisting is not allowed. If 

his type of consistency is satisfied, then the autoECART procedure 

s completed. 

SOE (a) processes a rigid ( N rig ) and an elastic ( N ela ) subnetwork

f the SN, (b) creates an N mer = N rig ∪ N ela merged subnetwork , 

nd (c) makes subnetwork N mer conditionally quasi-consistent, 

ubject to N rig , by assembling a BHO from the lines of N ela , while

eeping all the transitions of N rig . For details on the stages of SOE, 

ee the next two subsections. 

The autoECART method is executed over N LS \ N anc . The tran- 

itions of the N anc subnetwork are specified by the user within 

he input (if no such lines are provided, then N anc = ♦ will be 

et). During the first call of SOE (with N ela = N anc and N rig = ♦),

 BHO is extracted from N anc to warrant that N anc is condition- 
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Fig. 1. Overview of the autoECART protocol and its key procedure, SOE (supervised outlier expulsion). Steps of SOE are defined in Figs. 2–4 . For details, see text. 
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lly quasi-consistent with respect to ♦. If the BHO is not empty, 

hen the execution of the autoECART procedure is interrupted, and 

he user is requested to remove the entries of BHO from N anc . 

f there is no conflict within N anc , the SOE module is recalled, 

ith N ela = N LS \ N anc and N rig = N anc , to produce a BHO from the

 LS \ N anc subnetwork, and then the autoECART procedure is ter- 

inated. 

Apparently, the BHO list constructed by autoECART needs to be 

horoughly checked, and its transitions should be either corrected 

r excluded from N LS by the database builder. If certain BHO en- 

ries turn out to be pseudo-outliers, they should be placed into the 

 anc subnetwork. After these modifications, the autoECART proto- 

ol is to be repeated, and the BHO list should be reanalyzed until 

o outliers are found. When an empty BHO is received, it is worth 

etting N k = ♦ and iterating the autoECART procedure until condi- 

ional quasi-consistency is reached for N k = ♦, as well. 

.1. Repression procedure (RP) 

During the repression procedure, a preserved subnetwork ( N pres ) 

s defined, by setting N pres = N mer , and then successively trans- 

orting its putative outliers into the greylist of hypotetical outliers 

 GHO ) until the conditional consistency of N pres is reached. N pres 

ill aid, as a constraint in Eq. (22) , the assessment of the GHO

ines (see also Section 3.2 ). 

After the initialization of N pres , an iterative algorithm ( cyclic re- 

ression, CR ), invoking randomly chosen BFS-type CBs, is executed 

n an attempt to make N pres quasi-consistent. The CR protocol, 

hose flowchart is shown in Fig. 2 , (a) removes all the bad, short-

st, edge-disjoint basic cycles of the CBs from N pres , and (b) places 

he lines of the eliminated cycles (outside N rig ) in the GHO. When 

o bad cycles can be identified, μretr retrials are permitted to build 

urther CBs and reveal their bad cycles ‘hidden’ so far, where μretr 

s the (user-specified) retrial margin . 
5 
As the CR procedure allows only a non-exhaustive enumeration 

nd repression of bad cycles, there is no guarantee that N pres has 

o incompatible lines. Thus, a global repression ( GR ) should be car- 

ied out to quench all the problematic transitions disrupting the 

uasi-consistency of N pres . The GR method accomplishes three im- 

ortant tasks. First, the lines of N pres \N rig disobeying Eq. (22) are 

oved into the GHO. Second, GHO transitions with d r ,i ≤ 0 are re- 

nstated into N pres . One should be cautious with the latter step be- 

ause the d r ,i values of the reinstated lines may sometimes become 

ositive after the recalculation of the constrained empirical energy 

alues, initiating an infinite loop within the GR procedure. This 

onvergence issue is avoided by permitting the reinstatement only 

recu times, where μrecu is the so-called recuperation margin . Third, 

he bridges produced by the CR/GR procedures, among which there 

ay be possible outliers for N pres , are deactivated and placed into 

he GHO list. The determination of bridges could be implemented 

y assembling a BFS-type CB and exploiting that bridges cannot 

ake part in the basic cycles of this CB. 

.2. Purification procedure (PP) 

Upon completion of the RP procedure, a conditionally quasi- 

onsistent subnetwork N pres of N mer is obtained. Therefore, the 

ines of N pres provide a suitable restriction for the empirical energy 

alues to collect the outliers of N ela . For this specific purpose, a pu- 

ified subnetwork, set to N pur = N mer , is constructed, from which 

ransitions are progressively transferred into BHO to gain condi- 

ional quasi-consistency for N pur in a process, called purification 

rocedure ( PP ), highly similar to the RP protocol. The PP method 

eturns N pur as a near-largest, hopefully outlier-free subnetwork of 

 mer and yields the final BHO list, the main result of the autoE- 

ART procedure. 

The selective purification ( SP ) technique, shown schematically in 

ig. 4 , is an elaborate protocol to cleanse the subnetwork N pur \ 
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Fig. 2. Cyclic repression. The symbol ‘( = 10)’ denotes the suggested value of μretr . For details, see text. 
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 pres polluted with outliers. Within the SP method, the tran- 

itions of N pur \ N pres having d r ,i > 0 are transposed into BHO. 

hese transpositions are implemented in small fractions, censor- 

ng those transitions first for which d r ,i > φsp d r , max , where d r , max 

s the maximum defect in N pur \ N pres , and φsp means the selec- 

ive purification factor . Notice that the application of N pres as a 

onstraint not only makes the autoECART approach more sensi- 

ive to outliers, but it also leads to a significant speed-up for the 

ubsequent calculation of the empirical energies. This acceleration 

s attributed to the fact that G C is considerably smaller than G 

see Eq. (13) ]. 

After the completion of SP, it is advisable to test whether the 

ransitions of N pur meet Eq. (22) , even if N k = N rig is utilized in

qs. (9) –(13) rather than N k = N pres . In this spirit, a global purifica-
6 
ion ( GP ) is executed (see Fig. 4 ), which in fact corresponds to the

all of the GR procedure with the (BHO, N pur , N rig , N mer ) argument

ist (see Fig. 3 ). At the termination of the GP step, a conditionally

onsistent N pur subnetwork is obtained, which is expected to have 

o outliers within its cycles. 

It must be emphasized that the autoECART approach, despite its 

ffectiveness ( Section 4 , vide infra ), is not an ‘exact’ method (ex- 

ct outlier detection protocols cannot be devised due to the ill- 

efined nature of the outliers from a mathematical point of view). 

n other words, it may occur that another heuristic algorithm could 

nd some outliers remaining imperceptible for the autoECART pro- 

edure. For lack of a better option, one must accept this kind of 

eficiency of approximate methods, maintaining the possibility to 

onstantly improve them, where feasible. 
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Fig. 3. Global repression. The symbol ‘( = 3)’ denotes the suggested value of μrecu . For details, see text. 

Fig. 4. Selective (left panel) and global (right panel) purification. The symbols ‘( = 0.9)’ and ‘( = 3)’ denote the recommended values of parameters φsp and μrecu , respectively 

(see also text). 
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. Performance of the autoECART code 

The novel approach detailed in Section 3 was programmed, in 

he C++ language, into a code called autoECART . Our implemen- 

ation uses an in-house version of the BFS and lowest-common- 

ncestor [55] searches, together with the sparse Cholesky factor- 

zation of the Eigen software package [56] . 

In this section, the utility of the autoECART program is ana- 

yzed for a few synthetic networks. Investigation of synthetic spec- 

roscopic networks (SSN) is important to gain full control over the 

utlier analysis. For reasons of simplicity, each SSN will be identi- 

al to its N LS subnetwork, and N anc will be set to �. 

During the utility analysis, a specific SSN is constructed as fol- 

ows: (a) a contour SN ( CSN ) is assembled from a subset of the non-

xcluded transitions contained in the IUPAC [35,40] and W2020 

51] databases of six (HD 

16 O, HD 

17 O, HD 

18 O, D 2 
16 O, D 2 

17 O, and

 2 
18 O) and three (H 2 

16 O, H 2 
17 O, and H 2 

18 O) molecules, respec- 

ively, (b) δi = min (δ0 ,i , 0.05 cm 

−1 ) is set for the line uncertain- 

ies, where δ0 ,i is the uncertainty of the i th transition specified in 

efs. [35,40,51] , (c) the empirical energies are calculated by solving 

qs. (6) and (7) , and (d) the synthetic analogue of the CSN, simply

ermed synthetic SN, is derived by performing the substitution 

i ← | ̄E up (i ) − Ē low (i ) + o i + a i | (23) 

or every 1 ≤ i ≤ N T . In Eq. (23) , the o i ∈ [ −δi / 2 , δi / 2) uniform ran-

om variable imitates the observational error of the i th transition, 

nd a i denotes the additional error defined as 

 i = ( 1 − B i ) Σ( c i , CCR ) ξi M i . (24) 

q. (24) comprises the following parameters: (a) B i is a binary vari- 

ble designating whether the i th line corresponds to a bridge of 

he SN ( B i = 1 ) or not ( B i = 0 ), (b) ξi ∈ {−1 , 1 } means a uniform

andom sign, (c) M i ∈ [ ρ1 , ρ2 ) is a uniform random number with 

ts lower and upper limits ρ1 > 0 and ρ2 ≥ ρ1 , respectively, (d) 

 i ∈ [ 0 , 1 ) is another uniform random number, (e) CCR ∈ [ 0 , 1 ] is 

he critical contamination ratio , and (f) Σ(c i , CCR ) is a binary switch

unction with 

( c i , CCR ) = 

{
1 , if c i ≤ CCR , 

0 , otherwise . 
(25) 

Eq. (25) suggests that the outliers of SSNs are those non-bridge 

ines which have nonzero additional errors. One can also realize 

hat the CCR factor limits the N O /N T fraction, where N O is the num-

er of outliers generated. 

Evidently, a CSN can be associated with several randomly cho- 

en SSNs. A way to provide high-diversity SSNs for the same CSN is 

o vary ρ1 , ρ2 , and CCR during the application of the construction 

cheme. The free choice of ρ1 and ρ2 allows the introduction of a 

raft and a fine construction for all CSNs in the following fashion: 

raft : ρ1 = 0 . 1 cm 

−1 and ρ2 = 10 0 0 cm 

−1 , 

fine : ρ1 = 0 . 1 cm 

−1 and ρ2 = 1 cm 

−1 . (26) 

n a similar way, one can form a number of quite dissimilar SSNs 

rom a CSN by adjusting the CCR parameter in Eq. (24) . 

It is also important to scrutinize how the appearance of multi- 

le edges influences the effectiveness of autoECART . This exam- 

nation may be conducted by establishing two CSNs, a simple and 

 multiple one, for a given H 2 
X O/HD 

X O/D 2 
X O isotopologue ( X =

6 , 17 , 18 ) from the non-excluded lines of Refs. [35,40,51] . A mul-

iple CSN of an isotopologue is composed of all the non-excluded 

ines of the related W2020/IUPAC dataset; a simple CSN is created 

ikewise, but only one line is retained from transitions with the 

ame assignment. 

Following these considerations, we set up 18 (nine simple and 

ine multiple) CSNs and derived 56 SSNs (28-28 in draft and fine 
8 
odes) by adopting multiple CCR values (0.01, 0.02, 0.03, 0.05, 

.07, and 0.1) for H 2 
16 O and a single value of CCR = 0 . 01 for the

ther eight molecules. Then, the autoECART code was deployed 

o unveil the outliers of these SSNs [by setting δr ,i = δi in Eq. (22) ].

he numerical results are collected in Tables 1 and 2 . 

As displayed in Tables 1 and 2 , the CSNs forming the bases of 

he SSNs embrace only a few network bridges (as compared to the 

otal number of lines) and sufficient variety, both in size and topol- 

gy [22] , to critically evaluate the efficiency of the autoECART 
rogram. The draft-mode SSNs serve as to simulate the impact of 

ossible line misassignments, while their fine-mode siblings mimic 

he potential mistakes in the transition wavenumbers. One can also 

bserve in the penultimate columns of Tables 1 and 2 that the 

utliers generated increase the defects for an excessive number of 

orrect lines, extremely aggravating the identification of the true 

utliers. In defiance of this serious complication, the autoECART 
ode copes intelligently with discovering these outliers, yielding 

nly a small number of pseudo-outliers (typically 10-15 % of the 

HO). This ratio is slightly larger (20-25 %) for the W2020-based 

SNs of H 2 
X O ( X = 16 , 17 , 18 ), which is ascribed to the virtual and

omplementary lines [51] causing poorer connections within the 

nderlying CSNs. 

It is also worth noting that most outliers are successfully de- 

unked: the exceptional cases appearing in fine mode at higher 

CRs are most certainly due to cancellation of almost identical 

dditional errors. As to the two CSN types, no differences can 

e seen in the results achieved for SSNs of simple and multiple 

SNs. The CPU time, being minuscule even for the largest SSNs, 

aries nearly quadratically with N T at a fixed CCR value, while 

he growth does not follow a rigorous trend with respect to CCR, 

ut also depends on the number of BFS forests utilized in the CR 

rocedure. 

Briefly, the tests performed with SSNs prove the general utility 

f the autoECART program to itemize the outliers caused by mis- 

ssignments and flawed wavenumbers in a completely automated 

ay. However, as observed in Table 2 , there may be some out- 

iers unidentified if all their bad cycles are destroyed during the 

R process by repressing a couple of correct transitions of these 

ycles. Similarly, those outliers whose additional errors and the 

tated uncertainties are close to each other can also be identified 

nly with difficulty or their exploration may involve considerably 

ore pseudo-outliers. Note that the assignments of the BHO lines 

ust be thoroughly analyzed, allowing the recognition of system- 

tic misassignments in a specific source segment (these systematic 

rrors may also induce some latent outliers). 

. Outliers in the GEISA-2019-H 2 
18 O line list 

As an illustrative and didactic example, the GEISA-2019-H 2 
18 O 

ataset [52] is chosen to characterize the effectiveness of the 

utoECART program to detect outliers in popular spectroscopic 

nformation systems. This dataset comprises 41 214 rovibrational 

ransitions, of which 6547 are only partially assigned. These in- 

ompletely assigned spectral lines had to be neglected during the 

resent analysis. 

Since most of the transition wavenumbers do not have indi- 

idual uncertainties in the dataset, a conservative estimate of δi = 

 . 01 cm 

−1 is applied here for each transition, allowing the recogni- 

ion of rough outliers. Moreover, δr ,i = 0.05 cm 

−1 is used for each 

ine as a relaxed uncertainty, required by the autoECART protocol. 

hile one can adopt tighter uncertainty intervals to identify more 

ubtle outliers, such a detailed analysis is beyond the scope of this 

roof-of-concept study. 

As a result of its first execution, the autoECART program 

lacklisted 20 transitions, reported in Table 3 . This table also shows 

he W2020-HotWat78 [51,59] hybrid linelist counterparts of the 



R. Tóbiás, K. Bérczi, C. Szabó et al. Journal of Quantitative Spectroscopy & Radiative Transfer 272 (2021) 107756 

Table 1 

Outlier detection in draft-mode synthetic spectroscopic networks (SSN) of nine water isotopologues. 

species a CSN type b CCR c N d 
T 

N e 
B 

N f 
O 

N g 
IO 

N h 
PO 

N i 
BHO 

N j 
pd 

t k run /s 

H 2 
16 O simple 0.01 114 033 2413 1114 1114 351 1465 110 205 36.7 

H 2 
16 O simple 0.02 114 033 2413 2277 2277 581 2858 110 439 38.6 

H 2 
16 O simple 0.03 114 033 2413 3352 3352 717 4069 110 533 37.6 

H 2 
16 O simple 0.05 114 033 2413 5481 5481 1145 6626 110 762 40.9 

H 2 
16 O simple 0.07 114 033 2413 7804 7804 1604 9408 110 858 42.1 

H 2 
16 O simple 0.10 114 033 2413 11 019 11 019 2255 13 274 111 018 46.3 

H 2 
17 O simple 0.01 17 830 1265 151 151 83 234 16 490 1.3 

H 2 
18 O simple 0.01 26 697 1466 230 230 78 308 25 147 2.3 

HD 

16 O simple 0.01 36 057 1912 368 368 68 436 34 123 3.7 

HD 

17 O simple 0.01 443 13 5 5 2 7 430 0.0 

HD 

18 O simple 0.01 7186 445 69 69 15 84 6736 0.3 

D 2 
16 O simple 0.01 43 045 2287 354 354 61 415 40 625 4.9 

D 2 
17 O simple 0.01 547 97 5 5 2 7 436 0.1 

D 2 
18 O simple 0.01 9748 672 83 83 17 100 9055 0.5 

H 2 
16 O multiple 0.01 287 659 1894 2775 2775 176 2951 279 770 98.0 

H 2 
16 O multiple 0.02 287 659 1894 5793 5793 243 6036 282 200 117.5 

H 2 
16 O multiple 0.03 287 659 1894 8500 8500 398 8898 282 847 128.0 

H 2 
16 O multiple 0.05 287 659 1894 13 999 13 999 596 14 595 283 386 148.6 

H 2 
16 O multiple 0.07 287 659 1894 20 266 20 266 742 21 008 283 637 163.5 

H 2 
16 O multiple 0.10 287 659 1894 28 561 28 561 1022 29 583 283 941 173.1 

H 2 
17 O multiple 0.01 26 894 1168 235 235 40 275 25 288 2.3 

H 2 
18 O multiple 0.01 65 619 1132 665 665 42 707 62 560 7.0 

HD 

16 O multiple 0.01 53 369 1736 507 507 40 547 51 205 6.3 

HD 

17 O multiple 0.01 483 13 5 5 1 6 470 0.2 

HD 

18 O multiple 0.01 8729 431 74 74 7 81 8264 0.4 

D 2 
16 O multiple 0.01 52 842 2236 486 486 50 536 50 109 7.5 

D 2 
17 O multiple 0.01 583 93 6 6 3 9 463 0.2 

D 2 
18 O multiple 0.01 12 001 656 111 111 9 120 11 272 0.6 

a Chemical formula of a water isotopologue. b Type of the underlying countour spectroscopic network (CSN). c Critical 

contamination ratio (CCR) of a SSN, defined in Eq. (25) . d Number of transitions in a SSN. e Number of bridges in a 

SSN. f Number generated outliers in a SSN. g Number of identified outliers in a SSN. h Number of pseudo outliers in 

a SSN. i Number of transitions in the blacklist of hypothetical outliers (BHO) of a SSN. j Number of transitions with 

positive relaxed defects in a SSN. k Running time, related to a Lenovo Legion Y530 (81FV00T4HV) Notebook, for a SSN, 

in seconds. 

Table 2 

Outlier detection in fine-mode synthetic spectroscopic networks (SSN) of nine water isotopologues a . 

species CSN type CCR N T N B N O N IO N PO N BHO N pd t run /s 

H 2 
16 O simple 0.01 114 033 2413 1072 1072 318 1390 68 022 29.2 

H 2 
16 O simple 0.02 114 033 2413 2251 2251 613 2864 81 850 33.3 

H 2 
16 O simple 0.03 114 033 2413 3413 3413 793 4206 91 182 35.6 

H 2 
16 O simple 0.05 114 033 2413 5405 5403 1160 6563 98 431 38.1 

H 2 
16 O simple 0.07 114 033 2413 7841 7839 1633 9472 101 522 43.3 

H 2 
16 O simple 0.10 114 033 2413 11 101 11 097 2053 13 150 103 568 44.6 

H 2 
17 O simple 0.01 17 830 1265 158 158 56 214 12 008 1.4 

H 2 
18 O simple 0.01 26 697 1466 268 268 95 363 17 269 2.3 

HD 

16 O simple 0.01 36 057 1912 349 349 59 408 25 314 3.4 

HD 

17 O simple 0.01 443 13 3 3 1 4 395 0.1 

HD 

18 O simple 0.01 7186 445 57 57 8 65 4896 0.3 

D 2 
16 O simple 0.01 43 045 2287 445 445 77 522 26 197 5.1 

D 2 
17 O simple 0.01 547 97 5 5 3 8 229 0.1 

D 2 
18 O simple 0.01 9748 672 78 78 13 91 5465 0.5 

H 2 
16 O multiple 0.01 287 659 1894 2951 2951 226 3177 173 312 89.4 

H 2 
16 O multiple 0.02 287 659 1894 5769 5769 286 6055 216 798 107.6 

H 2 
16 O multiple 0.03 287 659 1894 8628 8628 325 8953 220 356 120.8 

H 2 
16 O multiple 0.05 287 659 1894 14 506 14 506 534 15 040 256 112 145.4 

H 2 
16 O multiple 0.07 287 659 1894 19 893 19 893 832 20 725 269 809 169.4 

H 2 
16 O multiple 0.10 287 659 1894 28 629 28 623 1020 29 643 271 404 177.9 

H 2 
17 O multiple 0.01 26 894 1168 252 252 38 290 13 651 2.2 

H 2 
18 O multiple 0.01 65 619 1132 639 639 47 686 34 504 6.5 

HD 

16 O multiple 0.01 53 369 1736 515 515 35 550 39 915 6.1 

HD 

17 O multiple 0.01 483 13 6 6 2 8 348 0.1 

HD 

18 O multiple 0.01 8729 431 77 77 9 86 5842 0.4 

D 2 
16 O multiple 0.01 52 842 2236 514 514 75 589 34 386 7.4 

D 2 
17 O multiple 0.01 583 93 8 8 2 10 330 0.2 

D 2 
18 O multiple 0.01 12 001 656 113 113 27 140 7340 0.7 

a Headings of the columns are defined in the footnote to Table 1 . Where N O and N IO are different, the corresponding 

numbers are indicated in boldface. 
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uspicious GEISA lines, facilitating the discovery of possible mis- 

akes. Following a careful analysis of the GEISA data, the suspicious 

ines could be divided into four groups (I-IV, see Table 3 ). 

Group I contains three transitions, #1, #4, and #5, for which 

o rigorous matches could be found in the W2020-HotWat78 cat- 

logue. Line #1 taks part in a bad cycle of the GEISA-2015-H 2 
18 O 

atabase (see Fig. 3 of Ref. [28] ). This line is possibly taken from

ITRAN [19] . As this transition will be deleted from HITRAN 2020 

60] due to its unsuccessful validation, we recommend to exclude 

ine #1 from the GEISA-2019 database, as well. As to transitions 

4 and #5, their counterparts could be found only in the W2020- 
Table 3 

Analysis of the blacklist of hypothetic outilers obtained for the GEISA-20

# σ /cm 

-1 S/cm molecule -1 

1 5.673 109 3 . 511 × 10 −35 (0 1

— —

2 2 338.422 326 1 . 273 × 10 −29 (0

2 338.35(20) 1 . 276 × 10 −29 (0

3 2 359.275 112 1 . 698 × 10 −29 (0 

2 359.26(20) 1 . 702 × 10 −29 (0 

4 4 283.968 400 2 . 140 × 10 −27 (

[4 283.908 30(50) 1 . 141 × 10 −27 (0

5 5 488.928 220 1 . 720 × 10 −27 (1 

[5 488.928 4(10) 5 . 688 × 10 −29 (

6 5 737.821 200 7 . 839 × 10 −30 (

5 737.720 37(50) 7 . 336 × 10 −30 (

7 5 845.752 700 6 . 545 × 10 −29 (1 1

5 845.752 70(50) 7 . 366 × 10 −29 (1 1

8 6 608.254 670 4 . 264 × 10 −26 (

6 608.254 99(10) 4 . 295 × 10 −26 (

9 6 610.972 890 5 . 510 × 10 −27 (

6 610.973 30(10) 5 . 524 × 10 −27 (

10 6 705.239 100 1 . 610 × 10 −26 (

6 705.239 53(10) 1 . 548 × 10 −26 (

11 6 707.957 320 2 . 810 × 10 −27 (

6 707.957 84(10) 2 . 860 × 10 −27 (

12 6 763.717 770 1 . 030 × 10 −24 (

6 763.718 04(10) 9 . 141 × 10 −25 (

13 6 766.435 990 9 . 160 × 10 −25 (

6 766.436 34(10) 8 . 318 × 10 −25 (

14 6 814.663 380 1 . 060 × 10 −25 (

6 814.663 64(10) 1 . 010 × 10 −25 (

15 6 817.381 600 4 . 030 × 10 −25 (

6 817.381 95(10) 3 . 595 × 10 −25 (

16 6 908.557 590 1 . 940 × 10 −24 (

6 908.557 88(10) 1 . 717 × 10 −24 (

17 6 911.275 810 8 . 510 × 10 −25 (

6 911.276 19(10) 7 . 695 × 10 −25 (

18 7 396.534 000 7 . 643 × 10 −30 (0

7 396.70(20) 7 . 341 × 10 −30 (0

19 8 141.363 000 6 . 673 × 10 −30 (0 

8 141.50(20) 7 . 457 × 10 −30 (0 

20 8 151.504 000 9 . 509 × 10 −30 (0 

8 151.64(20) 1 . 026 × 10 −29 (0 

21 7 426.475 000 1 . 566 × 10 −29 (0

7 426.49(20) 1 . 547 × 10 −29 (1

22 7 793.709 000 9 . 543 × 10 −30 (0

7 793.72(20) 9 . 334 × 10 −30 (1

a The first column contains the serial numbers of the BHO transitions

Where possible, the BHO lines are paired with their W2020 [51] counte

and #5, only poor matches are found with a H 2 
17 O and a H 2 

16 O trans

brackets. The second and third columns contain the wavenumbers ( σ ) 

The intensities are related to room temperature and corrected for the n

assignment for each line as follows: (v ′ 1 v ′ 2 v ′ 3 ) J ′ K ′ a ,K ′ c ← (v ′′ 1 v 
′′ 
2 v 

′′ 
3 ) J 

′′ 
K ′′ a ,K 

′′ 
c 

, wh

(b) (v 1 v 2 v 3 ) J K a ,K c designates a rovibrational state, (c) (v 1 v 2 v 3 ) is compo

the Mulliken convention [57] , and (d) J K a ,K c stands for the standard asy

enumerates the GEISA sources (TE3, S13, G96, and CA9), as well as the

The meaning of the four source tags is not clarified on the GEISA websi

unmatchable or poorly matchable transition, (II) confirmed line (pseudo-

The possibly erroneous spectroscopic data are highlighted in boldface. T

during the re-execution of the autoECART code after moving the lines 

10 
 2 
17 O and W2020-H 2 

16 O compilations, respectively. As long as the 

anagers of the GEISA-2019 database find these matches convinc- 

ng, they should move lines #4 and #5 into the GEISA-2019-H 2 
17 O 

nd GEISA-2019-H 2 
16 O line collections, respectively (relying on the 

elated W2020 line assignments). An alternative option is to sim- 

ly remove these faulty transitions from GEISA-2019. 

Group II is made up of five spectral lines, #2, #3, #7, #18, and 

20. Since these transitions are completely reproduced by their 

2020/HotWat78 siblings, they are pseudo-outliers, which do not 

equire corrections. 
19-H 2 
18 O database [52] a . 

Assignment Source Group 

 0)15 9 , 6 ← (0 1 0) 14 10 , 5 TE3 I 

— —

 1 0) 15 9 , 6 ← (0 0 0) 14 8 , 7 TE3 II 

 1 0) 15 9 , 6 ← (0 0 0) 14 8 , 7 HotWat78 

1 0) 14 10 , 5 ← (0 0 0) 13 9 , 4 TE3 II 

1 0) 14 10 , 5 ← (0 0 0) 13 9 , 4 HotWat78 

0 0 1)9 9 , 1 ← (0 0 0)8 7 , 2 S13 I 

 0 1) 11 7 , 5 ← (0 0 0) 10 5 , 6 W2020-H 2 
17 O] 

1 0) 12 3 , 10 ← (0 0 0) 11 2 , 9 G96 I 

0 3 1)9 5 , 5 ← (0 2 0)8 5 , 4 W2020-H 2 
16 O] 

0 3 0)8 7 , 2 ← (0 0 0)7 4 , 3 CA9 III 

0 3 0)8 7 , 2 ← (0 0 0)7 4 , 3 W2020 

 0) 12 3 , 10 ← (0 0 0) 11 0 , 11 CA9 II 

 0) 12 3 , 10 ← (0 0 0) 11 0 , 11 W2020 

0 2 1 ) 3 1 , 3 ← (0 0 0)4 3 , 2 CA9 IV 

1 2 0)3 2 , 1 ← (0 0 0)4 3 , 2 W2020 

1 2 0 ) 3 2 , 1 ← (0 0 0)4 3 , 2 CA9 IV 

0 2 1)3 1 , 3 ← (0 0 0)4 3 , 2 W2020 

0 2 1 ) 3 1 , 3 ← (0 0 0)3 3 , 0 CA9 IV 

1 2 0)3 2 , 1 ← (0 0 0)3 3 , 0 W2020 

1 2 0 ) 3 2 , 1 ← (0 0 0)3 3 , 0 CA9 IV 

0 2 1)3 1 , 3 ← (0 0 0)3 3 , 0 W2020 

0 2 1 ) 3 1 , 3 ← (0 0 0)4 1 , 4 CA9 IV 

1 2 0)3 2 , 1 ← (0 0 0)4 1 , 4 W2020 

1 2 0 ) 3 2 , 1 ← (0 0 0)4 1 , 4 CA9 IV 

0 2 1)3 1 , 3 ← (0 0 0)4 1 , 4 W2020 

0 2 1 ) 3 1 , 3 ← (0 0 0)3 1 , 2 CA9 IV 

1 2 0)3 2 , 1 ← (0 0 0)3 1 , 2 W2020 

1 2 0 ) 3 2 , 1 ← (0 0 0)3 1 , 2 CA9 IV 

0 2 1)3 1 , 3 ← (0 0 0)3 1 , 2 W2020 

0 2 1 ) 3 1 , 3 ← (0 0 0)2 1 , 2 CA9 IV 

1 2 0)3 2 , 1 ← (0 0 0)2 1 , 2 W2020 

1 2 0 ) 3 2 , 1 ← (0 0 0)2 1 , 2 CA9 IV 

0 2 1)3 1 , 3 ← (0 0 0)2 1 , 2 W2020 

 0 2) 13 7 , 7 ← (0 0 0) 12 8 , 4 CA9 II 

 0 2) 13 7 , 7 ← (0 0 0) 12 8 , 4 HotWat78 

5 0 ) 11 5 , 7 ← (0 0 0) 12 2 , 10 CA9 IV 

3 1) 11 2 , 9 ← (0 0 0) 12 2 , 10 HotWat78 

5 0) 11 5 , 7 ← (0 0 0) 12 2 , 10 CA9 II 

5 0) 11 5 , 7 ← (0 0 0) 12 2 , 10 HotWat78 

 0 2 ) 13 7 , 7 ← (0 0 0) 12 8 , 4 CA9 IV 

 0 1) 13 8 , 5 ← (0 0 0) 12 8 , 4 HotWat78 

 0 2 ) 13 7 , 7 ← (0 0 0) 12 6 , 6 CA9 IV 

 0 1) 13 8 , 5 ← (0 0 0) 12 6 , 6 HotWat78 

 provided by the double execution of the autoECART program. 

rparts to reveal the origin of the conflicts detected. For lines #4 

ition, respectively; thus, these W2020 lines are placed in square 

and the intensities ( S) of the individual transitions, respectively. 

atural H 2 
18 O abundance of 0.2 %. The fourth column specifies an 

ere (a) ′ and ′′ refer to the upper and lower states, respectively, 

sed of the vibrational normal-mode quantum numbers reflecting 

mmetric-top rotational quantum numbers [58] . The fifth column 

 sources of the reference lines (W2020 [51] and HotWat78 [59] ). 

te [52] . The last column tabulates four types of group indices: (I) 

outlier), (III) possible transcription error, and (IV) misassignment. 

he last two transitions isolated by the solid line were blacklisted 

of group II into N anc . 
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Group III is formed by only line #6, for which a residual of ∼
.1 cm 

−1 is obtained at the termination of the autoECART pro- 

ram. This large residual agrees perfectly with the deviation be- 

ween the GEISA-2019 and W2020 wavenumbers, 0.100 83 cm 

−1 , 

mplying that a transcription error was made in the first decimal 

lace of the GEISA wavenumber value by the builders of the GEISA- 

019 catalogue. 

Group IV encompasses transitions #8–#17 and #19 with incor- 

ect upper-state quantum numbers. As the W2020/HotWat78 coun- 

erparts indicate, these assignment problems are due to the inter- 

hanges (0 2 1)3 1 , 3 ↔ (1 2 0)3 2 , 1 and (0 5 0)11 5 , 7 ↔ (0 3 1) 11 2 , 9 . 

After (a) ignoring transitions #1, #4, and #5, (b) rectifying the 

utative typographical error in line #6, (c) reassigning transitions 

8–#17 and #19, as well as (d) transporting the adjusted lines into 

 anc , the autoECART code was re-executed, detecting further two 

HO transitions (see lines # 21 and #22 in Table 3 ). These two

ransitions pertain to group IV. Following the reassignment of lines 

21 and #22, as well as the relocation of the transitions from N anc 

o N LS , the third execution of autoECART found no further BHO 

ransitions in the repaired database. 

. Conclusions 

It is next to impossible to identify all the incorrect transitions 

n huge line-by-line (LBL) rovibronic databases without heavy re- 

iance on state-of-the-art theoretical and computational methods. 

his paper addresses the theoretical and practical aspects of out- 

ier detection in LBL databases via network theory. As a result, a 

obust and efficient heuristic algorithm is provided, that yields, in 

n automated fashion, a comprehensive list of those outliers which 

an be detected via network-theoretical tools. 

Our newly developed approach is named autoECART, standing 

or automatic Energy Conservation Analysis of Rovibronic Transi- 

ions. autoECART exploits the facts that (a) LBL databases can be 

epresented with spectroscopic networks (SN), (b) these SNs have 

 large number of cycles, and (c) all these cycles need to satisfy 

he law of energy conservation (LEC). Although the technicalities 

elated to the autoECART protocol are slightly involved, as shown 

n Figs. 1–4 , one should keep in mind that the two basic opera-

ions are as follows: (i) the bad cycles, including at least one out- 

ier, are judiciously selected and disconnected from the SN, and (ii) 

 blacklist of hypothetical outliers is built by constraining the em- 

irical energies to the remaining (most likely outlier-free) subnet- 

ork during a least-squares iteration. 

The efficacy of the autoECART protocol has been evaluated on 

ynthetic SNs of various size, where the outliers are known a pri- 

ri . The ensuing systematic tests corroborate that (a) autoECART 

s capable of detecting nearly all the outliers with just a few ex- 

eptions, (b) the number of pseudo-outliers, corresponding to valid 

ines found to be suspicious by the autoECART algorithm, is fairly 

mall, and (c) the running time is insignificant even for SNs com- 

osed of hundreds of thousands of transitions. 

Since autoECART is an approximate procedure, its sensitivity 

ould be enhanced in the future with the inclusion of other power- 

ul heuristics. Nevertheless, none of these improvements could lift 

he theoretical limitations concerning latent outliers (that is, those 

utlying transitions whose detection is impossible based upon the 

vailable spectral information). These special outliers can be diag- 

osed only by augmenting the SN with additional transitions de- 

uced, e.g. , from new, appropriately designed spectroscopic mea- 

urements [61,62] . 

The autoECART protocol has been employed to discover rough 

utliers in one real LBL dataset. For this purpose, the GEISA-20- 

9-H 2 
18 O line collection [52] was selected, in which 22 doubtful 

ines could be recognized by our autoECART code. Of these po- 

ential outliers, a comparison with the hybrid W2020-HotWat78 
11 
51,59] database revealed 17 truly anomalous lines. It should also 

e noted that there are ∼6500 transitions with partial assignments 

n the GEISA-2019-H 2 
18 O dataset: they could not be checked dur- 

ng this study, because autoECART demands unique labels for the 

nvestigated spectral lines. 

As a long-term initiative, we plan to produce a web-based im- 

lementation of the autoECART approach, able to process different 

nput formats used in prominent spectroscopic information sys- 

ems, such as HITRAN [19] and GEISA [52] . This online form of the 

utoECART code could greatly alleviate the laborious work of the 

anagers of spectroscopic databases to assemble consistent sets of 

ovibronic transitions. (As to the extremely large high-temperature 

ine lists, like HITEMP [63] , autoECART must be accelerated further 

y technical or coding improvements.) 

Such a web application would also aid the decontamination of 

ewly constructed or updated MARVEL [30,32,33] datasets, where 

he lines collected from dozens of data sources must be corrected 

nd synchronized. Finally, note that a user-friendly autoECART soft- 

are could considerably help the effort s of high-school student s 

nvolved in academic research as active participants of MARVEL 

rojects [42,43,46,47,64] . 
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ppendix A. A necessary and sufficient condition for 

onsistency 

This section provides a rigorous proof for the proposition that a 

ubnetwork N of the SN is consistent if and only if all of its cycles

re regular. Before the proof, some notions and symbols should be 

efined. 

Consider the following connected sequence of energy levels, 

igns, and transitions: 

 = λJ 1 [ S 1 , τI 1 ] λJ 2 [ S 2 , τI 2 ] . . . λJ L [ S L , τI L ] λJ L +1 
, (A.1) 

here (a) L is the length of ω, (b) τi and λ j indicate the i th tran-

ition and the jth energy level of the SN, respectively, while (c) 

 [ ω] = 〈 J p : 1 ≤ p ≤ L + 1 〉 , (A.2)

 [ ω] = 〈 I q : 1 ≤ q ≤ L 〉 , (A.3) 

nd 

 [ ω] = 〈 S q : 1 ≤ q ≤ L 〉 (A.4) 

re freely chosen lists of energy-level indices, transition indices, 

nd signs, respectively. The ω sequence is known as a walk (see 

ig. A.1 ) if I q and S q meet the following connections for 1 ≤ q ≤ L :

p (I q ) ∈ { J q , J q +1 } , (A.5) 
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Fig. A.1. Exemplary walk of length 4 with its parameters. Utilizing the notation of 

Eq. (A.1) , this walk can be given as ω = λJ 1 [ S 1 , τI 1 ] λJ 2 [ S 2 , τI 2 ] λJ 3 [ S 3 , τI 3 ] λJ 4 [ S 4 , τI 4 ] λJ 5 . 
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ow ( I q ) = 

{
J q , if up ( I q ) = J q +1 , 

J q +1 , if up ( I q ) = J q , 
(A.6) 

 q = 

{
+1 , if up ( I q ) = J q +1 , 

−1 , if up ( I q ) = J q . 
(A.7) 

For each walk ω and any η = { η1 , η2 , . . . , ηN L 
} T , an extremely 

seful relation can be derived: 

L ∑ 

q =1 

S q [ ηup (I q ) − ηlow (I q ) ] = 

L ∑ 

q =1 

[ ηJ q +1 
− ηJ q ] = 

J 2 − ηJ 1 + ηJ 3 − ηJ 2 + . . . + ηJ L − ηJ L −1 
+ (A.8) 

J L +1 
− ηJ L = ηJ L +1 

− ηJ 1 . 

ote that Eq. (A.8) becomes zero if J L +1 = J 1 . 

The shorthand notation that walk ω passes from λJ 1 
to λJ L +1 

is 

 1 � J L +1 . Furthermore, if i is an entry of U [ ω] , then this statement

s denoted as i U [ ω] , where U ∈ { J , I } . In what follows, walks

re designated by extending the symbol ω with extra marks (like 

rime, tilde, bar, superscripts, etc. ), while their parameters ( L , J p ,

 q , and S q ) are augmented with the same marks. For example, the 

arameters of ω 

′ are indicated as L ′ , J ′ p , I ′ q , and S ′ q . 
For walks, two operations can be defined. If J L ∈ { up (i ) , low (i ) }

n Eq. (A.2) , then ω 

′ = ω ⊕ τi is another walk of length L ′ = L + 1 ,

here 

 

’ 
p = 

{ 

J p , if 1 ≤ p ≤ L ’ , 

up ( i ) , if p = L ’ + 1 and J L ’ = low ( i ) , 
low ( i ) , if p = L ’ + 1 and J L ’ = up ( i ) , 

(A.9) 

 

’ 
q = 

{
I q , if 1 ≤ q ≤ L, 

i, if q = L ’ , 
(A.10) 

 

’ 
q = 

{ 

S q , if 1 ≤ q ≤ L, 

+1 , if q = L ’ and J L ’ = low ( i ) , 
−1 , if q = L ’ and J L ’ = up ( i ) , 

(A.11) 

hile ⊕ is named suffixation . Provided that ω 

′ and ω 

′′ are walks 

ith J ′′ 1 = J ′ 
L ′ , ω = ω 

′ � ω 

′′ is also a walk with L = L ′ + L ′′ , where �
s an operation called concatenation , 

 q = 

{
U 

′ 
q , if 1 ≤ q ≤ L ′ + t U , 

U 

′′ 
q −L ’ 

, if L ′ + t U + 1 ≤ q ≤ L + t U , 
(A.12) 

or any U ∈ { J, I, S} , while t J = 1 and t I = t S = 0 . 

In this section, certain special walks will be given particular at- 

ention. A walk ω of length zero, which includes only λJ 1 
with no 

ransitions, is called a trivial walk and denoted with ω 

� . As long as

oth I [ ω] and J [ ω] embrace distinct indices, ω becomes a path . If

 I [ ω ] , and up (i ) , low (i ) ∈ { J 1 , J L +1 } for a path ω, then ω ⊕ τi is

 cycle . It can be demonstrated straightforwardly that the signs of 

 (ω) form a solution of Eq. (17) for a cycle ω of N . 

Adapting Eq. (15) to a cycle ω and making a few trivial rear- 

angements of Eq. (15) results in 

L 
 

 =1 

[
δI q + S q σI q 

]
≥ 0 (A.13) 
12 
nd 

L 
 

 =1 

[
δI q − S q σI q 

]
≥ 0 . (A.14) 

y choosing 

 

〈 +1 〉 
i 

= δi + σi (A.15) 

nd 

 

〈−1 〉 
i 

= δi − σi (A.16) 

or all 1 ≤ i ≤ N T , one can introduce the following parameters for 

he left-hand sides of Eqs. (A .13) –(A .14) : 

 

+ [ ω ] = 

L ∑ 

q =1 

W 

〈 S q 〉 
I q 

(A.17) 

nd 

 

−[ ω ] = 

L ∑ 

q =1 

W 

〈−S q 〉 
I q 

, (A.18) 

hich are referred to as the cost and the anti-cost of walk ω, re- 

pectively. By means of the cost K 

±[ ω] , one can say that ω is reg-

lar if and only if 

 

+ (ω) , K 

−(ω) ≥ 0 . (A.19) 

learly, K 

+ [ ω] and K 

−[ ω] can be assigned to an arbitrary walk ω,

ut regularity continues to be interpreted only for cycles. 

Taking advantage of W 

〈 +1 〉 
i 

and W 

〈−1 〉 
i 

, Eq. (14) can be reformu- 

ated as two separate inequalities, 

 

〈 +1 〉 
i 

−
[
ηup (i ) − ηlow (i ) 

]
≥ 0 (A.20) 

nd 

 

〈−1 〉 
i 

+ ηup (i ) − ηlow (i ) ≥ 0 . (A.21) 

hese relations can be unified via s ∈ {−1 , 1 } : 
 

〈 s 〉 
i 

− s 
[
ηup (i ) − ηlow (i ) 

]
≥ 0 . (A.22) 

Armed with the notions, symbols, and formulas in- 

roduced in Eqs. (A .1)–(A .22) , one can prove the equiva- 

ence of the following two predicates: A ) N is a consistent 

ubnetwork of the SN, and B ) all the cycles of N are regular. 

. P roof of A ⇒ B : 

onsider a vector η = { η1 , η2 , . . . , ηN L 
} T satisfying Eq. (A.22) for all 

 ≤ i ≤ N T with P i = 1 and pick a cycle ω of N . 

ase (a): 

ue to the arbitrariness of the sign s , one can write 

L 
 

 =1 

{ 

W 

〈 S q 〉 
I q 

− S q 
[
ηup (I q ) − ηlow (I q ) 

]} 

≥ 0 . (A.23) 

xpanding the left side of Eq. (A.23) results in 

L 
 

 =1 

W 

〈 S q 〉 
I q 

−
L ∑ 

q =1 

S q 
[
ηup (I q ) − ηlow (I q ) 

]
≥ 0 . (A.24) 

ince the second term should be zero due to Eq. (A.8) and J L +1 = J 1 ,

q. (A.24) can be simplified to 

 ≤
L ∑ 

q =1 

W 

〈 S q 〉 
I q 

≡ K 

+ [ ω] . (A.25) 



R. Tóbiás, K. Bérczi, C. Szabó et al. Journal of Quantitative Spectroscopy & Radiative Transfer 272 (2021) 107756 

C  

a

∑
q

f

0

c

E

a

I

T

p  

t

K  

t

t

1

T

λ  

C

I

i

ω

K

i

λ
A

W

a

C

A

c

ω

w

l

i

c

K

K

K

w

g

m

E

K

D

c

S

I

τ
s

s

K

S

I

R

[

K

i

n

U  

m

K

S

K

f

W

w

I

λ

2

T

t

C

U

l

K

w

λ

W

s

C

W

ω

w

K  

K

K

K

ase (b) : Replacing S q with −S q in Eq. (A.23) also yields a nonneg-

tive expression: 

L 
 

 =1 

{ 

W 

〈−S q 〉 
I q 

+ S q 
[
ηup (I q ) − ηlow (I q ) 

]} 

≥ 0 , (A.26) 

rom which 

 ≤
L ∑ 

q =1 

W 

〈−S q 〉 
I q 

≡ K 

−[ ω] (A.27) 

an be deduced, in analogy with Eq. (A.24) . Combination of 

qs. (A.25) and (A.27) leads to the consequence that ω should be 

 regular cycle; in other words, A ⇒ B . 

I. P roof of B ⇒ A : 

o show the converse statement, one needs to construct K j � j

aths for all 1 ≤ j ≤ N L , where K j = core ( comp ( j)) is the index of

he core within the component of λ j . Let ω 

〈〈 j〉〉 illustrate a cheapest 

 j � j path, i.e. , for which K 

+ [ ω 

〈〈 j〉〉 ] is minimal. For the λK j 
state,

he cheapest path is ω 

� , which is of zero cost by definition. Now, 

ake τi and examine the costs of ω 

〈〈 low (i ) 〉〉 ⊕ τi and ω 

〈〈 up (i ) 〉〉 ⊕ τi . 

. Analysis of K 

+ [ ω 

〈〈 low (i ) 〉〉 ⊕ τi ] : 

his problem can be split up into two cases, depending on whether 

up (i ) takes part in ω 

〈〈 low (i ) 〉〉 ( up (i ) J [ ω 

〈〈 low (i ) 〉〉 ] ) or not ( up (i )

J [ ω 

〈〈 low (i ) 〉〉 ] ) . 

ase (a): up (i ) J [ ω 

〈〈 low (i ) 〉〉 ] 
f state λup (i ) is not included in ω 

〈〈 low (i ) 〉〉 , then ω 

〈〈 low (i ) 〉〉 ⊕ τi 

s another K up (i ) � up (i ) path, which must not be cheaper than 

 

〈〈 up (i ) 〉〉 . Under these circumstances, 

 

+ [ω 

〈〈 up ( i ) 〉〉 ] ≤ K 

+ [ω 

〈〈 low ( i ) 〉〉 ⊕ τi 

]
= K 

+ [ω 

〈〈 low ( i ) 〉〉 ] + W 

〈 +1 〉 
i 

, 

(A.28) 

n which W 

〈 +1 〉 
i 

is employed because the last state of ω 

〈〈 low (i ) 〉〉 is 

low (i ) , providing a +1 sign for τi within ω 

〈〈 low (i ) 〉〉 ⊕ τi and its cost. 

fter a simplification, 

 

〈 +1 〉 
i 

− K 

+ [ ω 

〈〈 up (i ) 〉〉 ] + K 

+ [ ω 

〈〈 low (i ) 〉〉 ] ≥ 0 , (A.29) 

 relation quite similar to Eq. (A.20) . 

ase (b): up (i ) J [ ω 

〈〈 low (i ) 〉〉 ] 
ssuming that λup (i ) participates in ω 

〈〈 low (i ) 〉〉 , this path can be de- 

omposed as follows: 

 

〈〈 low (i ) 〉〉 = ω 

K up (i ) � up (i ) � ω 

up (i ) � low (i ) , (A.30) 

here ω 

K up (i ) � up (i ) and ω 

up (i ) � low (i ) are K up (i ) � up (i ) and up (i ) � 

ow (i ) paths, respectively, and the trivial connection K low (i ) = K up (i ) 

s taken into account. Applying Eq. (A.30) , the cost of ω 

〈〈 low (i ) 〉〉 ⊕ τi 

an be formulated as 

 

+ [ω 

〈〈 low ( i ) 〉〉 ⊕ τi 

]
= 

 

+ [ω 

K up ( i ) � up ( i ) � ω 

up ( i ) � low ( i ) ⊕ τi 

]
= 

 

+ [ω 

K up ( i ) � up ( i ) 
]

+ K 

+ [ω 

up ( i ) � low ( i ) ⊕ τi 

]
, (A.31) 

here the additivity of the cost terms is taken into account to- 

ether with the fact that the signs of the individual walks re- 

ain the same after their concatenation. The path ω 

K up (i ) � up (i ) in 

q. (A.31) is certainly not cheaper than ω 

〈〈 up (i ) 〉〉 , yielding 

 

+ [ ω 

K up (i ) � up (i ) ] ≥ K 

+ [ ω 

〈〈 up (i ) 〉〉 ] . (A.32) 

issecting the structure of the walk ω 

up (i ) � low (i ) ⊕ τi , two subcases 

an be envisioned. 
K

13 
ubcase #1: 

f i I [ ω 

up (i ) � low (i ) ] , the path ω 

up (i ) � low (i ) includes solely the 

i line (with a sign –1); otherwise, this path possesses repetitive 

tates, which is not allowed. Suffixing ω 

up (i ) � low (i ) with τi ( via a 

ign +1), the cost of ω 

up (i ) � low (i ) ⊕ τi turns into 

 

+ [ω 

up ( i ) � low ( i ) ⊕ τi 

]
= W 

〈−1 〉 
i 

+ W 

〈 +1 〉 
i 

= δi − σi + δi + σi 

= 2 δi ≥ 0 . (A.33) 

ubcase #2: 

f i I [ ω 

up (i ) � low (i ) ] , the walk ω 

up (i ) � low (i ) ⊕ τ must be a cycle. 

elying on the premise that all the cycles are regular within N 

see predicate B )], 

 

+ [ ω 

up (i ) � low (i ) ⊕ τi ] ≥ 0 (A.34) 

s fulfilled, due to Eq. (A.19) . Thus, ω 

up (i ) � low (i ) ⊕ τi exhibits a non- 

egative cost, regardless of whether τi takes part in ω 

up (i ) � low (i ) . 

tilizing Eqs. (A .31) –(A .34) , the cost of ω 

〈〈 low (i ) 〉〉 ⊕ τi can be esti-

ated from below as 

 

+ [ω 

〈〈 low ( i ) 〉〉 ⊕ τi 

]
= K 

+ [ω 

K up ( i ) � up ( i ) 
]

+ K 

+ [ω 

up ( i ) � low ( i ) ⊕ τi 

]
≥ K 

+ [ω 

K up ( i ) � up ( i ) 
]

≥ K 

+ [ω 

〈〈 up ( i ) 〉〉 ]. (A.35) 

ince the sign of τi is +1 in ω 

〈〈 low (i ) 〉〉 ⊕ τi , Eq. (A.35) becomes 

 

+ [ω 

〈〈 low ( i ) 〉〉 ⊕ τi 

]
= K 

+ [ω 

〈〈 low ( i ) 〉〉 ] + W 

〈 +1 〉 
i 

≥ K 

+ [ω 

〈〈 up ( i ) 〉〉 ], (A.36) 

rom which the following inequality is deduced: 

 

〈 +1 〉 
i 

− K 

+ [ ω 

〈〈 up (i ) 〉〉 ] + K 

+ [ ω 

〈〈 low (i ) 〉〉 ] ≥ 0 , (A.37) 

hich is identical to the relation given in Eq. (A.29) . 

n short , Eq. (A.37) should hold for τi , irrespective of whether 

up (i ) lies on the ω 

〈〈 low (i ) 〉〉 path or not. 

. Analysis of K 

+ [ ω 

〈〈 up (i ) 〉〉 ⊕ τi ] : 

he treatment applied here is analogous to that used for the inves- 

igation of K 

+ [ ω 

〈〈 low (i ) 〉〉 ⊕ τi ] . 

ase (a): low (i ) J [ ω 

〈〈 up (i ) 〉〉 ] 
nder this condition, ω 

〈〈 up (i ) 〉〉 ⊕ τi is an alternative K low (i ) � 

ow (i ) path, which is by no means cheaper than ω 

〈〈 low (i ) 〉〉 : 

 

+ [ω 

〈〈 low ( i ) 〉〉 ] ≤ K 

+ [ω 

〈〈 up ( i ) 〉〉 ⊕ τi 

]
= K 

+ [ω 

〈〈 up ( i ) 〉〉 ] + W 

〈−1 〉 
i 

, 

(A.38) 

here W 

〈−1 〉 
i 

is entered as τi should be attached to ω 

〈〈 up (i ) 〉〉 via 

up (i ) , requiring a sign of –1 for τi . After a trivial rearrangement, 

 

〈−1 〉 
i 

+ K 

+ [ω 

〈〈 up ( i ) 〉〉 ] − K 

+ [ω 

〈〈 low ( i ) 〉〉 ] ≥ 0 , (A.39) 

howing high resemblance to Eq. (A.21) . 

ase (b): low (i ) J [ ω 

〈〈 up (i ) 〉〉 ] 
ith this assumption, ω 

〈〈 up (i ) 〉〉 can be partitioned as follows: 

 

〈〈 up (i ) 〉〉 = ω 

K low (i ) � low (i ) � ω 

low (i ) � up (i ) , (A.40) 

here ω 

K low (i ) � low (i ) and ω 

low (i ) � up (i ) denote two paths of types 

 low (i ) � low (i ) and low (i ) � up (i ) , respectively, and K up (i ) =
 low (i ) is considered. In view of Eq. (A.40) , the expression of 

 

+ [ ω 

〈〈 up (i ) 〉〉 ⊕ τi ] can be fragmented as follows: 

 

+ [ω 

〈〈 up ( i ) 〉〉 ⊕ τi 

]
= K 

+ [ω 

K low ( i ) � low ( i ) � ω 

low ( i ) � up ( i ) ⊕ τi 

]
= 

 

+ [ω 

K low ( i ) � low ( i ) 
]

+ K 

+ [ω 

low ( i ) � up ( i ) ⊕ τi 

]
. (A.41) 
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here 

 

+ [ ω 

K low (i ) � low (i ) ] ≥ K 

+ [ ω 

〈〈 low (i ) 〉〉 ] , (A.42) 

nd K 

+ [ ω 

low (i ) � up (i ) ⊕ τi ] ≥ 0 is verified below. 

ubcase #1: 

resume that i I [ ω 

low (i ) � up (i ) ] , ω 

low (i ) � up (i ) is a path, whose sin- 

le line, τi , is provided with a sign of +1. Then, τi can be appended

o ω 

low (i ) � up (i ) with a sign of –1, producing the following cost: 

 

+ [ ω 

low (i ) � up (i ) ⊕ τi ] = W 

〈 +1 〉 
i 

+ W 

〈−1 〉 
i 

≥ 0 . (A.43) 

ubcase #2: 

he opposite condition, the relation i I [ ω 

low (i ) � up (i ) ] , implies 

hat ω 

low (i ) � up (i ) ⊕ τ is a cycle. Demanding the regularity of the 

ycles within N [see predicate B )], 

 

+ [ ω 

low (i ) � up (i ) ⊕ τi ] ≥ 0 (A.44) 

s obtained, after applying Eq. (A.19) . Converting Eqs. (A .41) –(A .44)

nto a single relation, Eq. (A.41) can be rewritten as 

 

+ [ ω 

〈〈 up (i ) 〉〉 ⊕ τi ] ≥ K 

+ [ ω 

〈〈 low (i ) 〉〉 ] . (A.45) 

wing to the fact that τi is coupled to ω 

〈〈 up (i ) 〉〉 with a sign of –1

n ω 

〈〈 up (i ) 〉〉 ⊕ τi , Eq. (A.45) becomes 

 

+ [ω 

〈〈 up ( i ) 〉〉 ⊕ τi 

]
= K 

+ [ω 

〈〈 up ( i ) 〉〉 ] + W 

〈−1 〉 
i 

≥ K 

+ [ω 

〈〈 low ( i ) 〉〉 ], (A.46) 

hich can be rearranged to 

 

〈−1 〉 
i 

+ K 

+ [ ω 

〈〈 up (i ) 〉〉 ] − K 

+ [ ω 

〈〈 low (i ) 〉〉 ] ≥ 0 . (A.47)

ence, low (i ) J [ ω 

〈〈 up (i ) 〉〉 ] and low (i ) J [ ω 

〈〈 up (i ) 〉〉 ] lead to the 

ame inequality [see Eqs. (A.37) and (A.47) ]. 

n conclusion , it is ascertained that the regularity of the cycles 

ithin N involves 

 

〈 s 〉 
i 

− s 
{
K 

+ [ ω 

〈〈 up (i ) 〉〉 ] − K 

+ [ ω 

〈〈 low (i ) 〉〉 ] 
}

≥ 0 (A.48) 

or any s = ±1 and each 1 ≤ i ≤ N T with P i = 1 . Therefore, by se-

ecting η j = K 

+ [ ω 

〈〈 j〉〉 ] for all 1 ≤ j ≤ N L , Eq. (A.48) translates to

q. (A.22) , manifesting the consistency of N and thereby attesting 

 ⇒ A . 

ppendix B. Five feasible misconceptions (M1–M5) about 

onsistency types 

Fallacies hidden in the network-theory-based definitions of con- 

istency types are collected here and refuted with counterexam- 

les. These exemplary SNs of minimal size are depicted in Fig. A.2 . 

1. Consistency implies strong consistency (false). 

f this claim was true, then a SN comprising a single regular cycle 

hould be strongly consistent, like that shown in Fig. A.2 (a). One 

an observe that the cycle of Fig. A.2 (a) is indeed regular, as its

iscrepancy, 

 = | σ1 + σ2 − σ3 − σ4 | 
= | 1 . 0 0 0 0 + 1 . 0 0 0 0 − 1 . 0 0 0 0 − 1 . 010 0 | 
= 0 . 010 0 cm 

−1 

(B.1) 

s smaller than its threshold, 

 = δ1 + δ2 + δ3 + δ4 

= 0 . 0 0 0 1 + 0 . 002 5 + 0 . 002 5 + 0 . 005 0 = 0 . 010 1 cm 

−1 . 
(B.2) 

ow, let N denote the example SN itself and calculate the empiri- 

al energies via Eqs. (6) –(7) . To this end, one needs to set up P , W ,

, and R (by neglecting trailing zeros) as follows: 

 = diag (1 , 1 , 1 , 1) , (B.3) 
14 
 = diag 
(
δ−2 

1 
, δ−2 

2 
, δ−2 

3 
, δ−2 

4 

)
= diag 

(
10 

8 
, 1 . 6 × 10 

5 
, 1 . 6 × 10 

5 
, 4 × 10 

4 
)

cm 

2 , 
(B.4) 

= { σ1 , σ2 , σ3 , σ4 } T = { 1 , 1 , 1 , 1 . 01 } T , (B.5)

(B.6) 

rom these arrays, one can build the G matrix and the F vector of 

q. (7) in the following way: 

 = R 

T PWR (B.7) 

= 

⎛ 

⎜ ⎝ 

1 . 0 0 04 × 10 

8 −1 × 10 

8 0 −4 × 10 

4 

−1 × 10 

8 1 . 0016 × 10 

8 −1 . 6 × 10 

5 0 

0 −1 . 6 × 10 

5 3 . 2 × 10 

5 −1 . 6 × 10 

5 

−4 × 10 

4 0 −1 . 6 × 10 

5 2 × 10 

5 

⎞ 

⎟ ⎠ 

,

nd 

 = 

⎛ 

⎜ ⎝ 

−1 . 0 0 04 × 10 

8 

9 . 984 × 10 

7 

3 . 2 × 10 

5 

−1 . 196 × 10 

5 

⎞ 

⎟ ⎠ 

. (B.8) 

s the sum of the rows in G is a zero vector, G is a singular matrix.

his means that Eq. (7) is underdetermined in itself. By replacing 

he first row/column pair of the G matrix with that of the 4 × 4 

dentity matrix, a nonsingular G 1 matrix is obtained: 

 1 = 

⎛ 

⎜ ⎝ 

1 0 0 0 

0 1 . 0016 × 10 

8 −1 . 6 × 10 

5 0 

0 −1 . 6 × 10 

5 3 . 2 × 10 

5 −1 . 6 × 10 

5 

0 0 −1 . 6 × 10 

5 2 × 10 

5 

⎞ 

⎟ ⎠ 

. (B.9) 

dditionally, by substituting the first entry of F with zero, another 

uxiliary array can be introduced: 

 1 = 

⎛ 

⎜ ⎝ 

0 

9 . 984 × 10 

7 

3 . 2 × 10 

5 

−1 . 196 × 10 

5 

⎞ 

⎟ ⎠ 

. (B.10) 

ith the aid of G 1 and F 1 , the vector of empirical energies can be

xpressed as 

¯
 = G 

−1 
1 F 1 ≈

⎛ 

⎜ ⎝ 

0 

1 . 0 0 0 0 03 

2 . 001 669 

1 . 003 335 

⎞ 

⎟ ⎠ 

, (B.11) 

here G 

−1 
1 

is the inverse G 1 matrix, and the entries of Ē are given 

n cm 

−1 . the d i = | Δi | − δi = | σi − E up (i ) + E low (i ) | − δi relation ( 1 ≤
 ≤ 4 ) leads to the following defects: 

 1 = | 1 − 1 . 0 0 0 0 03 + 0 | − 1 × 10 

−4 

≈ −9 . 7 × 10 

−5 cm 

−1 , 

 2 = | 1 − 2 . 001 669 + 1 . 000 003 | − 2 . 5 × 10 

−3 

≈ −8 . 34 × 10 

−4 cm 

−1 , (B.12) 

 3 = | 1 − 2 . 001 669 + 1 . 003 335 | − 2 . 5 × 10 

−3 

≈ −8 . 34 × 10 

−4 cm 

−1 , 

 4 = | 1 . 01 − 1 . 003 335 + 0 | − 5 × 10 

−3 

≈ + 1 . 665 × 10 

−3 cm 

−1 . 

s the d 4 value is positive, Eq. (18) is violated, suggesting that N 

s not strongly consistent. Therefore, consistency does not imply 

trong consistency. 
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Fig. A.2. Counterexamples for possible misconceptions detailed in Appendix B . 
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2. Strong consistency is balanced (false). 

o disprove this misconception, take Fig. A.2 (b) as an example. Ini- 

ializing N as the entire SN and applying the strategy shown in 

qs. (B.3) –(B.12) , one can derive the following empirical energies: 

¯
 1 ≈ 0 cm 

−1 , 

¯
 2 ≈ 0 . 999 102 cm 

−1 , 

¯
 3 ≈ 2 . 003 931 cm 

−1 , (B.13) 

¯
 4 ≈ 1 . 001 965 cm 

−1 , 

¯
 5 ≈ 0 . 998 932 cm 

−1 , 
15 
nd defects: 

 1 ≈ −1 . 602 × 10 

−3 cm 

−1 , 

 2 ≈ −8 . 29 × 10 

−4 cm 

−1 , 

 3 ≈ −5 . 35 × 10 

−4 cm 

−1 , 

 4 ≈ −5 . 35 × 10 

−4 cm 

−1 , 

 5 ≈ −1 . 432 × 10 

−3 cm 

−1 , 

 6 ≈ −9 . 8 × 10 

−5 cm 

−1 , 

(B.14) 

ignaling that N is strongly consistent. If τ6 is left out from N by 

esetting P = 0 in P , the quantities of Eqs. (B.13) and (B.14) are
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utated into 

¯
 1 ≈ 0 cm 

−1 , 

¯
 2 ≈ 0 . 998 858 cm 

−1 , 

¯
 3 ≈ 2 . 002 283 cm 

−1 , (B.15) 

¯
 4 ≈ 1 . 001 142 cm 

−1 , 

¯
 5 ≈ 1 . 0 0 0 0 0 0 cm 

−1 , 

nd 

 1 ≈ −1 . 358 × 10 

−3 cm 

−1 , 

 2 ≈ + 5 . 75 × 10 

−4 cm 

−1 , 

 3 ≈ −1 . 358 × 10 

−3 cm 

−1 , (B.16) 

 4 ≈ −1 . 358 × 10 

−3 cm 

−1 , 

 5 ≈ −2 . 500 × 10 

−3 cm 

−1 . 

ence, a subnetwork of this strongly consistent SN is not strongly 

onsistent, sharply contradicting the assumed balanced nature of 

trong consistency. 

3. If a cycle basis of a SN is consistent, then the SN itself should be

lso consistent (false). 

nfortunately, this is also a claim which is ‘too good to be true’. 

pon the analysis of Fig. A.2 (c), one can realize that the two 4-

embered cycles χ1 = τ1 − τ2 − τ3 − τ4 and χ2 = τ3 − τ5 − τ6 − τ7 

re regular, while the cycle of length 6, χ3 = τ1 − τ2 − τ7 − τ6 −
5 − τ4 , is not regular: 

(χ1 ) = 0 . 01 cm 

−1 ≤ T (χ1 ) = 0 . 02 cm 

−1 , 

(χ2 ) = 0 . 02 cm 

−1 ≤ T (χ2 ) = 0 . 02 cm 

−1 , (B.17) 

(χ3 ) = 0 . 03 cm 

−1 > T (χ3 ) = 0 . 015 cm 

−1 . 

s long as { χ1 , χ2 } is selected as a cycle basis of the SN, this cycle

asis, made up of only regular cycles, is consistent, while the SN 

tself is not consistent due to the non-regular cycle χ3 , contradict- 

ng claim M3. 

4. A consistent SN has no outliers (false). 

ick a SN with bridges, like that of Fig. A.2 (d). This SN holds two 4-

ycles ( χ1 = τ1 − τ2 − τ3 − τ4 and χ2 = τ6 − τ8 − τ9 − τ10 ) with the 

ollowing discrepancies and thresholds: 

(χ1 ) = 0 . 01 cm 

−1 ≤ T (χ1 ) = 0 . 01 cm 

−1 , (B.18) 

(χ2 ) = 0 . 005 cm 

−1 ≤ T (χ2 ) = 0 . 01 cm 

−1 . 

hese inequalities suggest that all the cycles within this SN are 

egular, certifying its consistency. The consistency of this SN can be 

estructed only by inflating D(χ1 ) or D(χ2 ) over T (χ1 ) or T (χ2 ) ,

espectively. As the discrepancies are not influenced by σ5 or σ7 , 

hese bridge wavenumbers can be shifted with the two (arbitrary) 

ranscription errors, T 5 and T 7 , without affecting the consistency of 

he SN. Hence, a consistent SN may carry bridge outliers. 

5. A bridgeless consistent SN cannot contain out liers (false). 

t is easy to show that the absence of bridges in consistent SNs 

s not a warranty for the lack of outliers. Fig. A.2 (e) exhibits an

xample SN, corresponding to a 4-membered cycle, where σ2 and 

3 suffer from the same transcription error T . The discrepancy and 

he threshold of this χ cycle are as follows: 

(χ ) = 0 . 01 cm 

−1 ≤ T (χ ) = 0 . 01 cm 

−1 , (B.19) 

ndependently of the actual value of T . It seems that the presence 

f outliers τ2 and τ3 in this SN does not collide with its consis- 

ency, disproving that bridgeless SNs are free of outliers. Of course, 

ne can select different transcription errors for τ2 and τ3 such that 

he regularity of χ is retained: the single criterion is that these 
16 
rrors should be close to each other to an extent not permitting 

(χ ) to grow above T (χ ) . 

ppendix C. The MILP formalism 

As mentioned in Sec. 3 , one of our attempts has been to build a

ixed integer linear programming (MILP) model for the automated 

etection of outliers in SNs. Here a concise summary is given on 

ow to treat the outlier problem within the MILP approach. 

The idea behind a MILP-based approximation of outlier detec- 

ion is that one can find an 

 = { E 1 , E 2 , . . . , E N L } T (C.1) 

otential and a 

 = diag (P 1 , P 2 , . . . , P N T ) (C.2) 

articipation matrix for the SN which satisfy 

i − E up (i ) + E low (i ) ≤ δr ,i + (1 − P i ) φpen , (C.3) 

σi + E up ( i ) − E low ( i ) ≤ δr ,i + ( 1 − P i ) φpen , (C.4) 

nd 

 i ≤ P LS ,i (C.5) 

or each 1 ≤ i ≤ N T , where φpen denotes a sufficiently huge penalty 

actor and P LS ,i is the i th diagonal entry in the participation matrix 

f N LS . In the case of P i = 1 , Eqs. (C.3) and (C.4) turn into 

 σi − E up (i ) + E low (i ) | ≤ δr ,i , (C.6) 

mplying that the subnetwork determined by P must be quasi- 

onsistent. For P i = 0 , (1 − P i ) φpen warrants that the left sides of

qs. (C.3) and (C.4) can be confined below an upper limit. Further- 

ore, Eq. (C.5) prescribes that solely those quasi-consistent sub- 

etworks should be considered which do not contain the excluded 

ines of N LS . 

Since a ( E , P ) pair adhering to Eqs. (C.3) –(C.5) always exists for 

 suitably large φpen , one can choose a ( E , P ) = ( ̃  E , ̃  P ) pair as to

aximize the function 

 ( P ) = 

N T ∑ 

i =1 

� i P i , (C.7) 

ubjected to Eqs. (C.3) –(C.5) , where � i is a weight factor for line τi 

selected as � i = 1 or � i = δ−2 
i 

). This maximizing condition forces 

ost of the transitions with the largest possible weights to be in- 

erted in the subnetwork ˜ N specified by ˜ P . Within the scheme es- 

ablished by Eqs (C3)–(C5) and (C7), ˜ N can be regarded as the op- 

imal quasi-consistent subnetwork of N LS , while N LS \ ˜ N gives the 

HO for the SN. 

Despite the simplicity of the MILP model in Eqs. (C.3) –(C.5) and 

C.7) , which can be solved, e.g., via the branch and cut protocol 

65] incorporated into the GLPK package [66] , the solution of this 

odel suffers from numerical issues. The reason behind the ob- 

erved instability is that a φpen value too large, meeting the crite- 

ion 

pen > 

N T ∑ 

i =1 

P LS ,i σi , (C.8) 

hould be adopted to obtain a generally solvable model, making 

he resultant inequalities rather ill-conditioned. This technical dif- 

culty indicates that the ˜ P i parameters, handled as floating-point 

umbers which are rounded to integers, might become inaccurate, 

ailing to provide a correct and optimal quasi-consistent subnet- 

ork ˜ N for the SN. Consequently, the MILP-based outlier scheme 

f Eqs. (C.3) –(C.5) and (C.7) , in its current form, is not capable of

ielding a trustworthy BHO for practical SNs containing hundreds 

f thousands of transitions. 
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