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SUMMARY

The impermeable barrier present around the myenteric
plexus is disrupted after experimental colitis in a
macrophage-dependent manner, exposing enteric neurons
and glia to inflammatory cells. This study supports a po-
tential mechanism for the onset of neuroinflammation in
colitis and other gastrointestinal pathologies associated with
acquired enteric neuronal dysfunction.

BACKGROUND & AIMS: Neuroinflammation in the gut is
associated with many gastrointestinal (GI) diseases, including
inflammatory bowel disease. In the brain, neuroinflammatory
conditions are associated with blood-brain barrier (BBB)
disruption and subsequent neuronal injury. We sought to
determine whether the enteric nervous system is similarly
protected by a physical barrier and whether that barrier is
disrupted in colitis.

METHODS: Confocal and electron microscopy were used to
characterize myenteric plexus structure, and FITC-dextran
FLA 5.6.0 DTD � JCMGH849 proof �
assays were used to assess for presence of a barrier. Colitis was
induced with dextran sulfate sodium, with co-administration of
liposome-encapsulated clodronate to deplete macrophages.

RESULTS: We identified a blood-myenteric barrier (BMB)
consisting of extracellular matrix proteins (agrin and collagen-
4) and glial end-feet, reminiscent of the BBB, surrounded by a
collagen-rich periganglionic space. The BMB is impermeable to
the passive movement of 4 kDa FITC-dextran particles. A
population of macrophages is present within enteric ganglia
(intraganglionic macrophages [IGMs]) and exhibits a distinct
morphology from muscularis macrophages, with extensive
cytoplasmic vacuolization and mitochondrial swelling but
without signs of apoptosis. IGMs can penetrate the BMB in
physiological conditions and establish direct contact with
neurons and glia. Dextran sulfate sodium-induced colitis leads
to BMB disruption, loss of its barrier integrity, and increased
numbers of IGMs in a macrophage-dependent process.

CONCLUSIONS: In intestinal inflammation, macrophage-
mediated degradation of the BMB disrupts its physiological
barrier function, eliminates the separation of the intra- and
extra-ganglionic compartments, and allows inflammatory
26 July 2021 � 6:43 am � ce CLR
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stimuli to access the myenteric plexus. This suggests a potential
mechanism for the onset of neuroinflammation in colitis and
other GI pathologies with acquired enteric neuronal dysfunc-
tion. (Cell Mol Gastroenterol Hepatol 2021;-:-–-; https://
doi.org/10.1016/j.jcmgh.2021.07.003)

Keywords: Barrier; Enteric Ganglion; Macrophage; ECM;
Intraganglionic Macrophage; Colitis.

mong its many essential roles, the gastrointestinal
aAuthors share co-first authorship.

Abbreviations used in this paper: BBB, blood-brain barrier; BMB,
blood-myenteric barrier; CNS, central nervous system; DSS, dextran
sulfate sodium; ECM, extracellular matrix; ENS, enteric nervous sys-
tem; FITC, fluorescein isothiocyanate; GFP, green fluorescent protein;
GI, gastrointestinal; Iba1, ionized calcium-binding adapter molecule 1;
IBD, inflammatory bowel disease; IGM, intraganglionic macrophage;
IL, interleukin; iNOS, inducible nitric oxide synthase; LPS, lipopoly-
saccharide; MCP-1, monocyte chemoattractant protein-1; MM, mus-
cularis macrophage; MMP, matrix metalloproteinase; MyMs,
myenteric plexus macrophages; PAMP, pathogen-associated molec-
ular pattern; PBS, phosphate-buffered saline; PGS, periganglionic
space; qPCR, quantitative polymerase chain reaction; STED, stimu-
lated emission depletion; TNF, tumor necrosis factor. Q6
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A(GI) tract regulates motility, digestion, absorption of
nutrients, removal of waste, and protection from pathogens,
allergens, and toxins. Many of these functions rely on co-
ordination between the enteric nervous system (ENS) and
the immune system. The ENS comprises a complex network
of neural and glial cells that is influenced by the central
nervous system (CNS) but performs a wide array of functions
independently to maintain homeostasis, including regulating
GI motility and participating in crosstalk with the microbiota
and resident leukocytes of the intestinal immune system.1,2

Enteric neuroinflammation disrupts these processes and
has been implicated in chronic GI diseases including esoph-
ageal achalasia, gastroparesis, chronic intestinal pseudo-
obstruction, irritable bowel syndrome, and inflammatory
bowel disease (IBD).3–6 In IBD, infiltration of nonresident
leukocytes to the enteric plexuses (plexitis) is predictive of
future relapses, indicating that neuroinflammation may
contribute to chronic intestinal inflammation.6

Intestinal macrophages are a tissue-specific population
of leukocytes descending from erythro-myeloid progenitors
that colonize every layer of the gut including the muscularis
propria.7,8 Whereas mucosal macrophages have a role in
antigen sampling and antimicrobial (M1) responses, resi-
dent muscularis macrophages (MMs) exhibit an anti-
inflammatory (M2) phenotype important in tissue protec-
tion and regeneration.9 Nevertheless, conditions of inflam-
mation or stimulation by pathogen-associated molecular
patterns (PAMPs) can activate resident MMs into a proin-
flammatory phenotype with unknown consequences on the
ENS.10,11 Early histologic studies describing ultrastructural
features of enteric ganglia12–14 identified macrophages
closely juxtaposed to nerve fibers15 and enteric neu-
rons.16,17 Recently, subpopulations of microglia-like MMs in
proximity to the ENS have been identified, including
myenteric plexus macrophages (MyMs), situated in close
spatial association with the myenteric plexus,18–20 and
intraganglionic macrophages (IGMs) in the embryonic and
postnatal avian and mouse intestine.21 Detailed character-
ization of the morphology and immunophenotype of MyMs
and IGMs has not yet been accomplished. Furthermore, it is
unknown whether IGMs and MyMs are the same cell pop-
ulation capable of migrating in and out of the myenteric
plexus to interact with enteric neurons and glial cells.

The blood-brain barrier (BBB) of the CNS protects neu-
rons and glia from proinflammatory PAMPs such as lipo-
polysaccharides (LPS).22 The gut is the major site of
interaction between commensal microbiota and the host.
Despite some early attempts to characterize the presence of
FLA 5.6.0 DTD � JCMGH849 proof �
a “blood-myenteric ganglia” barrier,23–25 there is still a gap
in our knowledge about the nature of this barrier that might
protect enteric neurons and glial cells from exogenous
pathogenic macromolecules. During gangliogenesis,
migrating enteric neural crest cells secrete extracellular
matrix (ECM) molecules, including collagens, tenascin, and
agrin.26–28 Among these, agrin persists postnatally and
could serve to physically separate and protect the enteric
ganglia from the surrounding environment.21

In the present study, we describe the existence of a
barrier that encapsulates the myenteric plexus at an ultra-
structural level and consists of ECM proteins and glial end-
feet. IGMs are demonstrated to be capable of penetrating the
blood-myenteric barrier (BMB) and undergo morphologic
transformation. In physiological conditions the BMB is
impermeable to fluorescein isothiocyanate (FITC)-dextran,
indicating that it is a functional barrier to exogenous mac-
romolecules. Experimental colitis in mice severely disrupts
the BMB, degrading its ECM components and disrupting its
barrier function. However, this effect can be rescued by the
experimental depletion of MMs with L-clodronate, suggest-
ing that inflammation-mediated disruption of the BMB is
macrophage-dependent.

Results
A Subset of Hematopoietic Cells in Colonic
Enteric Ganglia Possess a Macrophage Signature

We evaluated the presence of IGMs in 1-mm-thick sem-
ithin sections from CX3CR1GFP adult mouse colon labeled
with antibody against the ECM protein agrin. Agrin is
secreted by neural crest-derived cells28 and demarcates the
outer border of the myenteric ganglia.21 Green fluorescent
protein (GFP) labeling (developed with VectaRed) shows
macrophages present inside the enteric ganglia (Figure 1A
and B, arrowheads). Fluorescent immunostaining shows
CX3CR1GFP IGMs localized within the agrin-expressing
ganglionic border (Figure 1C, arrowheads). MyMs are situ-
ated outside the ganglia (Figure 1C, arrows), but with their
cell bodies adjacent to the agrinþ ganglionic border. Sur-
rounding the ganglia is the periganglionic space (PGS)
(Figure 1E, asterisks), which comprises the connective tis-
sue space between the agrin and collagen type 4 (Col4)
26 July 2021 � 6:43 am � ce CLR
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Figure 1. IGMs and their characterization in CX3CR1GFP mouse colon. Double immunolabeling of semithin sections with
agrin and GFP was performed on distal (A) and proximal (B) colon sections of adult CX3CR1GFP mice. GFPþ IGMs (red) are
present inside the agrinþ basement membrane of the enteric ganglia (brown). Immunofluorescent staining with agrin
(ganglionic basement membrane), Hu (enteric neurons), and GFP (macrophages) shows spatially distinct populations of MMs,
with IGMs labeled with arrowheads and MyMs in the PGS with arrows (C). GFPþ IGM in physical contact with an enteric
neuron (D, arrowhead). Agrin and Col4 immunolabeling shows the ECM capsule surrounding the enteric ganglia (E). The
periganglionic space (E, asterisks) is present between the Col4-expressing smooth muscle basement membrane and the
Col4þ/agrinþ expressing ganglionic basement membrane. Super-resolution imaging of IGMs and the PGS shows a MyM
penetrating the ganglionic basement membrane (G, dotted line) and entering the enteric ganglion (F and G, arrowheads). The
smooth muscle basement membrane again shows expression of Col4, but not agrin (G, dashed line). cm, circular muscle layer;
lm, longitudinal muscle layer.
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expressing ganglionic basement membrane (Figure 1G,
dotted line) and the smooth muscle basement membrane
expressing Col4 but not agrin (Figure 1G, dashed line).
Super-resolution imaging using stimulation emission deple-
tion (STED) microscopy revealed that CD45þCX3CR1þ
macrophages are also present in the PGS and can penetrate
the ganglionic basement membrane and enter the enteric
ganglia (Figure 1F and G, arrowheads). The morphologic
features of these cells suggest active migration from the PGS
into the intraganglionic space. STED imaging also demon-
strates CX3CR1þ macrophages in direct physical contact
with Hu-expressing enteric neurons (Figure 1D, arrowhead).

To characterize the immunophenotype of IGMs, we
performed confocal microscopy on serial sections of
CX3CR1GFP mouse distal colon. Previously it was shown that
CX3CR1þ MMs are CD45þ, CD11bþ, and F4/80þ.9 Double
immunostaining with anti-GFP antibody (Figure 2A) and the
macrophage marker CD11b (Figure 2A’) confirms coex-
pression on all MMs including IGMs (Figure 2A”, arrow-
head). GFPþ IGMs also express colony-stimulating factor 1
receptor (Figure 2B–B”), pan-macrophage marker F4/80
(Figure 2C–C”), and ionized calcium-binding adapter mole-
cule 1 (Iba1) (Figure 2D–D”), which is known to be
expressed by intestinal MMs.29 We find the IGMs present
Figure 2. Immunophenotype and spatial distribution of IGMs
the agrin-bordered enteric ganglia and co-express CD11b (A–A
Iba1 are co-expressed by MMs and IGMs (F–F”, arrowheads,
submucosal macrophages (F–F”, arrows). In lymphatic aggrega
rophages express Iba1 but not F4/80. Comparison of MM and IG
mice shows no significant difference in ratio of IGMs to total MM
However, the number of IGMs is significantly higher in distal col
ganglion area (H; 82.37 ± 32.98 vs 50.25 ± 19.6 cell/mm2, P ¼

FLA 5.6.0 DTD � JCMGH849 proof �
inside the enteric ganglia, which are delineated by agrin
expression (Figure 2A” and D”) and among Huþ
(Figure 2B”) and NCAMþ (Figure 2C”) enteric neurons. F4/
80 and Iba1 are coexpressed on MMs and IGMs (Figure 2E,
circled area; Figure 2F–F”, arrowheads). However, Iba1 is
not expressed by most submucosal macrophages
(Figure 2F–F”, arrows). In contrast, macrophages in mucosal
lymphatic aggregates express Iba1 and not F4/80
(Figure 2E, dashed line; Figure 2F–F”). These findings sug-
gest that the various subpopulations of intestinal macro-
phages possess different immunophenotypes, with IGMs
expressing CD45, CX3CR1, CD11b, Iba1, F4/80, and colony-
stimulating factor 1 receptor.

We compared the total number of MMs in the muscularis
propria of CX3CR1GFP mouse colon and found no significant
difference between distal and proximal colon (76.03 ±
32.64 vs 73.82 ± 29.26 cell/mm2, P ¼ .4506). The ratio of
IGMs to total MMs is higher in the distal colon, although this
difference did not reach statistical significance (3.26 % ±
1.3 % vs 2.12 % ± 1.1 %, P ¼ .0977; Figure 2G). When the
density of IGMs is adjusted to ganglionic area, there is a
significantly higher density of IGMs in the distal compared
with proximal colon (82.37 ± 32.98 vs 50.25 ± 19.6 cell/
mm2, P ¼ .0309; Figure 2H).
in CX3CR1GFP mouse colon. GFPþ IGMs are present within
”), CSF1R (B–B”), F4/80 (C–C”), and Iba1 (D–D”). F4/80 and
magnified from circled area in E), but Iba1 is not present in
tes of the colonic mucosa (E, area within dashed line), mac-
M cell number in the proximal and distal colon of CX3CR1GFP

s (G; 3.26 % ± 1.3 % vs 2.12 % ± 1.1 %, P ¼ .0977, n ¼ 8).
on compared with proximal colon when adjusted to myenteric
.0309, n ¼ 8).
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IGMs Are Structurally Distinct From
Extraganglionic Macrophages

To study IGM ultrastructure and their microenviron-
ment, electron microscopy was performed on the distal
colon of mice. In the ganglia, enteric neurons (Figure 3A,
dashed line) are characterized by a condensed cytoplasm,
euchromatic nucleus, and prominent nucleoli. In con-
trast, enteric glial cells exhibit a euchromatic nucleus,
anchored heterochromatin, and a cytoplasm of lower den-
sity (Figure 3A).12,13 Enteric ganglia also contain electron-
dense, highly vacuolated cells that display a distinct
morphology from neural and glial cells. These are the IGMs
(Figure 3A). Formation of pseudopodia around glial cell
Figure 3. Ultrastructure of IGMs in the mouse colon. Low ma
dense IGM, displaying distinct morphology from enteric glial cel
condensed cytoplasm. IGM (* marks IGM nucleus) shows activ
processes (A–A’, arrows). IGM is situated internal to the base
rowheads). Periganglionic MyM exhibits a high nucleus/cytopl
pertrophic cytoplasm, abundant mitochondria, extensive vacu
area). A phagocytic vesicle is seen (B, asterisk). The ganglion
external surface of IGM (B, arrowheads, with basement membran
vacuoles (C, dotted line; enlarged in D, where vacuoles are mar
arrows) and occasional membranous whorls are present (C, d
activity is seen in IGM (C, inset and arrow), but autophagosom
enteric neuron.

FLA 5.6.0 DTD � JCMGH849 proof �
processes (Figure 3A–A’, arrows) suggests a phagocytic
function of the IGM. Despite signs of cellular degeneration,
including swollen mitochondria (Figure 3A’) and massive
cytoplasmic vacuolization, the nucleus of the IGM shows no
sign of apoptosis (Figure 3A, asterisk). Figure 3B shows the
morphologic difference between periganglionic macro-
phages and IGMs. The IGM is characterized by a low nu-
cleus/cytoplasm ratio and a segmented non-apoptotic
nucleus. IGMs also exhibit an extensive Golgi and vesicular
apparatus (Figure 3B, dashed circle) and active formation of
phagocytic vesicles (Figure 3B, asterisk). Some IGMs display
mostly empty vacuoles (Figure 3C, dotted rectangle;
Figure 3D, asterisks), with lined-up ribosomes on the edge
gnification image of a myenteric ganglion (A) shows electron-
ls (EGC) and enteric neurons (EN). Dashed line labels EN with
e phagocytosis, with multiple pseudopodia around glial cell
ment membrane of the enteric ganglion (A, blue line; A’, ar-
asm ratio, in contrast to IGM, which is characterized by hy-
olization, and well-developed Golgi apparatus (B, encircled
ic basement membrane is continuous and uninterrupted on
e located under dashed blue line). IGMs exhibit mostly empty

ked by asterisks), with lined-up ribosomes on their borders (E,
ashed line; enlarged in E, asterisk). Evidence of phagocytic
es are rarely seen (E, arrowhead). EGC, enteric glial cell; EN,
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(Figure 3C, dashed rectangle; Figure 3E, arrows) and occa-

sionally filled with membranous whorls (Figure 3E,

asterisk). Signs of pseudopodia and phagosome formation

are present in the IGM (Figure 3C, inset). Although an oc-

casional autophagosome is seen (Figure 3E, arrowhead), the

IGMs show no morphologic signs of significant autophago-

some formation.
Figure 4. Morphology of glial limiting membrane and enteri
enteric ganglion in the distal colon of a PLP1GFP mouse sho
basement membrane, and Huþ neurons (A). Glial end-feet es
sionally interrupted by small gaps (B, arrows). F4/80þ IGMs a
among Huþ enteric neurons. Disruption of glial end-feet (C, en
macrophages (C’, arrow). Continuity of the glial end-feet is int
around its cell body (C’, arrow). Electron micrograph of PGS sho
of glial end-feet (D, arrowheads) and the basement membrane. I
ganglionic barrier includes glial cells (EGC; yellow shaded a
magnification image shows IGM between 2 glial end-feet, deli
(E, squared area is magnified in E’, where arrows denote base
establishes physical contact with IGM (E, circled area) and disru
point (E, arrowhead). EGC, enteric glial cell; EN, enteric neuron

FLA 5.6.0 DTD � JCMGH849 proof �
Enteric Ganglia Are Surrounded by a Barrier
Formed By ECM and Glial End-Feet

Immunofluorescence was performed on the distal colon
of PLP1GFP mice (Figure 4A–C’). Proteolipid protein 1 is
expressed by enteric glial cells.30 Confocal imaging reveals
that GFPþ enteric glia establish an almost continuous layer
of glial end-feet (Figure 4A) internal to the agrin-expressing
ECM layer (Figure 4A). IGMs are located internal to this glial
c ganglion basement membrane in the mouse colon. An
ws GFP-expressing glial cells, agrin-expressing ganglionic
tablish a continuous layer around the enteric ganglia, occa-
re located internal to the glial end-feet (B’, arrowheads) and
circled area) is present at suspected entry points of F4/80þ
act around the macrophage process (C’, arrowhead) but not
ws structure of the enteric ganglion barrier, formed by a layer
n the microenvironment of an IGM (E, green shaded area), the
rea) and ganglionic basement membrane (blue line). High
neated from the PGS by a continuous basement membrane
ment membrane). Enteric neuron (E, magenta shaded area)
pts the continuous glial end-feet layer at suspected fiber exit
; SM, smooth muscle.
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barrier (Figure 4B’, arrowheads), intermingling with Huþ
enteric neurons. At sites where glial end-feet disruption
occurs (Figure 4C, circle), an F4/80þ macrophage is seen
(Figure 4C’, arrow). Interestingly, the continuity of glial end-
feet is present around the process of the same macrophage
(Figure 4C, arrows; C’, arrowhead) but not around its cell
body (Figure 4C, circle; C’, arrow). Figure 4D shows the
ultrastructure of the glial end-feet (arrowheads), with the
continuous ganglionic basement membrane and the PGS
surrounding it. IGMs in the ganglionic microenvironment
are adjacent to enteric glial cells and enteric neurons
(Figure 4E). Although glial end-feet closely bound the IGMs
inside the ganglion, they do not entirely separate them
from the PGS (Figure 4E’). As can be seen, the continuity of
the glial end-feet layer is interrupted by IGMs (Figure 4E,
boxed area) and also by enteric neurons, most likely at
sites where neural fibers exit the ganglion (Figure 4E,
arrowhead).

FITC-dextran assays were performed to assess the bar-
rier function of the ECM and glial end-feet around the
enteric ganglia, because this is reminiscent of the BBB. FITC-
dextran 4kDa was injected into the tail vein of wild-type
C57BL/6 mice. Animals were killed after 10 minutes, and
the distal colon, liver, and cerebellum were removed
(Figure 5A). At 10 minutes after FITC administration, fluo-
rescent particles are scattered in the submucosa and mu-
cosa of the gut (Figure 5B) and around blood vessels
(Figure 5B, arrow), whereas the muscularis shows no green
fluorescence (Figure 5B, dashed lines). At this time point,
only a few F4/80þ cells co-localize with FITC (Figure 5C,
arrowheads), whereas most macrophages do not contain
fluorescent particles (Figure 5C, arrows). In the liver where
capillaries are discontinuous, having 30- to 40-mm diameter
openings in their endothelium, diffuse green fluorescent
signal is already present at 10 minutes (Figure 6A), with
only scattered expression in the colonic mucosa of
the same animal (Figure 6B). FITC signal was not detected
in the cerebellar interstitium of experimental mice
(Figure 6C). At 45 minutes after FITC injection, signal is
present in all layers of the gut wall but not within the
enteric ganglia (Figure 5D–F). As shown in Figure 5F–F’,
fluorescence surrounds the agrin-expressing borders of
the enteric ganglia and diffusely stains the PGS, but no
fluorescence is detected in the intraganglionic space. After
60 minutes, intestinal F4/80þ macrophages contain
phagocytosed FITCþ particles (Figure 5G, arrowheads).
Diffuse FITC signal in the PGS persists, and MyMs incor-
porate fluorescent particles as well (Figure 5H–H”, ar-
rowheads). Interestingly, at 60 minutes, F4/80þ IGMs also
contain FITC (Figure 5I–I’, arrowheads). Because FITC
molecules normally cannot penetrate the ganglionic bar-
rier (Figure 5I, arrows), the presence of FITC in the gan-
glion suggests that IGMs, capable of phagocytosis, enter the
ganglia from the PGS. At 60 minutes after FITC injection, all
F4/80þ Kupffer cells in the liver are filled with fluorescent
label (Figure 6D), and high levels of macrophage-FITC co-
localization are also present in the colon (Figure 6E–E”).
These findings are strongly suggestive of the presence of a
BMB.
FLA 5.6.0 DTD � JCMGH849 proof �
DSS-Induced Colitis Induces Degradation of the
Periganglionic ECM via a M1-Macrophage-
Dependent Process

DSS induces experimental colitis by disrupting the in-
testinal epithelial barrier.27 Treatment with liposome-
encapsulated clodronate (L-clodronate) produces tempo-
rary depletion of tissue and blood mononuclear phago-
cytes.28 Thus, induction of DSS colitis followed by treatment
with L-clodronate blocks macrophage recruitment by
depleting the monocyte pool in the blood and bone marrow,
thereby allowing us to study colitis in the absence of mac-
rophages (Figure 7A). Figure 7B and D show the typical
colonic shortening associated with colitis and its reversal in
mice treated with clodronate. General inflammatory signs,
such as muscularis thickening (Figure 7C), and disease ac-
tivity index (Figure 7E) all show significant improvement in
animals receiving L-clodronate treatment. Figure 7F shows
the histology of the colon after DSS treatment and with
concurrent DSS-clodronate administration. Whereas the
ECM barrier surrounding the enteric ganglia normally con-
tains a continuous layer of agrin and Col4 (Fig. 7G–G’), DSS-
induced acute colitis is associated with degradation of this
ECM barrier and extensive infiltration of F4/80þ macro-
phages (Figure 7H–H’ and J), including IGM infiltration into
the Huþ enteric ganglia (Figure 7H, inset). Interestingly, the
agrin expression in the vascular basement membrane of
muscularis vessels remains intact (Figure 7H’, arrowhead).
In the inflammatory infiltrate 2 types of F4/80þ cells are
distinguishable according to cellular morphology31: rami-
fied, bipolar, or stellate-shaped MMs (Figure 7H’, inset) and
round monocytes with kidney-shaped nuclei (Fig 7H’, inset).
L-clodronate treatment, which depletes macrophages from
the muscularis propria, leads to preservation of normal ECM
patterning, with intact agrin and Col4 expression in the BMB
(Figure 7I–I’ and J). The increased density of F4/80þ MMs
(Figure 7K) and IGMs (Figure 7L and M) observed after DSS
treatment is not seen with L-clodronate treatment. No sig-
nificant difference was found in the relative distribution of
MMs in different layers of the gut wall (Figure 7N).

Neutrophil Infiltration Is Not Required for
Colitis-Induced Degradation of the Enteric Ganglia

To understand to what extent neutrophils contribute to
inflammation in the muscularis propria during DSS-colitis,
we performed quantitative polymerase chain reaction
(qPCR) and immunofluorescence with the neutrophil
markers Ly6G and MPO. Ly6G RNA expression was
increased in whole gut and isolated muscularis after DSS,
but not after concurrent L-clodronate treatment (Figure 8A
and B). The mucosa and submucosa both exhibit massive
infiltration of Ly6G-expressing neutrophils, comparable to
the number of Iba1þ macrophages (Figure 8I). In contrast,
the muscularis only has a modest infiltration of Ly6Gþ cells
compared with MMs (Figure 8I’, R, and S). Note that Iba1 is
used as a marker for F4/80þ macrophages because their
cellular expression in the muscularis overlaps completely
(Figure 9A–C). No Ly6Gþ neutrophils are detected adjacent
to or within enteric ganglia (Figure 8I’, inset). Very few
26 July 2021 � 6:43 am � ce CLR
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Figure 5. Enteric ganglia are surrounded by a protective myenteric plexus barrier. Schematic drawing shows experi-
mental design of FITC-dextran assays, where wild-type C57BL/6 mice receive intravenous FITC-dextran (50 mg/mL) and are
killed 10, 45, and 60 minutes later (A). At 10 minutes after FITC-dextran loading, scattered green fluorescence is present in the
lamina propria (B, arrow) but not the muscularis propria (B, dashed line). Most F4/80þ macrophages in the colon do not
contain FITC particles (C, arrows), but some do (C, arrowheads). At 45 minutes after injection, diffuse FITC signal appears in
the mucosa and submucosa (D and E). Strong FITC signal is also present around the enteric ganglia but not within them (F–F’).
At 60 minutes, F4/80þ macrophages contain FITC (G, arrowheads). MyMs expressing FITC are seen in the PGS (H-H”, ar-
rowheads; I, arrows), and FITC-loaded IGMs have entered into the intraganglionic compartment (I–I’, arrowhead).
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Ly6Gþ cells are detected in the muscularis propria of the
colon of control animals (Figure 8R and S), and only a low
number are present in DSSþL-clodronate treated mice
(Figure 8R and S), mostly neutrophils in the mucosa
(Figure 8O). Double staining with anti-myeloperoxidase
antibody shows that the majority of Ly6Gþ neutrophils
FLA 5.6.0 DTD � JCMGH849 proof �
coexpress myeloperoxidase in all layers of the inflamed gut
(Figure 9D–F”). In summary, neutrophil infiltration is high in
the mucosal and submucosal layers of the gut during DSS
colitis but less so in the muscularis propria, where Ly6Gþ
cells do not appear to interact physically with the enteric
ganglia as the macrophages do.
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Figure 6. FITC-dextran assays: control organs. At 10 minutes after FITC injection, diffuse fluorescence is present in the liver
(A), but only scattered FITC particles are visible in the colon of the same animal (B), and no FITC is seen in the cerebellum
(C). Agrin is expressed around blood vessels (C, arrowheads) and in the external glial limiting membrane (C, arrows). At 60
minutes after FITC administration, most Kupffer cells incorporate FITC in the liver (D). In the colon, diffuse interstitial FITC
signal is present in the mucosa and submucosa (E) and in most F4/80þ macrophages (E’–E”).
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Dynamic Changes in Macrophage Polarization
Occur in the Muscularis in the Setting of Colitis

Colitis was previously shown to be associated with a
shift to M1-macrophage polarization32,33 and increased
expression of inflammatory mediators.34,35 Expression of
inducible nitric oxide synthase (iNOS) (a marker of M1-
polarization36) significantly increases in whole colon and
isolated muscularis of DSS-treated mice and reverts to
baseline in DSSþL-clodronate treated animals (Figure 8C
and D). Interestingly, RNA expression of M2-polarization
markers CD163 and ARG136 show no significant change
during the course of DSS treatment or concurrent L-clodr-
onate injection (Figure 8E–H). Immunofluorescence for
iNOS in DSS-treated mice reveals expression in clusters of
F4/80þ macrophages and monocytes in the mucosa
(Figure 8J), submucosa (Figure 8J’), and serosa (Figure 8J”).
A few F4/80-negative cells also express iNOS (Figure 8J,
asterisks). After DSS, iNOS is expressed in 31 % (Figure 8Q)
of F4/80þ MMs (Figure 8K–K’, arrowheads) and monocytes
(Figure 8K”, arrowheads), whereas 69 % of F4/80þ cells do
not express iNOS (Figure 8K’, arrow, and Q’). Interestingly,
multiple CD45-negative non-hematopoietic cells express
iNOS in the inflamed colon (Figure 8M, arrows), instead
expressing smooth muscle actin (Figure 8N). Area-adjusted
FLA 5.6.0 DTD � JCMGH849 proof �
cell counting reveals that 59 % of iNOSþ cells in the mus-
cularis after DSS treatment are SMAþ smooth muscle cells
(Figure 8Q). If DSS treatment is interrupted by L-clodronate
administration, the number of iNOSþ cells significantly de-
creases in the muscularis (Figure 8R and S), leaving 96 % of
F4/80þ cells iNOS– (Figure 8Q’), and of the remaining
iNOSþ cells, 93 % are smooth muscle cells (Figure 8P and
Q). Quantitative data on cell counting are shown in
Supplementary Material. Our findings reveal that iNOS
expression significantly increases in the colonic muscularis,
where, in addition to macrophages, smooth muscle cells also
express the molecule. Furthermore, L-clodronate treatment
reverses the shift toward M1-polarization in the muscularis
propria but does not affect M2-associated molecular
markers such as ARG-1 and CD163.

Along with M1 macrophage polarization, the RNA
expression of proinflammatory cytokines interleukin (IL)
1A, IL1B, tumor necrosis factor (TNF) alpha, and monocyte
chemoattractant protein-1 (MCP-1) all show significant in-
creases as a consequence of DSS treatment (Figure 10A, C, G,
and I). Interestingly, the inflammation is not limited to the
mucosa, because isolated muscularis tissue exhibits simi-
larly elevated RNA expression for these markers
(Figure 10B, D, H, and J). IL10 has been shown to be
26 July 2021 � 6:43 am � ce CLR
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expressed in the gut mucosa at later stages of colitis to
initiate fibrosis and regeneration in severely inflamed tis-
sues.35 Here IL10 RNA levels increase more than 10-fold in
FLA 5.6.0 DTD � JCMGH849 proof �
whole gut (Figure 10E) and slightly in the muscularis
(Figure 10F). Concurrent L-clodronate treatment decreases
the expression of IL1A, IL1B, and IL10 significantly in whole
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gut of experimental mice (Figure 10A, C, and E). In the
muscularis, the reversal effect of L-clodronate is statistically
significant for TNF and MCP-1 expression (Figure 10H and J)
but not for IL1A and IL1B expression (Figure 10B and D).
IL10 expression in the muscularis is not affected by
L-clodronate treatment (Figure 10F).

Double immunofluorescence was performed to reveal
the cell populations that express TNF, a master regulator
of the inflammatory response. After induction of DSS co-
litis, TNF protein is expressed by the mucosal epithelial
lining37 (Figure 10K, dashed line), serosal F4/80þ cells
(Figure 10K, arrowheads; and Figure 10L, asterisks),
clusters of mucosal macrophages (Figure 10M), and
enteric ganglia (Figure 10K and N, dashed line). Interest-
ingly, F4/80þ MyMs (Figure 10K and N, arrows) and IGMs
(Figure 10N, asterisk) show no co-localization with TNF
expression. In DSSþL-clodronate treated mice enteric
ganglia do not express TNF (Figure 10O, arrows), whereas
clusters of mucosal epithelial cells (Figure 10P, inset,
dashed line) and F4/80þ macrophages (Figure 10P, ar-
rows) show persistent TNF production despite L-clodro-
nate treatment. In the absence of MMs, TNF production
decreases in the muscularis, and the major source of TNF
is not the macrophages, but rather the enteric ganglia. This
finding implies an indirect crosstalk between these cell
populations that is consistent with other studies in
different contexts.2,18

Matrix Metalloproteinase 10 Shows Strong
Expression in the Muscularis and Myenteric
Plexus After DSS Treatment, Reversed by the
Depletion of MMs

According to RNA sequencing analysis earlier reported
(accession number : PRJNA687627) in DSS-treated vs con-
trol mice, matrix metalloproteases (MMPs) are increased in
colitis (Figure 11A, Table 1).38 Collagen 4 is the substrate of
Figure 7. (See previous page). DSS treatment leads to colitis
dependent mechanism. Schematic drawing shows experime
administration (A). Colonic shortening characteristic of DSS-indu
treatment (B and D). Muscularis propria was thickened in DSS-
18.8 mm, P ¼ .003; C) and with clodronate treated mice (F; 172
higher disease activity index (DAI) scores in DSS versus control
0.8 vs 0.4 ± 0.5, P ¼ .003; E). L-clodronate treatment ameliorat
with H&E staining (F). Agrin (G) and Col4 (G’) are normally expres
7 days of DSS treatment (H and H’). DSS colitis is associated wit
including within the ganglia (H, inset; H’, arrowhead). In animals
macrophages are absent from the muscularis propria (I–I’). Alth
lamina propria, normal ECM patterning is preserved, with intac
degradation in the BMB, where 61 % and 22 % of enteric
respectively, and only 16 % remain intact. In clodronate treated m
semi-degraded periganglionic agrin layer, respectively, with 75 %
DSS-treated mice compared with controls (213.9 ± 39 vs 70.4
(213.9 ± 39 vs 66.9 ± 19 cell/mm2, P < .001; K). Cellular density
colitis compared with controls (6.3 ± 1.8 vs 1.9 ± 0.8 cell/mm2, P
± 1.1 cell/mm2, P ¼ .002; L). DSS treatment also increased IGM
47.7 vs 81.5 ± 28.7 cell/mm2, P ¼ .003) and with clodronate tr
when adjusted to total myenteric ganglion area (M). Relative d
among groups (N). cm, circular muscle; DAI, disease activity ind
plexus; sm, submucosa.

FLA 5.6.0 DTD � JCMGH849 proof �
gelatinase MMP2, whereas agrin is the substrate of stro-
melysin MMP10. According to qPCR, both MMPs exhibit
increased RNA expression in the gut wall after DSS and
return to baseline with L-clodronate injection (Figure 11B
and D). In the muscularis specifically, MMP2 expression
does not change significantly (Figure 11C), whereas
MMP10 expression increases nearly 2-fold after DSS
(Figure 11E).

DSS induces patchy expression of MMP10 protein in
the mucosa and submucosa, co-localizing with agrin
expression (Figure 11F, encircled areas) and with F4/80þ
cells (Figure 11F, inset, arrowheads). In the muscularis,
MMP10 is expressed diffusely in the longitudinal muscle
layer and inside enteric ganglia (Figure 11F, arrows and G,
dashed line). Apart from enteric neurons (Figure 11H), F4/
80þ monocytes (Figure 11G, arrowhead and I) and MMs
(Figure 11J) also express MMP10. In contrast with DSS-
treated animals, control (Figure 11K) and DSSþL-
clodronate treated mice (Figure 11L) exhibit virtually no
expression of MMP10 in the muscularis layer or in the
enteric ganglia (Figure 11L, arrows), whereas scattered F4/
80-negative cells (Figure 11K, arrowheads) and F4/80þ
monocytes (Figure 11L, arrowheads) express MMP10 in the
mucosa of control and L-clodronate treated animals,
respectively.
DSS-Induced Colitis Disrupts the Ganglionic
Basement Membrane Causing BMB Dysfunction

Electron microscopy of enteric ganglia in DSS-treated
mice (Figure 12) reveals the disruption (Figure 12, boxed
area, Figure 12A’, arrows) or absence (Figure 12A”, arrows)
of the ganglionic basement membrane and the accumula-
tion of collagen fibers in the PGS (Figure 12A’). To test the
functional integrity of the BMB barrier in colitis, we
injected DSS- and DSSþL-clodronate treated mice on day 7
with FITC dextran as described above and removed the
and disruption of periganglionic ECM via a macrophage-
ntal design of DSS treatment and concurrent L-clodronate
ced colitis was observed, but not in mice receiving clodronate
treated mice compared with controls (172 ± 11.6 vs 136.8 ±
± 11.6 vs 124.2 ± 15.7 mm, P ¼ .022; C). Radar chart shows
s (2 ± 0.8 vs 0, P < .001) and clodronate treated animals (2 ±
es DSS-induced colitis based on histopathologic assessment
sed around the enteric ganglia but are severely disrupted after
h extensive F4/80þmacrophage infiltration in the distal colon,
treated with liposomal clodronate during DSS administration,
ough inflammatory signs are still present in the mucosa and
t agrin and Col4 around the ganglia (I–I’). DSS leads to agrin
ganglia exhibit a degraded or semi-degraded agrin layer,
ice, only 17 % and 8% of enteric ganglia have a degraded or
intact (J). F4/80þ MM density was significantly increased in
± 28.9 cell/mm2, P < .001; K) and clodronate treated mice

of IGMs adjusted to muscularis area was increased after DSS-
< .001; L) and clodronate treated animals (H; 6.3 ± 1.8 vs 1.5
density in DSS-treated compared with control mice (174.9 ±

eated mice (174.9 ± 47.7 vs 35.7 ± 24.4 cell/mm2, P < .001)
istribution of MMs in different anatomic layers did not differ
ex; lm, longitudinal muscle; lp, lamina propria; mp, myenteric
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distal colon after 15, 45, and 60 minutes. After 60 minutes,
FITC particles penetrate the disrupted BMB, with increased
intraganglionic fluorescence in DSS-treated animals
(Figure 12B–B’) as compared with untreated controls
(Figure 5I–I’). In contrast, animals receiving both DSS and
L-clodronate show accumulation of FITC only around the
enteric ganglia but not within them (Figure 12C–C’).
FLA 5.6.0 DTD � JCMGH849 proof �
Figure 12D–F shows the mean fluorescent intensity curve

measured in whole gut cross sections, muscularis, and

intraganglionic areas after 10, 45, and 60 minutes of FITC

injection. Note the significant increase in intraganglionic

fluorescence after DSS treatment as compared with control

and DSSþL-clodronate treatment (Figure 12F).
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DSS Colitis Is Associated With Enteric
Neuroinflammation, Including Neural
Hypertrophy, Glial Swelling, and Submucosal
Plexus Degeneration

In addition to infiltration of the muscularis by a variety
of immune cells, DSS colitis also causes significant
morphologic changes inside the myenteric plexus. Enteric
glial cells, which create the glial limiting membrane, rear-
range from a parallel (Figure 4D, arrowheads) to perpen-
dicular orientation (Figure 13A, yellow shaded area) relative
to the ganglionic basement membrane (Figure 13A, blue
dashed line). Moreover, after DSS, glia exhibit a swollen
morphology compared with control (Figure 13B and C).
Enteric neurons (Figure 13D, magenta shaded area) ac-
quire multiple lipid droplets (Figure 13D, arrows and F,
asterisks), many mitochondria (Figure 13E, asterisks), and
increased rough endoplasmic reticulum (Figure 13F, arrow).
Morphometry identifies a significant increase in myenteric
ganglion density (Figure 13H), without a concomitant in-
crease in neural cell density (Figure 13G) or neurons per
ganglion (Figure 13I). The colitis-associated hyper-
ganglionosis is reversed by concurrent L-clodronate treat-
ment (Figure 13H). Interestingly, DSS treatment causes a
sharp decline in the number of submucosal neurons, and this
returns to baseline with L-clodronate treatment (Figure 13J).

Discussion
We describe the existence of a physical BMB at an ul-

trastructural level that is composed of ECM proteins (agrin
and Col4) and enteric glial end-feet reminiscent of the BBB.
MyMs were observed to actively transmigrate through the
BMB and transform into morphologically distinct IGMs,
suggesting these cells are capable of BMB remodeling. The
BMB was demonstrated to possess a functional role, as
shown by its ability to restrict the entry of 4 kDa dextran
Figure 8. (See previous page). DSS treatment is associated
iNOS in macrophages and smooth muscle cells in a ma
expression (fold change, FC) of macrophage and neutrophil ma
tative PCR shows significantly higher expression of neutrophil m
and vs DSSþ clodronate treated (1.82 vs 0.31, P < .001; A) mic
.001; B) muscularis. M1-macrophage marker iNOS RNA is signifi
P < .001; C) and vs DSSþ clodronate treated animals (4.24 vs 1
P ¼ .02, and 2.45 vs 0.78, P < .001; D), respectively. M2-ma
difference (E–H). Immunofluorescence shows that in DSS-treate
and submucosa (I) but only slightly increased in the muscularis
expression does not co-localize with Iba1 (I–I’). In the muco
monocytes (J–J”, arrowheads) and occasionally in macrophages
80þ macrophages (K–K’, arrowheads), monocytes (K”, arrowhea
iNOS protein (M, arrows). Multiple CD45þ cells do not expres
Ly6Gþ neutrophils (L, arrowheads) in the muscularis layer. Do
iNOS (N, dashed line). With concurrent L-clodronate administra
trophils restricted to the submucosa (O, arrowheads) and a de
cularis (P, arrowheads). According to area-adjusted cell countin
cells, whereas only 41 % are F4/80þ (Q). In contrast, in L-clodro
80þ; 93 % are SMAþ smooth muscle cells (Q). In a different co
treatment, whereas only 4 % in the presence of L-clodronate (
Ly6G, and iNOS positive cells in the muscularis layer in the d
counting, including means and standard deviation; *P < .05, *
maximum) show median of fold change values with 95 % confi
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into the myenteric plexus. During conditions of inflamma-
tion, the integrity of the BMB was compromised via degra-
dation of its ECM constituents in a macrophage-dependent
manner. These data for the first time demonstrate that the
myenteric plexus can be directly exposed to extra-ganglionic
factors during inflammation and offer a mechanism for
enteric neuroinflammation and dysfunction in chronic in-
flammatory GI disorders.

The BBB serves to restrict the passage of cells, proteins,
pathogens, and PAMPs between the blood and CNS micro-
environment to protect the brain from inflammation and
injury. We find that the structures of the BMB are remi-
niscent of those of the BBB. The BBB is composed of
a continuous layer of glial end-feet39 called the limiting
glial membrane,40 ECM proteins, and a basement membrane
between the processes of astrocytes and the non-
fenestrated endothelial cells.41 Similarly, enteric ganglia
are separated from the surrounding interstitial tissues of
the gut wall by layers of cellular and ECM components. End-
feet of PLP1þ enteric glial cells organize into a cellular layer
surrounded externally by a ganglionic basement membrane
that expresses agrin and Col4. Interestingly, the molecular
structure of this barrier resembles the external glial limiting
membrane of the BBB, with both possessing strong agrin
expression. Of note, in vertebrate development, agrin accu-
mulates on brain capillaries around the time when
the vasculature becomes impermeable.42,43 Because agrin
knockout mice die at birth and ENS-specific deletion of agrin
is not available, no study has examined the alterations spe-
cific to the ENS-associated ECM in inflammation and injury.

Previous studies have shown that the impenetrable
perineurium that surrounds peripheral ganglia is absent in
the ENS.23 The microenvironment of the avascular enteric
ganglia and nerve fibers are exposed to extracellular fluid by
permeable blood vessels present in adjacent tissues of the
gut.24 The permeability of this barrier was tested using
with neutrophil infiltration and increases expression of
crophage-dependent fashion. Graphs show relative RNA
rkers in whole gut and isolated muscularis samples. Quanti-
arker Ly6g in DSS-treated vs control (1.82 vs 0.66, P ¼ .02; A)
e in whole gut and DSS-treated vs control (3.47 vs 1.08, P <
cantly overexpressed in DSS-treated vs control (4.24 vs 0.87,
.53, P ¼ .045; C) in whole gut and in muscularis (2.45 vs 0.97,
crophage markers CD163 and ARG1 showed no significant
d animals, Ly6Gþ neutrophils are predominant in the mucosa
(I’, arrowheads), where Iba1þ macrophages dominate. Ly6G
sa, submucosa, and serosa, iNOS is expressed in F4/80þ
(J, arrow) and F4/80- cells (J, asterisk). In the muscularis, F4/
ds), and CD45-negative non-hematopoietic cells express the
s iNOS (M, arrowhead). iNOS (L, arrows) is not expressed in
uble labeling with SMA shows smooth muscle expression of
tion, DSS-treated mice exhibit a low number of Ly6Gþ neu-
creased number of iNOSþ smooth muscle cells in the mus-
g in the muscularis, 59 % of iNOSþ cells are smooth muscle
nate treated mice, only 7 % of iNOS-expressing cells are F4/
mparison, 31 % of F4/80þ cells are iNOS-positive after DSS
Q’). R and S show the comparison of cell densities of F4/80,
ifferent experimental groups. Bar charts show data for cell
*P < .01, ***P < .001. Box and whisker plots (minimum-to-
dence intervals. *P < .05, **P < .01, ***P <.001.
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Figure 9. Iba1 and MPO expression in DSS-treated colon. Expression of Iba1 and F4/80 is co-localized in the colon of a
DSS-treated mouse (A–C). Expression of MPO overlaps with Ly6G in neutrophils of the mucosa and submucosa (D), whereas
some Ly6Gþ cells in the muscularis propria do not express MPO (F–F”). In the serosa, ramified F4/80þ macrophages are
MPO-negative (E, arrows), whereas round F4/80þ monocytes express MPO (E, arrowheads). MPO, myeloperoxidase Q10.
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horseradish peroxidase (34 kDa) and Evans blue labeled
albumin (69 kDa) by Gershon and Bursztajn,25 and no tracer
molecules were detected around or inside the myenteric
plexus after 45 minutes. This led those investigators to
hypothesize the presence of a blood-myenteric plexus bar-
rier to macromolecular diffusion. To assess the barrier
function of the ganglionic basement membrane more
directly, we injected FITC-dextran of a lower molecular
weight (4 kDa) rather than albumin or horseradish peroxi-
dase. This low molecular size FITC-dextran is able to leak
out from myenteric plexus capillaries, leading to the inter-
stitial accumulation of fluorescent particles in the PGS. FITC-
FLA 5.6.0 DTD � JCMGH849 proof �
dextran loadings supported the observation of Gershon and
Bursztajn that the outer boundary of the enteric ganglia is
indeed impermeable. Thus the BMB is able to restrict the
passive transport of 4 kDa particles. Interestingly, some
IGMs containing FITC-dextran particles were observed in
the impermeable myenteric plexus 15 minutes after MyMs
acquired FITC expression. Although sensory dorsal root and
autonomic ganglia include blood vessels where monocytes
can exit via diapedesis directly into the neuronal tissue,44

blood and lymphatic vessels are not present inside enteric
ganglia.23,24 This suggests that MMs actively took up FITC-
dextran particles and brought them into the myenteric
1650
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Figure 10. Macrophages are required for muscularis propria expression of proinflammatory cytokines during DSS-
induced colitis. Graphs show relative RNA expression (fold change, FC) of inflammation-related biomarkers in whole gut and
isolated muscularis. qPCR shows significantly higher expression of IL1A (A), IL1B (C), and IL10 (E) in the whole gut after DSS
treatment as compared with control and clodronate-treated groups. In muscularis samples, IL1A (B), IL1B (D), and IL10
(F) expression is significantly increased in DSS-treated vs control) but does not reach statistical significance compared with DSS-
clodronate treatment. TNF (G and H) and MCP-1 (I and J) expression is significantly increased in DSS-treated whole gut and
muscularis. Immunofluorescence in DSS-treated mouse colon shows strong expression of TNF in the epithelium (K, dashed line),
serosal monocytes and macrophages (L, asterisks), mucosal macrophages (M), and enteric ganglia (N, dashed line), but not in
MMs (N, arrows) or IGMs (N, asterisk). With clodronate treatment, the muscularis and enteric ganglia show no immunoreactivity
for TNF (O, arrows), only scattered F4/80þ macrophages (P, arrows), and clusters of epithelial cells in the mucosa (P, inset). Box
and whisker plots (minimum-to-maximum) showmedian of fold change values with 95% confidence intervals. *P< .05, **P< .01,
***P < .001. cm, circular muscle; ggl, ganglia; lm, longitudinal muscle; muc, mucosa; musc muc, muscularis mucosa.
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plexus from the PGS, indicating that MyMs traffic into the
ganglia through the BMB in physiological conditions.

Although these data suggest that MMs are capable of
trafficking in and out of the enteric ganglia, IGMs are unique
and undergo several structural changes. Inside the ganglia,
IGMs exhibit signs of cellular degeneration, including
extensive cytoplasmic vacuolization and accumulation of
swollen mitochondria with no morphologic signs of
FLA 5.6.0 DTD � JCMGH849 proof �
apoptosis. IGMs show distinct ultrastructure from extra-
ganglionic MyMs with an active translational machinery and
Golgi apparatus. These features indicate that MyMs and
IGMs may have different functions and roles in pathologic
conditions. This is supported by similar phenomena in the
sciatic nerve where transcriptionally unique perineurial and
endoneurial macrophages are differentially activated in
response to crush injury.45
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Figure 11. Secretion of MMP10 by MMs and enteric ganglia contributes to BMB disruption in DSS-induced colitis.
Volcano plot shows that MMP expression is increased in DSS-treated animals compared with controls (A), including MMP2
(LogFc 7.42, P < .001) and MMP10 (LogFc 6.45, P < .001). Graphs show relative RNA expression (fold change, FC) of MMP2
and MMP10 in whole gut and isolated muscularis samples. MMP2 expression is significantly increased in whole gut of DSS-
treated animals (B) but not in the muscularis (C), whereas MMP10 expression is elevated in both (D and E). MMP10 is
expressed diffusely in the longitudinal muscle layer and inside enteric ganglia after DSS treatment (F, arrows). In the sub-
mucosa and mucosa, MMP10 expression co-localizes with its substrate, agrin (F, circled areas) and F4/80þ monocytes and
macrophages (F, arrowheads). In the muscularis, apart from enteric neurons (G and H), F4/80þ monocytes (G, arrowhead) and
scattered MMs (J) express MMP10 but not MyMs or IGMs (F, arrows). In control guts, MMP10 is not expressed in the
muscularis layer (K) but only in scattered F4/80-negative cells in the mucosa (K, arrowheads). In DSSþ clodronate treated
animals, no MMP10 immunopositivity is detected in enteric ganglia or in the muscularis layer (L, arrows). In the submucosa
small number of F4/80þ monocytes express MMP10 (L, arrowheads). Box and whisker plots (minimum-to-maximum) show
median of FC values with 95 % confidence intervals. *P < .05, **P < .01, ***P < .001.
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Table 1.Fold Change and Adjusted P Values on Volcano Plot
Analysis

Gene LogFC Adjusted P value

Mmp15 7,721425488 3.78E-14

Mmp2 7,426049148 4.67E-10

Mmp14 6,880658085 1.27E-10

Mmp10 6,45768995 2.00E-06

Mmp3 6,43643922 1.71E-06

Mmp11 4,994405387 2.99E-11

Mmp9 3,836082737 1.16E-05

Mmp24 3,459050834 2.73E-09

Mmp16 -0,197007951 0.598400541

Timp3 8,072593837 3.60E-11

Timp2 7,395911406 2.05E-10

Timp1 4,645747477 5.23E-06
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The presence of a subpopulation of macrophages inside
the enteric ganglia is curious, and its functional importance
requires elucidation. Interestingly, the immunophenotype of
these IGMs is similar to that of microglial cells, including the
expression of CX3CR1, Iba1, and CSF1R.21,46 Microglia are
the predominant immune cell in the brain parenchyma and
play an important role in phagocytosis, neuroprotection
during ischemia and inflammation,47 and synaptic prun-
ing.48 They also contribute to BBB homeostasis in steady-
state and pathologic conditions.49 The shared immunophe-
notype of IGMs and microglia suggests potentially parallel
functions in removing dead cells and modulating inflam-
matory signaling in their respective nervous systems. In
support of this, we observed that IGMs show active signs of
phagocytosis, which is based on their subcellular charac-
teristics on electron microscopy. This result is further
reinforced by our finding that IGMs pick up FITC-dextran
particles and bring them into the ganglia. It has been
shown that immunolabeled MMs can contain tdTomato
expression in ChAT-cre:tdTomato mice, suggesting that
macrophages phagocytose enteric neurons during homeo-
static maintenance of the ENS.50 Our data support this and
indicate that IGMs are a distinct phagocytic population of
macrophage critical to this process.

Crosstalk between the microbiome, macrophages, and
ENS is beginning to be elucidated and has implications in
immunomodulation and intestinal disease.18 Studies in
experimental colitis demonstrate that enteric neuro-
inflammation disrupts neurally regulated processes, such as
intestinal motility, and results in neural hyperexcitability,
local leukocyte infiltration to the enteric ganglia (plexitis),
neuronal death, neurochemical plasticity, and a “reactive”
glial cell phenotype.6,51,52 However, the mechanisms driving
neuroinflammation in the gut are unknown. In our study,
DSS-induced colitis resulted in significant inflammation in
the muscularis propria indicated by increased expression of
iNOS in macrophages and smooth muscle cells and elevated
levels of inflammatory cytokines including TNF, IL1A, IL1B,
and MCP-1, which is in line with other studies.53,54 ECM
FLA 5.6.0 DTD � JCMGH849 proof �
proteins in the muscularis propria were degraded, including
agrin and Col4 of the ganglionic basement membrane, which
was associated with increased numbers of IGMs. This
resulted in the loss of BMB integrity, which could be critical
to initiating enteric neuroinflammation via infiltration of
PAMPs and proinflammatory leukocytes. Our data indicate
that these interactions are unlikely in physiological condi-
tions because of BMB impermeability and may only occur
after the barrier is compromised. Degradation of the barrier
may allow non-resident immune cells to interact with the
enteric ganglia and result in neuronal injury. Intraganglionic
non-resident leukocytes, described in plexitis or ganglioni-
tis, are observed in Crohn’s disease and may precede and
contribute to the progression of inflammation.6 This is
supported by the observation that plexitis in grossly unin-
flamed intestinal segments is a predictor of disease recur-
rence after surgery for Crohn’s disease.55 Our data indicate
that muscularis inflammation is associated with elevated
levels of macrophages and neutrophils, albeit neutrophils
were present in lower quantities and, unlike macrophages,
did not physically interact with the ENS or constitute the
leukocytes involved in plexitis.

Considering that MMs were observed to acquire a
proinflammatory phenotype and exhibit enhanced penetra-
tion of the enteric ganglia during colitis, we hypothesized
that BMB disruption was mediated by MMs. Macrophages
were depleted using the liposome-encapsulated clodronate
(L-clodronate) model, which ablates infiltrating macro-
phages in the intestine.56 Co-administration of DSS and
L-clodronate had several notable consequences. The severity
of colitis was reduced in mice treated with L-clodronate,
which is consistent with ablation of proinflammatory M1
polarized macrophages.33 M1 polarization is not specific
to the mucosa, because proinflammatory MMs are also
observed during colitis,11 albeit our data indicate that
despite the induction of the M1 marker iNOS, the expression
of the M2-associated markers, ARG-1 and CD163, is main-
tained during inflammation in the intestine. Nevertheless,
increases in the number of MMs and IGMs and the extent of
M1-polarization in colitis were attenuated after L-clodro-
nate treatment. This correlated with the preservation of
ECM patterning and the amelioration of BMB permeability,
thus confirming that MMs and IGMs play a pivotal role in the
inflammation-associated ECM degradation and BMB injury
that occur during colitis. This further indicates that, like
microglia and the BBB,49 MMs can contribute to BMB
permeability in pathologic conditions.

Intestinal inflammation is known to induce expression of
ECM remodeling MMPs in macrophages.57 These enzymes
are responsible for BBB failure in chronic neurodegenera-
tive disorders and may explain the effects of MMs on BMB
degradation.58 Here, we showed that MMP10 is specifically
overexpressed in the muscularis after DSS. MMP10 was
expressed by MMs and returned to baseline levels in the
muscularis with concurrent L-clodronate treatment. Inter-
estingly, we identified that enteric neurons also secreted
MMP10 in mice with colitis. Likewise, the major source of
elevated TNF in the muscularis originated from the enteric
ganglia. The expression of MMP10 and TNF in the myenteric
26 July 2021 � 6:43 am � ce CLR
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Figure 12. DSS colitis is associated with macrophage-dependent structural and functional disruption of the BMB.
Electron microscopy of DSS-treated colon (A) reveals partial disruption (A’, arrows) or complete absence (A”, arrows) of
periganglionic basement membrane. PGS is dense and closely packed with collagen fibers (A’–A”, double arrows). 60 minutes
after administration of FITC-dextran to DSS-treated animals leads to FITC accumulation in the enteric ganglia (B–B’) and
MyMs (B’, arrowhead). Clodronate treatment prevents this, leaving FITC-dextran particles accumulating in the PGS sur-
rounding the ganglia (C–C’). D, E, and F show the change in mean fluorescent intensity 10, 45, and 60 minutes after FITC-
dextran injections in whole gut (D), muscularis (E), and enteric ganglia (F).
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ganglia was dependent on the presence of macrophage.
These data indicate that although degradation of the ECM,
BMB permeability, and neuroinflammation are macrophage-
FLA 5.6.0 DTD � JCMGH849 proof �
dependent processes, secondary responses from the enteric
neurons and glia may contribute to barrier degradation and
the inflammatory milieu.
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Figure 13. DSS colitis is associated with enteric neuroinflammation, including neural hypertrophy, glial swelling, and
submucosal plexus degeneration. Electron microscopy shows swollen glial end-feet arranged perpendicularly (A, yellow
shaded area) to the border of enteric ganglion (A, blue dashed line). B and C show enteric glial morphology in control vs DSS-
treated animals. Enteric neurons (D, magenta shaded area) after DSS treatment accumulate lipid droplets (D, arrows; F, as-
terisks) and mitochondria (E, asterisks) and exhibit a hyperplastic rough ER (E and F, arrow). Number of enteric neurons is
unchanged after DSS (G), but their total surface area adjusted to total muscularis area increases significantly and is reversed
with L-clodronate injection (H). Average neuron number per myenteric ganglion is unchanged after DSS colitis, whereas
number of submucosal neurons decreases significantly (J), and this is reversed with L-clodronate treatment (J). Scatter dia-
grams show data for morphometry and cell counting, including means and standard deviation; *P < .05, **P < .01, ***P < .001.
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Our data reveal that macrophage-mediated degradation
of the ECM and the basement membrane surrounding the
enteric ganglia disrupts its physiological barrier, eliminates
the separation of the intra- and extra-ganglionic compart-
ments, and allows inflammatory stimuli to access the
myenteric plexus. This process offers a mechanism for the
onset of neuroinflammation in chronic colitis and other GI
pathologies with acquired ENS dysfunction.
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Materials and Methods
Animals

Adult CX3CR1þ/GFP (C57BL/6) mice and wild-type
C57BL/6 mice (80–120 days old) were obtained from the
Medical Gene Technology Unit (Specific Pathogen Free, SPF
level) at the Institute of Experimental Medicine, Budapest.
In CX3CR1þ/GFP knock in-knock out mice (CX3CR1GFP), cells
that express fractalkine receptor are EGFPþ, whereas the
presence of one normal allele retains their chemotactic
function.59 Animals were housed at the Minimal Disease
level, 3–5/cage under controlled environmental conditions:
21�C ± 1�C temperature, 65 % humidity, 12-hour light-dark
cycle, with free access to food and water. PLP-1GFP mice
(C57BL/6) (80 days old) were provided by Dr Hans-Christian
Reinecker, Massachusetts General Hospital, Boston. All pro-
cedures were conducted in accordance with the guidelines
set by the European Communities Council (86/609/EEC/2
and 2010/63 Directives of European Community), and the
protocol was approved by the Institutional Animal Care and
Use Committee of the Institute of Experimental Medicine,
Budapest (permit number: PEI/001/29-4/2013).

Histologic Procedures
For immunofluorescence studies, colon samples of

CX3CR1GFP, PLP1GFP, and wild-type control, DSS-treated and
DSS-clodronate treated C57BL/6 mice were fixed in 4 %
paraformaldehyde in phosphate-buffered saline (PBS) (PFA)
for 24 hours. Two-cm-long proximal colon samples from
CX3CR1GFP mice were removed 2.5 cm distally from the
ileocecal junction. For distal colon samples the last 2 cm was
removed from the abdominal part of the large intestine in
every mouse breed. After extensive washing in PBS the me-
dium was changed to 7.5 % gelatin containing 15 % sucrose
at 37�C for 2 hours, and the tissues were rapidly frozen at
60�C in isopentane (Sigma-Aldrich, St Louis, MO). Frozen
sections were cut at 5 mm for super-resolution microscopy
(STED imaging) and at 10 mm for laser scanning confocal
microscopy, collected on poly-L-lysine-coated slides (Sigma-
Aldrich).

Electron Microscopy
For electron microscopy studies, gut samples from con-

trol and DSS-treated C57BL/6 mice were placed in 4 %
buffered glutaraldehyde for 72 hours. After washing in PBS,
postfixation was made in 1 % osmium tetroxide for 2 hours.
After being rinsed 3 times in PBS, the tissue samples were
dehydrated in graded ethanol and embedded in epoxy resin
(Polysciences Inc, Warrington, PA) using propylene oxide.
FLA 5.6.0 DTD � JCMGH849 proof �
Ultrathin sections were contrasted with uranyl acetate and
lead citrate and examined using H-7600 Hitachi (Tokyo,
Japan) electron microscope.
Pre-embedding Immunocytochemistry on
Semithin Sections

Fifty-mm frozen sections were made from gelatin-
embedded specimens using a Shandon cryostat, placed in
12-well plates, and permeabilized with 0.1 % Triton-X so-
lution for 30 minutes at 38�C. Sections were incubated with
the first primary antibody (anti-agrin) diluted in 1 % PBS-
bovine serum albumin for 24 hours, followed by first sec-
ondary antibody anti-goat immunoglobulin G (Vector Labs,
Burlingame, CA) for 24 hours and avidin-biotinylated
peroxidase complex for 6 hours (Vectastain Elite ABC kit;
Vector Labs). Endogenous peroxidase activity was quenched
with 1 % hydrogen peroxide (Sigma-Aldrich). Antibody
binding was visualized with 0.04 % 3,30-diaminobenzidine
(Sigma-Aldrich) and 0.03 % H2O2 for 10 minutes. Extensive
washing in PBS for 3 hours was followed by addition of the
second primary antibody (anti-GFP) for 24 hours and sec-
ond secondary antibody AP anti-rabbit immunoglobulin G
(Vector Labs) for 24 hours. Endogenous alkaline phosphatase
activity was quenched with 5 % levamisole solution. Antigen
binding was revealed by VectaRed AP kit (Vector Labs). After
immunocytochemistry, samples were postfixed in 4 % PFA
and 0.1 % glutaraldehyde for 48 hours and 1 % osmium
tetroxide (Polysciences Inc) for 10 minutes. After dehydra-
tion in graded ethanol, tissue blocks were embedded in
Polybed/Araldite6500 (Polysciences Inc), and 1-mm semithin
sections were counterstained with toluidine blue.
Immunofluorescence and Image Analysis
For immunofluorescence staining, primary antibodies

were diluted in 1 % PBS-bovine serum albumin. Frozen
sections were incubated with primary antibodies for agrin
(R&D Systems, Minneapolis, MN; #AF550), Hu (Abcam,
Cambridge, MA; #96474), CD45 (BioLegend, San Diego, CA;
#30F11), anti-GFP (R&D Systems; #AF4240), CD11b (Bio-
Rad, Hercules, CA; #M1/70.15), CSF1R (Invitrogen, Wal-
tham, MA; #PA5-25974), F4/80(BM8) (Invitrogen; #41-
4801-82), Iba1 (Invitrogen; #PA5-27436), NCAM (Invi-
trogen; #PA5-78402), Col4 (Abcam; #236640) and S100A1
(Invitrogen; #PA1-932), Ly6G (Abcam; #25377), MPO (R&D
Systems; #AF3667), CD45 (BioLegend; #103102), G-SMA
(SBC; #65638), TNF (Abcam; #183218), MMP2 (Invitrogen;
#PA5-115583), and MMP10 (Invitrogen; #PA5-79677)
overnight at 4�C, followed by secondary antibodies (Alexa
Fluor 647, 546, and 488 conjugated anti-rabbit immuno-
globulin G; Alexa Fluor 647 and 555 conjugated anti-goat
immunoglobulin G; Alexa Fluor 488 and 594 conjugated
anti-rat; Invitrogen) for 1 hour. Cell nuclei were visualized by
DAPI. Sections were covered with aqueous Poly/Mount
(Polyscience Inc) and examined with a Zeiss LSM 780 laser-
scanning confocal microscope (Zeiss, Oberkochen) or Nikon
Eclipse Ti2-E inverted microscope with an Abberior STED
super resolution imaging platform. Images were compiled by
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ImageJ and Adobe Photoshop CS6 (San Diego, CA) software
package.
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Cell Counting and Morphometry
Images of sections from distal and proximal segments of

wild-type C57BL/6 and CX3CR1GFP mouse colons were
captured with a Zeiss LSM 780 laser-scanning confocal mi-
croscope. For cell counting and morphometry, tile scans of 9
(3 horizontal, 3 vertical) �20 magnification images of 2MP
were compiled by the ZEN software package to include the
total cross-sectional area of the observed gut sample. For
every mouse gut sample 6 separate sections were scanned,
distributed vertically in the frozen gelatin block with at least
200 mm between each section. Morphometry for cell density
measurements was carried out by the ZEN software package
by manual annotation of measured areas (muscularis and
myenteric ganglion area). Ganglionic borders were deter-
mined on the basis of anti-agrin or anti-S100 immuno-
staining. Cell counting of F4/80þ macrophages, Ly6Gþ
neutrophils, iNOSþ M1-polarized macrophages, and Huþ
enteric neurons in different anatomic locations were
compiled by a systematic quantitative method based on
software-assisted, manual cell counting by 2 independent
observers with the aid of the “cell counter” plugin of the
ImageJ software package. Only cells with visible DAPI-
stained nuclei were included in the calculations. Square
micrometers (mm2) were converted to square millimeters
(mm2) for calculation of cell density parameters in statisti-
cal analyses. Summary of cell counting and morphometry
data is shown in the Supplementary Material.
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Quantitative Real-Time Polymerase Chain
Reaction

For qPCR analysis muscularis externa separated me-
chanically from mucosal layers of distal colon were washed
in DEPC-PBS and stored in –80�C freezer. Frozen tissue
samples were homogenized in TRI reagent solution
(Ambion, Austin, TX), and total RNA was isolated with a
QIAGEN RNeasy minikit (Qiagen, Hilden, Germany)
Table 2.Primer Sequences Used in qRT PCR Reactions

Gene Forward

GAPDH TGACGTGCCGCCTGGAGAAA

TNFa CAGCCGATGGGTTGTACCTT

IL-1A CCATAACCCATGATCTGGAAGAG

IL-1B GCCTCGTGCTGTCGGACCCA

IL-10 AGTGAGAAGCTGAAGACCCTCAG

ARG-1 GTCTGGCAGTTGGAAGCATCT

MCP-1 CCAGCACCAGCACCAGCCAA

Ly6g GTGGTCCTACTGTGTGCAGAA

MMP2 GCCCCCATGAAGCCTTGTTT

MMP10 AGACCTGAGACCCCAGACAA

CD163 AGGTTTCTTTGTTGTGGCTGTG

iNOS TGGTGAAGGGACTGAGCTGTT

FLA 5.6.0 DTD � JCMGH849 proof �
according the manufacturers’ instructions. To eliminate
genomic DNA contamination, DNase I treatment was used,
and 100 mL of RNase-free DNase I (1 U of DNase) (Thermo
Scientific, Waltham, MA) solution was added. Sample quality
control and the quantitative analysis were carried out by
NanoDrop 2000 (Thermo Scientific). Amplification was not
detected in the RT-minus controls. The cDNA synthesis was
performed with a high-capacity cDNA reverse transcription
kit (Applied Biosystems, Waltham, MA). Primers for the
comparative Ct experiments were designed by the Primer
Express 3.0 program and Primer-BLAST software. The
primers (Microsynth AG, Balgach, Switzerland) were used in
the real-time PCR with Fast EvaGreen qPCR master mix
(Biotium, Fremont, CA) on an ABI StepOnePlus instrument
(Applied Biosystems, Waltham, MA) and are listed in
Table 2. The gene expression was analyzed by the ABI
StepOne 2.3 program. The amplicon was tested by melt
curve analysis on an ABI StepOnePlus PCR instrument. Ex-
periments were normalized to GADPH expression.

DSS Colitis and Liposomal Clodronate Treatment
C57BL/6 male mice (100–120 days old) were treated

with drinking water containing 2.5 % DSS (MP Biomedicals,
Solon, OH; #160110) for 7 days.60 During treatment, disease
activity index and weight were recorded. At the end of the
experiment, animals were anesthetized and killed by cervi-
cal dislocation (n ¼ 6). Colon lengths were measured and
samples fixed in 4 % PFA.

For clodronate treatment, mice on the third day of DSS
treatment were injected via tail vein (n ¼ 6) with 300 mL of
liposomal clodronate suspension (Clodronate Liposomes
dissolved in PBS; LMS Consult GmbH&Co, Brigachtal, Ger-
many) to deplete the macrophages.61 Animals were relo-
cated to the animal facility, where DSS administration
continued for 4 additional days. Control animals were
injected with saline as vehicle (n ¼ 6).

FITC-Dextran Assays
For permeability assays, 300 mL of FITC-dextran (4 kDa

FITC-dextran; Sigma-Aldrich, #60842-46-8) derived from
Reverse

AGTGTAGCCCAAGATGCCCTTCAG

GGCAGCCTTGTGCCTTGA

GCTTCATCAGTTTGTATCTCAAATCAC

TGAGGCCCAAGGCCACAGGT

G TTCATGGCCTTGTAGACACCTTGGT

GCATCCACCCAAATGACACA

TGGATGCTCCAGCCGGCAAC

CTCAGGTGGGACCCCAATAC

ATAGCGGTCTCGGGACAGAA

CTGCGCCAGAAGTACCTGTC

CATTTCTCCAGGAGCGTTAGTG

TCCGTTCTCTTGCAGTTGACT
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Leuconostoc mesenteroides, diluted 5 mg/mL in saline was
administered via tail vein to 100-day-old healthy (n ¼ 7),
DSS-treated (n ¼ 4), and DSS- and clodronate-treated (n ¼
4) mice, as previously described.62 Animals were killed 10
minutes (n ¼ 2), 45 minutes (n ¼ 4), or 60 minutes (n ¼ 2)
after injection. Apart from distal colon, liver and cerebellum
were fixed from mice in the control group in 4 % PFA.

Mean Fluorescent Intensity Measurement
For mean fluorescent intensity measurements of FITC-

dextran, tile scans of 9 (3 horizontal, 3 vertical) �20
magnification images of 2MP were performed by the ZEN
software package with a Zeiss LSM 780 laser-scanning
confocal microscope. For every gut sample, 2 separate sec-
tions were scanned to include the whole cross-sectional area
of the observed distal colon segment. On each tile scan, areas
corresponding to gut compartments (whole gut, muscularis,
total intraganglionic area; Figure 8D–F) were annotated
manually. For the normalized measurement of area-adjusted
mean fluorescent intensity, identical laser-intensity adjust-
ments were set for the scanning of each specimen.

Statistical Analyses
For analyzing morphometric data we tested normality

first with the Shapiro-Wilk test. Bartlett’s test was used for
testing homogeneity of variances. In case of homoscedas-
ticity, we performed Student t test; otherwise Welch t test
was performed. When we compared 3 groups by 2 factors,
we used ordinary two-way analysis of variance (Figure 5, R
and S). For analyzing PCR datasets (Figure 5A–H,
Figure 6A–J, Figure 7B–E), we used Kruskal-Wallis test fol-
lowed by uncorrected Dunn’s multiple comparison test.
Data were analyzed and graphs generated with GraphPad
Prism 9.1.1 for Windows, GraphPad Software, San Diego, CA.
P <.05 was considered significant: *P < .05, **P < .01, ***P
< .001. Data pre-processing from a publicly available
RNAseq database (accession number: PRJNA687627) was
carried out with the R software package. Differential gene
expression panels were filtered for MMPs (Table 1) and
compiled with ggrepel (0.8.2), whereas volcano plot visu-
alization was generated with EnhancedVolcano (1.8.0) R
packages.

Supplementary Data
Note: To access the supplementary material accompanying
this article, visit the online version of Clinical Gastroen-
terology and Hepatology at www.cghjournal.org, and at
https://doi.org/10.1016/j.jcmgh.2021.07.003.
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