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Aims Interleukin-1b (IL-1b) is an important pathogenic factor in cardiovascular diseases including chronic heart failure
(HF). The CANTOS trial highlighted that inflammasomes as primary sources of IL-1 b are promising new therapeu-
tic targets in cardiovascular diseases. Therefore, we aimed to assess inflammasome activation in failing hearts to
identify activation patterns of inflammasome subtypes as sources of IL-1b.

....................................................................................................................................................................................................
Methods
and results

Out of the four major inflammasome sensors tested, expression of the inflammasome protein absent in melanoma
2 (AIM2) and NLR family CARD domain-containing protein 4 (NLRC4) increased in human HF regardless of the
aetiology (ischaemic or dilated cardiomyopathy), while the NLRP1/NALP1 and NLRP3 (NLR family, pyrin domain
containing 1 and 3) inflammasome showed no change in HF samples. AIM2 expression was primarily detected in
monocytes/macrophages of failing hearts. Translational animal models of HF (pressure or volume overload, and per-
manent coronary artery ligation in rat, as well as ischaemia/reperfusion-induced HF in pigs) demonstrated activation
pattern of AIM2 similar to that of observed in end-stages of human HF. In vitro AIM2 inflammasome activation in hu-
man Tohoku Hospital Pediatrics-1 (THP-1) monocytic cells and human AC16 cells was significantly reduced by
pharmacological blockade of pannexin-1 channels by the clinically used uricosuric drug probenecid. Probenecid was
also able to reduce pressure overload-induced mortality and restore indices of disease severity in a rat chronic HF
model in vivo.

....................................................................................................................................................................................................
Conclusions This is the first report showing that AIM2 and NLRC4 inflammasome activation contribute to chronic inflammation

in HF and that probenecid alleviates chronic HF by reducing inflammasome activation. The present translational
study suggests the possibility of repositioning probenecid for HF indications.
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1. Introduction

Heart failure (HF) with reduced ejection fraction is associated with
pathological structural, cellular, and molecular changes of the heart
leading to impaired cardiac function. Maladaptive activation of the
neurohormonal system ultimately induces detrimental effects on
cardiac cells leading to cellular damage, remodelling, fibrosis, and
cell death.1 Current therapies for HF aim the interruption of this
maladaptive activation, which resulted in significant improvement in
the outcome measures of HF.2

Inflammatory mediators such as interleukin-1b (IL-1b), interleukin-6,
or tumour necrosis factor alpha (TNFa) has been considered so far as a
biomarkers of HF, however, recent studies propose them as prognostic
markers as well, raising the question whether inflammation represents a
therapeutic target in HF.3,4 Increased amounts of circulating proinflam-
matory cytokines have been linked to impaired cardiac function and
worse outcomes of patients with HF, suggesting that inflammation might

be an important common factor in the pathomechanism of HF.3 Even
though there are promising preclinical studies on targeting inflammation
in HF, clinical trials have provided discouraging results so far.5–8

However, in the recent Canakinumab Anti-Inflammatory Thrombosis
Outcomes Study (CANTOS) assessing the efficacy of canakinumab, a
monoclonal antibody against IL-1b, promising outcomes for HF patients
have been reported; as well as in patients having myocardial infarction or
stroke.9,10

IL-1b is secreted mainly by immune cells as a part of the inflammatory
reaction and acts both via autocrine and paracrine manner. The matura-
tion and release of IL-1b is strictly achieved by inflammasomes, special cy-
tosolic multiprotein complexes. Inflammasome activation is triggered by a
series of pathogen- or danger-associated molecular patterns (DAMP) lead-
ing to maturation of caspase-1 enzyme which ultimately cleaves pro-IL-1b
to its mature form.11 Additional mechanisms, e.g. the activity of pannexin-
1 channel (PANX1) play critical roles both in inflammasome assembly, IL-
1b release and even in priming of inflammasomes.12,13 Recent studies
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suggest that inflammasome activation might play a role in various cardio-
vascular events14–16; however, the role of inflammasome activation in
chronic heart diseases such as HF remains unknown. Cardiovascular
inflammasome research has so far focused mainly on the role of NLRP3,
and revealed its activation in models of acute myocardial infarction, in ath-
erosclerosis, in stroke, and in hypoxia and adrenergic stimuli-induced ad-
verse remodelling giving a boost to the development of NLRP3
inhibitors.15,17,18 However, recent studies pointed out that other inflam-
masome pathways such as the absent in melanoma 2 (AIM2) and/or NLR
family CARD domain-containing protein 4 (NLRC4) inflammasome may
also play central role in disease development in stroke, atherosclerosis,
and in diabetic cardiomyopathy.19–22

In this study, we intended to investigate activation of four major
inflammasome types in human chronic HF. Additionally, to prove our
concept in preclinical models, we examined failing hearts from rat and
pig models to identify relevant translational models for HF with inflam-
masome activation that reflects the human condition. Furthermore, we
induced inflammasome activation in human monocytic THP-1 cells as
well as in human AC16 cardiac cells to examine their interactions, as
well as the pharmacological inhibition of PANX1 (with the clinically used
uricosuric drug, probenecid). In addition, we studied the therapeutic po-
tential of probenecid in vivo in a pressure overload-induced chronic HF
model.

2. Materials and methods

The extended version of all the materials and experimental methods is
described in the Supplementary material online.

2.1 Ethical approval
All experimental procedures were done in accordance with the ethical
standards of the responsible institutional and national committee on hu-
man experimentation, adhering to the Helsinki Declaration (1975).
Written informed consent was obtained from all patients involved in the
study according to the protocol approved by the Local Ethics
Committees of the Institute of Cardiology, Warszawa, Poland (IK-NP-
0021-24/1426/14).

The investigation conforms to the Guide for the Care and Use of
Laboratory Animals published by the US National Institutes of Health
(NIH publication No. 85-23, revised 1996), to the EU Directive (2010/
63/EU) and was approved by the animal ethics committee of the
Semmelweis University, Budapest, Hungary (PE/EA/1784-7/2017, and
PEI/001/2374-4/2015).

2.2 Human heart tissue collection
Human heart samples (n = 11–12) were collected in Department of
Heart Failure and Transplantology, Cardinal Stefan Wyszy�nski National
Institute of Cardiology, Warszawa, Poland, as previously described.23

Details on patients are summarized in Supplementary material online,
Table S1.

2.3 Chronic heart failure animal models,
echocardiography, and tissue collection
Animals were randomly assigned to the experimental groups, and the
analysis of data was performed blinded by one to three experimenters.
Animals that died during or immediately after the surgery due to techni-
cal reasons (e.g. excessive bleeding) or severe complications (e.g. ven-
tricular arrhythmia, acute HF) were excluded from experiments.

Transverse aortic constriction (TAC), left artery descending (post-infarc-
tion rat model) (LAD), infrarenal arterio-venous shunt (AVS), and porcine
models were performed according to the previously described protocols
with slight modifications.24–27 Surgical procedures and echocardiographic
measurements were performed under general anaesthesia induced by inha-
lation of 5% isoflurane and maintained with 1.5–2% isoflurane mixed with
100% O2 in rat experiments. After completion of the echocardiographic
measurement, the abdominal aorta of the animals was cannulated and arte-
rial blood was subsequently collected to euthanize the animals.

In porcine study,27,28 anaesthesia was induced with an intramuscular in-
jection of ketamine hydrochloride, xylazine, and atropine (12 mg/kg, 1 mg/
kg and 0.04 mg/kg, respectively), then maintained with isoflurane oxygen
mix (2–2.5 vol% and 3 L/min). After the procedure, animals were adminis-
tered by an antibiotic cocktail containing 100 mg benzathine benzylpenicil-
lin, 100 mg procaine benzylpenicillin, 200 mg dihydrostreptomycin-
sulphate before recovery, and intramuscular injections of 1 g metamizole
for analgesia. Animals were euthanized under general anaesthesia induced
by intramuscular injection of ketamine hydrochloride, xylazine, and atro-
pine (12 mg/kg, 1 mg/kg and 0.04 mg/kg, respectively) with an intravenous
injection of 10% potassium chloride solution.

2.4 Data analysis
All data are expressed as mean 6 SEM except in Supplementary material
online, Table S1, where the mean 6 ranges are shown. Comparisons of
two groups were performed using unpaired Student’s t-test. Experiments
with more than two groups were evaluated by one-way Analysis of vari-
ance (ANOVA) followed by Tukey’s multiple comparisons test or two-way
ANOVA followed by Bonferroni multiple comparisons test. Overall mortality
was assessed by Kaplan-Meier survival curves and log-rank (Mantel-Cox) test.
P < 0.05 were considered statistically significant. Statistical analysis was
performed with GraphPad Prism 8 (GraphPad Software Inc.).

3. Results

3.1 Expression of AIM2 and NLRC4
inflammasome sensors increases in human
failing hearts
Although the role of NLRP3 inflammasomes has been described in early-
stage HF,29 the expression of inflammasome components in the late-
stage and in cases with different aetiologies of HF in humans has not
been investigated so far. Therefore, the well-characterized inflamma-
some sensors (NLRP3, NLRC4, AIM2 and NOD, LRR, FIIND, CARD
domain and PYD domains-containing protein 1 aka, NALP1) were
detected in left ventricular tissue (n = 11–12) harvested from healthy do-
nor patients (CON) as well as from HF patients with history of ischaemic
cardiomyopathy (ICM) or non-ischaemic cardiomyopathy (DCM) (see
Supplementary material online, Table S1 for patient characteristics).
Interestingly, there was no difference in NLRP3 protein expression in
the HF groups compared to control (Figure 1A and B).

In contrast, the expression of AIM2 markedly increased both in ICM
and DCM groups (Figure 1A and B), and we also found a significant in-
crease of NLRC4 protein level in left ventricular tissue of HF patients
(Figure 1A and B), This increased AIM2 expression was also observed
among patients with hypertrophic cardiomyopathy (HCM; n = 5), but
NLRC4 expression showed only a tendency towards increase in HCM
patients (Supplementary material online, Figure S1). The expression of
NALP1 protein was not altered in HF induced by any forms of
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..cardiomyopathies examined (Figure 1A and B). Inflammasome activation
was further confirmed by detection of cleaved fragments of caspase-1
and IL-1b and by the detection of elevated IL-1b levels by ELISA in failing
hearts (Figure 1A–C).

Inflammasomes are predominantly but not exclusively expressed and
activated in the innate immune system e.g. in monocytes/macrophages

or granulocytes.30 It is well known that adverse remodelling both on an
ischaemic or non-ischaemic background is associated with chronic ex-
pansion of macrophage populations and with IL-1b secretion in the myo-
cardium.31–33 To assess the presence of macrophages in human failing
hearts, immunohistochemistry was performed to stain ionized calcium
binding adaptor molecule 1 (Iba1) and CD68, general markers of

Figure 1 AIM2 and NLRC4 are the major inflammasome components expressed in human failing hearts. Western blot analysis of the inflammasome
sensors (NLRP3, AIM2, NLRC4, and NALP1) and downstream signalling (ASC, caspase-1, IL-1b) in left ventricle of patients with dilated (DCM, A) or
ischaemic cardiomyopathy (ICM, B). *P < 0.05 vs. CON, Student’s t-test; n = 11–12. (C) Quantification of IL-1b content in human left ventricular tissue by
ELISA. *P < 0.05 vs. CON, Student’s t-test; n = 7–8. (D) Identification of monocytes/macrophages in human heart tissue by immunohistochemical detec-
tion of Iba1. Scale bar: 100mm. (E) Representative images of immunofluorescence detection of AIM2 (red) and Iba1 (green) proteins in failing heart har-
vested from ICM and DCM patients. DAPI (blue) was used for counterstain. Scale bar: 30mm. (F) Representative images of immunofluorescence
detection of double-stranded DNA (dsDNA, red) and AIM2 (green) protein in a failing heart harvested from a DCM patient. DAPI (blue) was used for
counterstain. Scale bar: 20mm.
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Figure 2 AIM2 inflammasome expression increased in the late phase of chronic heart failure in rat and pig models. (A) Pressure-overload, post-infarc-
tion, and volume-overload-induced rat models of chronic heart failure with representative histology (haematoxylin eosin, picrosirius red) and M-mode
echocardiographic images, Western blot analysis of the inflammasome sensors and downstream signalling. Scale bar (echocardiography): 1 cm, timestamp:
1 s; scale bar (histology): 4 mm. *P < 0.05 vs. corresponding Sham, Student’s t-test; n = 6–8. (B) Analysis of mRNA expression of macrophage marker
Cd68 and Aif1 by qRT-PCR. *P < 0.05 vs. corresponding Sham, Student’s t-test; n = 6–8. (C) Analysis of mRNA expression of the M1 and M2 macrophage
markers (Ccl2, Il23, Il6 and Cd206, Mrc2, Mgl1, respectively) by qRT-PCR. *P < 0.05 vs. corresponding Sham, Student’s t-test; n = 6–8. (D) Representative
images of immunofluorescence detection of AIM2 (red) and CD68 (green) proteins in a failing heart harvested from a TAC animal. DAPI (blue) was used
for counterstain. Scale bar: 20mm. (E) Chronic ischaemia/reperfusion-induced pig heart failure model with western blot analysis of time-dependent AIM2
protein expression. *P < 0.05 vs. Sham, one-way ANOVA; n = 6–8.
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monocyte-macrophage lineage (Figure 1D, Supplementary material on-
line, Figure S2A),34 and the number of cells were counted. We observed
a mild but not significant increase in the total number of monocytes/mac-
rophages in failings hearts (Supplementary material online, Figure S2B).
Despite of the growing interest regarding the role of inflammasomes in
heart diseases, there is a general lack of reliable evidence on the cell-type
specificity of inflammasome sensors in human hearts, and it is not known,
whether resident myocardial cells are capable to express inflammasome
components. To assess cell-type specificity of AIM2, indirect immunoflu-
orescence staining was used to confirm the localization of AIM2 inflam-
masomes by detecting AIM2 in combination with monocyte/
macrophage-specific markers Iba1 (Figure 1E, Supplementary material
online, Figure S2C). Immunofluorescence staining showed that AIM2 is lo-
calized predominantly in Iba1 positive cells, though weaker AIM2 signals
can be found in other cell types, suggesting that primarily monocytes/
macrophages might be key players in the enhanced inflammasome activ-
ity but their interactions with the surrounding non-myeloid cells might
be also important in the development of the proinflammatory milieu in
failing hearts (Figure 1E). In addition, immunofluorescence assay revealed
that not all Iba1 positive cells are characterized by increased AIM2 ex-
pression indicating the presence of a heterogeneous macrophage popu-
lation in the cardiac tissue during HF (Figure 1E).

Controlled cell death may eventually lead to the release of nuclear
double stranded DNA (dsDNA) to the cytosol that can be identified by
the AIM2 inflammasome leading to the release of IL-1b and interleukin-
18 (IL-18). We performed co-staining of dsDNA and AIM2 in sections
from failing human hearts, and found that extranuclear dsDNA (Figure
1F, Supplementary material online, Figure S2C, red signal) shows tight co-
localization with the AIM2 signal (Figure 1F, Supplementary material on-
line, Figure S2C, green signal).

3.2 Inflammasome activation in animal
models of chronic heart failure
It was previously demonstrated that in animal models of early-stage HF,
NLRP3 inflammasome activation might play a significant role in initiating
inflammatory reactions.15,29,35 However, there is no data on the activa-
tion of other inflammasome types, especially in a later stage of HF. To
find suitable reverse translational animal models to study inflammasome
activation, we assessed three pathologically different models of HF i.e.
pressure-overload (TAC), volume-overload (AVS), and the post-
infarction HF rat model (LAD), as described previously (Figure 2A).24–26

The detailed phenotypic and functional characterization of each model
with transthoracic echocardiography is shown in Supplementary mate-
rial online, Table S2. Increased lung mass and mRNA levels of failing
markers [natriuretic peptide A (Nppa), natriuretic peptide B (Nppb)] in
Supplementary material online, Figure S3 indicated chronic HF at the pri-
mary endpoint; however, marked differences were found in morphology
and function. Pressure-overload-induced excessive myocardial hypertro-
phy and fibrosis in TAC animals,24 while volume-overload and ischaemic
conditions promoted severe dilation as shown by the left ventricular
dimensions and relative wall thicknesses (Supplementary material online,
Table S2 and Figure 2A). Despite the observed morphological differences
between the animal models, expression of NLRP3 did not increase in
any of the HF groups as compared to corresponding sham groups,
whereas the expression of AIM2 increased significantly in TAC and LAD,
but not in AVS rats (Figure 2A). In addition, a tendency towards elevation
in the level of NLRC4 was observed in TAC and LAD animals (Figure
2A). In accordance with the elevation in the expression levels of

inflammasome sensors, the tissue level of IL-1b increased in TAC animals
and in AVS animals (Figure 2A). Similarly, we found enhanced monocyte/
macrophage presence in rat failing hearts by assessing allograft inflamma-
tory factor 1 (Aif1) and Cd68 mRNA expression with qPCR analysis
(Figure 2B) and by detecting Iba1 protein (encoded by the Aif1 gene) with
immunohistochemistry as well (Supplementary material online, Figure
S2D). Interestingly, detection of chemokine (C-C motif) ligand 2 (Ccl2),
interleukin 23 (Il23), interleukin 6 (Il6) and Cd206, macrophage mannose
receptor 2 (Mrc2), macrophage galactose-type lectin 1 (Mgl1) mRNAs
showed an M1 to M2 change in macrophage phenotype in TAC hearts
while only minor changes were observed in LAD and AVS hearts (Figure
2C). Similar to the human tissue, AIM2 showed predominant co-
localization with the pan-macrophage marker CD68 in myocardial
sections from TAC animals (Figure 2D, Supplementary material online,
Figure S2C).

AIM2 inflammasome activation has been shown to play a significant
role in acute ischaemia–reperfusion injury in the liver36 and early post-in-
farct HF in diabetic mice,37 therefore, we aimed to further investigate
inflammasome activation in late stage of chronic HF induced by ischae-
mia–reperfusion injury in a translational pig model as well (Figure 2E).
We assessed ischaemic left ventricular tissues collected from pigs ex-
posed to ischaemia/reperfusion at three different time points: 3 h
(acute), 3 days (subacute), or 2 months (chronic) after ischaemia/reper-
fusion (Figure 2E), representing the acute injury, the early inflammatory
and the late remodelling phase, respectively. The detailed characteriza-
tion of pig model was published previously by our research group.27,28

Surprisingly, the level of AIM2 protein in heart tissue was not altered at
3 h or 3 days, but it was markedly elevated at 2 months (Figure 2E).

3.3 Poly(dA:dT) induces isolated AIM2
inflammasome activation in vitro
As our results suggest that AIM2 inflammasome may be a potential
player of inflammation in HF, we speculated that inflammasome activa-
tion might be a consequence of an interplay between immune cells and
cardiac cells. To investigate inflammasome activation in vitro, AC16 hu-
man cardiac and THP-1 human monocytic cell lines were stimulated
with naked or cationic liposome encapsulated (LyoVecTM) poly(deoxya-
denylic-deoxythymidylic) acid sodium salt [poly(dA:dT)], a specific AIM2
inducer, for 24 h (Figure 3A). Naked poly(dA:dT) was unable to induce
AIM2 inflammasome activation (Figure 3B), however, liposome encapsu-
lated poly(dA:dT) increased the expression of AIM2 in THP-1 cells
(Figure 3C), suggesting that vesicular uptake of dsDNA is critical in the in-
duction of AIM2 inflammasome activation. Inflammasome activation was
confirmed with detection of cleaved caspase-1, IL-18 and IL-1b from the
supernatant, and immunofluorescence detection of the inflammasome
adaptor protein apoptosis-associated speck-like protein containing a
CARD (ASC) and AIM2 in THP-1 ASC-GFP reporter cell line
(Figure 3C–E). Interestingly, poly(dA:dT) treatment also led to the induc-
tion of AIM2 protein expression in the AC16 cells without significant in-
terleukin release (Figure 3C and D).

3.4 Pannexin-1 channel inhibition attenu-
ates AIM2 inflammasome activation in
THP1 cells
It has been shown that inflammasome activation by NLRP3 or NALP1 is
strongly associated with the activation of purinergic signalling via P2X
purinoreceptor 7 (P2X7) and hemichannel PANX1, however, it is un-
known whether AIM2 inflammasomes and PANX1 have molecular
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Figure 3 Liposome encapsulated poly(dA:dT) induced the expression of AIM2 and inflammasome activation in vitro. (A) Experimental protocol for AIM2
induction in human AC16 cardiac and THP1 monocytic cell lines. (B) Representative western blot images for naked poly(dA:dT) stimulus on AC16 and
THP1 cells. (C) Representative western blot images for liposome encapsulated poly(dA:dT) on AC16 and THP1 cell lines. (D) Quantification of western blot
analysis on poly(dA:dT)-induced AIM2 inflammasome activation in AC16 and THP1 cells. *P < 0.05 vs. LV, Student’s t-test; n = 4–6. (E) Representative images
of immunofluorescence detection of AIM2 (red) and ASC (green) proteins in poly(dA:dT)-stimulated THP1 cells. DAPI (blue) was used for counterstain.
Scale bar: 50mm.
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Figure 4 Pannexin-1 channel inhibition attenuates AIM2 inflammasome activation in vitro. (A) Representative western blot images for co-immunopre-
cipitation from control and poly(dA:dT)-stimulated THP1 cell lysate. PANX1 is shown as a loading control. Isotype anti-rabbit control was used as nega-
tive control. (B) Experimental protocol for testing the PANX1 blocker probenecid in cell model for AIM2 inflammasome activation on human AC16 and
THP1 cell lines. (C) Western blot analysis of AIM2 protein expression on poly(dA:dT)-stimulated THP1 cells in the presence or absence of different con-
centration of probenecid, and detailed analysis of downstream signalling of AIM2 inflammasome activation in cell lysate and supernatant in the presence
of 100mM probenecid. *P < 0.05 vs. control; #P < 0.05 vs. poly(dA:dT) without probenecid; one-way ANOVA; n = 5–6. (D) Western blot analysis of
AIM2 protein expression and cell viability on poly(dA:dT)-stimulated AC16 cells in the presence or absence of different concentration of probenecid.
*P < 0.05 vs. control; #P < 0.05 vs. poly(dA:dT) without probenecid; one-way ANOVA; n = 5–6.
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Figure 5 Pannexin-1 channel inhibitor probenecid improves survival and cardiac function in vivo. (A) Study design for investigating the effects of proben-
ecid (Prob) in a rat model for chronic heart failure (TAC). (B) Kaplan–Meier analysis of overall mortality. P < 0.05, log-rank (Mantel-Cox) test; n = 11–23.
(C) Representative M-mode echocardiography images and assessment of cardiac function at week 14 after surgery. Scale bar: 1 cm; timestamp: 0.5 s.
*P < 0.05 vs. Sham þ Veh, #P < 0.05 vs. TAC þ Veh, two-way ANOVA; n = 11–17. (D) Western blot analysis and representative images of IL-1b and
cleaved IL-1b in left ventricles. *P < 0.05 vs. Shamþ Veh, #P < 0.05 vs. TACþ Veh; two-way ANOVA; n = 6–8. (E) Representative histology images (hae-
matoxylin eosin) at week 14. Scale bar: 2 mm. (F) Analysis of mRNA expression of hypertrophy and heart failure markers (Nppa, Nppb, and Ctgf) by qRT-
PCR. *P < 0.05 vs. Shamþ Veh, #P < 0.05 vs. TACþ Veh, one-way ANOVA; n = 7–8.
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interactions. We performed co-immunoprecipitation on control and
poly(dA:dT)-stimulated THP-1 cells, and saw that AIM2 was co-
immunoprecipitated with PANX1 in activated cells indicating a potential
interaction between the AIM2 inflammasome complex and PANX1
channels (Figure 4A). As the opening of PANX1 channels is related to ap-
optosis and release of ‘find me’ signals,38 we tested the effects of proben-
ecid, a potent PANX1 inhibitor, on AIM2 inflammasome activation
in vitro (Figure 4B). Probenecid showed a dose-dependent reduction in
the protein expression of AIM2 in both THP-1 and AC16 cells without a
significant effect on cell viability (Figure 4C and D, Supplementary material
online, Figure S4). Interestingly, the expression of PANX1 showed no sig-
nificant differences in PANX1 levels between healthy and failing hearts
with high individual variability (Supplementary material online, Figure S5).

3.5 Probenecid improves outcomes in
pressure overload-induced chronic heart
failure in rats
To test if probenecid improves cardiac function in vivo, we investigated
probenecid in the rat HF model induced by TAC (Figure 5,
Supplementary material online, Tables S5 and S6). In these rats, cardiac
function was assessed at 6 weeks and, 14 weeks after TAC, while the
rats were orally treated with probenecid (100 mg/kg body weight/day)
or vehicle (hydroxyethyl cellulose) control. We evaluated mortality
throughout the whole study. The group treated with vehicle and having
TAC surgery showed a reduced survival rate compared with vehicle-
treated sham operated rats (Figure 5B). On the other hand, the group
treated with a 100 mg/kg dose of probenecid showed significant amelio-
ration of mortality compared with vehicle-treated TAC rats in Kaplan–
Meier analyses (Figure 5B). As published previously39 and shown above
(Figure 2A) TAC surgery resulted in HF development. 14 weeks after
TAC, left ventricular ejection fraction (LVEF) was reduced compared
with baseline from 69.2± 1.8% to 54.0 ± 2.0% and from 69.7± 0.9% to
60.2± 0.6% in rats allocated to vehicle or probenecid treatment groups,
respectively (Figure 5C, Supplementary material online, Tables S5 and S6).
Thus, compared with vehicle, oral probenecid treatment of rats with
TAC significantly prevented deterioration of LVEF. In accordance, at
14 weeks after TAC, left ventricular end-systolic volumes increased
more in the vehicle group compared with the probenecid treated group
(Figure 5C, Supplementary material online, Tables S5 and S6). In accor-
dance with our previous observation above (Figure 2), the protein levels
of IL-1b and its mature form increased 14 weeks after TAC surgery,
which was reduced by probenecid treatment (Figure 5D). In addition,
treatment with probenecid prevented development of left ventricular
hypertrophy (Figure 5C, E, and F). Fourteen weeks after TAC, in vehicle-
treated TAC operated rats the left ventricular mass significantly in-
creased (compared to sham) with a significant reduction after probene-
cid treatment (Figure 5C and E). This was further confirmed by analysis of
pro-hypertrophic genes (Nppa and Nppb) and the pro-fibrotic factor
connective tissue growth factor (Ctgf) (Figure 5F). All these transcripts
were significantly induced by TAC surgery, and their up-regulation was
prevented by probenecid (Figure 5F).

4. Discussion

We detected enhanced AIM2 inflammasome expression in failing hearts
harvested from human patients as well as from different small and large
animal models of chronic HF, highlighting the importance of chronic in-
flammatory reactions in these conditions. In addition, increased NLRC4

expression was observed in human failing hearts as well. We assessed
inflammasome activation in cardiac cells and macrophagesin vitro, and
showed that dsDNA is capable of inducing the AIM2 inflammasome in
both cell types, suggesting that necrotic DNA might be the major trigger
of the AIM2 inflammasome in vivo. In addition, we showed that the AIM2
inflammasome associated PANX1 channels may play a role in inflamma-
some activation, since the PANX1 inhibitor probenecid significantly re-
duced IL-1b secretion and maturation. Furthermore, chronic treatment
with probenecid improved outcomes of pressure overload-induced
HF.40 These anti-inflammatory properties of probenecid could facilitate
potential repurposing and use of this uricosuric drug to in chronic
HF.40,41

The role of inflammatory mediators (such as interleukins and
other cytokines) in cardiovascular diseases has been extensively
studied over the last decades, nevertheless, clinical translation of
these results was rather mixed and controversial.8,42 Results of the
CANTOS trial, however, pointed out that just by neutralizing IL-1b,
with canakinumab, marked reductions can be achieved in incidence
of major cardiovascular adverse events of post-infarction patients,
highlighting the central role of IL-1b in these disease states.9,43

However, there are major limitations of the use of canakinumab
(e.g. price, infectious adverse reactions), ruling it out from the rou-
tine tools of current cardiovascular therapy. In light of these data, it
is obvious that modulating new targets of IL-1b-related pathways
might be of high therapeutic importance.

Our present human and translational animal data provides evidence
for AIM2 and NLRC4 inflammasome activation in HF. We also show
that co-activation of multiple types of inflammasomes is a possible phe-
nomenon, suggesting that single inflammasome targeting may not be an
optimal strategy in case of cardiovascular diseases including atheroscle-
rosis22 and chronic HF.

Bacterial and viral particles were considered as the primary triggers of
inflammasome activation, however, it became evident that during sterile
inflammatory conditions, DAMPs may also promote inflammasome ac-
tivity. Among these, the AIM2 inflammasome is known to be activated by
dsDNA.44 It is reasonable to hypothesize that dsDNA was a major con-
tributor to AIM2 inflammasome activation in our study as well, since the
chronic remodelling process associates with a low degree of apoptotic/
necroptotic cell death resulting in a concomitant monocyte/macrophage
infiltration and inflammasome activation.45 A similar activation pattern
has been described in case of chronic renal failure,46 as well as in animal
models of atherosclerosis.20 The background of myocardial NLRC4 acti-
vation in HF is even more surprising. Currently, the most characterized
trigger of NLRC4 is flagellin of Gram negative bacteria.47,48 It is presum-
able that HF-induced hypoperfusion of the intestines leads to dysbiosis,
and increased gut permeability,19 promoting a low grade systemic inflam-
matory state. This is supported by studies showing gut microbiome mod-
ulation as a relevant target to alleviate the systemic inflammatory state
during the course of human HF.49 This hypothesis might provide an ex-
planation for increased NLRC4 expression in human failing hearts; nev-
ertheless, it is unknown whether significant gut hypoperfusion could
have developed in our animal models. On the other hand, in animal mod-
els of stroke a similar co-activation pattern of AIM2 and NLRC4 has
been described previously,19,37 suggesting that the activation of these
two inflammasomes might be linked.

The complex pathways converging to inflammasome activation and signal-
ling involve triggers that may influence inflammasome activity and assembly
by mechanisms that associate with lysosomal membrane rupture,50 as well
as autoregulatory signalling by the products IL-1b and IL-18. However, the
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best characterized triggers are the classic mediators promoting inflamma-
some priming [triggered by e.g. Toll-like receptors 4, 9 (TLR4, TLR9), and
TNFa receptors], and inflammasome oligomerization (influenced by the
purinergic receptors and the associated pannexin-1 channels), PANX1 chan-
nels have so far been described as critical modulators of NALP1, NLRP3 as
well as of non-canonical inflammasome activities via ATP release.38,51,52

Nonetheless, whether PANX1 is involved in the activation of AIM2 inflam-
masomes has not been studied yet. By co-immunoprecipitation experi-
ments, we have shown here first in the literature that PANX1 channels
associate to the AIM2 inflammasome as well, and showed a prominent anti-
inflammatory effect of the PANX1 channel inhibitor probenecid in vitro. The
anti-inflammatory effect of probenecid was mediated by decreasing Il-1b
level in a rabbit sepsis model.53 We have seen a reduction in the expression
of AIM2 and its downstream signalling in vitro in both dsDNA stimulated
monocytes/macrophages and cardiac cells. In addition to AIM2 inflamma-
some inhibition, PANX1 channels may play a role in leukocyte migration
and in modulation of the NFjB pathway.54,55 A recent study has also con-
firmed that probenecid improves cardiac function at early phase of post-in-
farction HF via inhibiting endothelial PANX1 channels and consequential
leukocyte infiltration.56 Therefore, we propose that probenecid might be a
‘broad-spectrum’ inflammasome inhibitor besides its well-characterized uri-
cosuric properties. Probenecid has been previously demonstrated to im-
prove outcome in an animal model of ischaemic HF with a shorter 4-week
follow-up period by exerting positive inotropic effects via transient receptor
potential vanilloid type-2 (TRPV2), and the positive inotropic effect was con-
firmed in a small number of patients with HFrEF.40,57 We now show that
probenecid is able to prevent adverse cardiac remodelling upon a more pro-
longed period of pressure overload in vivo; however, the interplay between
anti-inflammatory effects of probenecid and its action on TRPV2 as well as
on myocardial contractility was not investigated within the frame of this
study which should be acknowledged as a limitation. Nevertheless, these al-
ready published beneficial effects (action on TRPV2 and contractility) and
the novel anti-inflammatory effects might explain the recently observed clini-
cal benefits of probenecid use in patients suffering from HF, as well as the ep-
idemiological observation, that patients receiving probenecid therapy for
gouty arthritis have better cardiovascular outcomes.40,41 Thus, we believe
that probenecid fulfils many of the characteristics desirable for a repurposed
drug for the treatment of chronic HF.

4.1 Limitation
We have shown that probenecid has a significant inhibitory effect on
AIM2 inflammasome in vitro and it improves survival and cardiac function
in a rat model for HF in vivo. However, to identify precisely the contribu-
tion of PANX1-mediated AIM2 inflammasome inhibition besides the
other well-known effects of probenecid, further in vivo studies using ge-
netically modified mice might be necessary.

5. Conclusion

We have shown with a series of experiments on human failing heart tis-
sues as well as in various translational in vivo animal models (pressure or
volume overload-induced rat HF models, and post-infarction rat and pig
HF models) and in in vitro cell culture experiments, that inflammasome
activation is primarily characterized by the activation of the AIM2 and
NLRC4 inflammasome during chronic HF. We believe that our results
highlight the importance of disease-, and disease-stage specific differen-
ces of inflammasome activation patterns. IL-1b and the upstream inflam-
masome inhibition has been shown as an intriguing therapeutic target in

the CANTOS trial, therefore inhibition of AIM2 by probenecid may re-
veal a promising new therapeutic concept promoting drug repurposing
efforts in the treatment of chronic HF.
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Translational perspective
Targeting interleukin-1b and its release by the inhibition of inflammasomes may be a potential therapeutic approach in cardiovascular diseases in-
cluding heart failure. Absent in melanoma 2 inflammasome activation was identified in human heart failure samples which was confirmed in various
translational small and large animal models of chronic heart failure as well. Our findings suggest that NLRP3-independent inflammasome inhibitors
(e.g. probenecid) might be novel agents in the treatment of chronic heart failure.
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