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A B S T R A C T   

Conservation tillage (CT) is of primary importance in food security, soil conservation, and sustainable devel
opment, even though its comprehensive effects on runoff (RO) and soil loss (SL) are still not fully understood. In 
2004, a field-scale study was launched in southwest Hungary to investigate the long-term (16 years) effects of CT 
on RO, SL and soil, under a warm-summer humid continental climate. Four, especially large, 1200 m2 plots (2 
ploughing tillage (PT) and 2 CT) were established, using a special, two-channel collection system. By the end of 
the study period, significantly higher water-stable aggregates (PT: 20.0 %, CT: 30.4 %), higher soil organic 
matter (PT: 1.4 %, CT: 1.9 %), greater earthworm abundance (4.9 times that in PT plots) was recorded on the CT 
plots. Conservation tillage decreased surface RO by 75 % and SL by 95 %. The difference between PT and CT was 
significant for mean annual soil erosion, with values of 2.8 t ha− 1 and 0.2 t ha-1, respectively. The exceedance of 
extreme precipitation events was <2%, but their impact on soil erosion was extraordinarily high. Runoff and SL 
were predicted for the whole dataset, and for the sub-dataset of maize culture, in four separate Random Forest 
(RF) model developments. The often used linear models are not suitable for predicting soil erosion, hence a more 
robust, non-parametric, advanced method of classification tree analysis was used. The RF classification method 
was able to predict erosion risk. For the maize sub-dataset, the RF model best predicted the extreme events, 
followed by the no-runoff category. The sensitivity of the groups with the highest and lowest risk all exceeded 82 
% for SL and 64 % for RO. Tillage type was the most important factor. This long-term study demonstrated that 
the use of CT enabled the maintenance of a major fraction of precipitation on arable land, and consequently, soil 
loss remained an order of magnitude lower than its tolerable value. The RF method is suitable for modelling RO 
and SL. In future, the integration of more datasets in modelling would considerably improve the precision and 
accuracy of prediction of RO and SL.   

1. Introduction 

The study of agriculture is an ancient topic. The ambitions of 
increasing soil fertility, preventing its decline and avoidance of oscilla
tions of yields date back to the dawn of agriculture (Zeder, 2011). Soil is 
one of the most important natural resources; its protection is of major 
importance. In Europe, 12 % of soils are exposed to soil degradation due 
to intensive agriculture and are affected by severe water erosion 
(Oldeman et al., 1991). Soil loss (SL) (17 Mg ha− 1) greatly exceeds the 

rate of soil formation (1 Mg ha− 1) (Troeh and Thompson, 1993), which 
is therefore the maximum tolerable SL. In Hungary, over one-third of 
croplands are eroded (2.3 million ha; Kertész and Centeri, 2006). To 
overcome this problem, several erosion mitigation techniques have been 
introduced worldwide and new tillage systems are becoming wide
spread (Kassam et al., 2017, 2019). Today, conservation agriculture is 
one of the most modern agricultural systems. This sustainable, 
cost-efficient, and water-saving management system may offer future 
prospects because beyond soil erosion mitigation, it also improves food 
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security and reduces resource degradation even under weather anoma
lies such as drought and intense rainfall events (Holland, 2004; Derpsch 
et al., 2010; Busari et al., 2015). Conservation tillage (CT) is one of the 
most widespread tillage systems that define conservation agriculture. 

In contrast to conventional ploughing tillage (PT), CT is a non- 
inversion tillage system, where at least 30 % of crop residues remain 
on the surface; CT reduces the number of wheel paths and minimises soil 
disturbance (by omitting tillage steps and by the application of com
bined machines). Several variations of CT are practised, depending on 
the depth and width of the tillage, including no-till, ridge-till, strip-till, 
mulch-till, and reduced-till. The diverse forms of CT are applied to 
approximately 200 Mha worldwide (Kassam et al., 2019). In Europe, it 
was practised on 22.7 Mha in 2010, or 26 % of arable lands (Kertész and 
Madarász, 2014). 

A number of studies have been dedicated to examine the benefits of 
no-till (Blevins et al., 1983; Six et al., 2002; Okada et al., 2014; Merten 
et al., 2015; Gao et al., 2019), but little research has been published on 
impacts on soil erosion of reduced-till, a simpler, and somewhat less 
innovative, but more widespread, practice. In Hungary, no-till is applied 
to less than 1% of arable land. The proportion of the other CT technol
ogies, most of which can be regarded as reduced-tillage, is slowly 
increasing and was slightly over 11 % in 2010 (Kertész and Madarász, 
2014). 

Conservation tillage is considered an effective way of increasing 
water infiltration and reducing runoff (RO) and soil erosion. Conserva
tion tillage can reduce RO by ~50 %–70 % and SL by ~70 %–95 %, 
depending on the type of CT applied, and other environmental condi
tions, including climate, slope, and plant cover (Strauss et al., 2003; 
Raczkowski et al., 2009; Xiong et al., 2018; Zhao et al., 2019). 

The reduction of SL may be the result of the interaction of several 
factors (for example, increased aggregate stability, infiltration and 
humus content, limited crusting, vegetation cover, and tillage; Cheng 
et al., 2018). Almost all of these are related to soil structure, function 
and biological activity. One of the greatest advantages of CT is that it 
does not damage the layer-specific structure of soil activity. This intact 
structure, together with the crop residues in the near-surface zone, in
creases the humus content of the soil, improve soil structure, and in
crease the formation of water-stable aggregates. Experimental studies 
have confirmed that CT has a beneficial influence on the activity of 
earthworms compared to PT (Birkás et al., 2004; Rothwell et al., 2005; 
Eriksen-Hamel et al., 2009; Dekemati et al., 2019). The biological ac
tivities of earthworms create stable gallery networks, which form a 
system of macropores capable of increasing rates of infiltration of sur
face water and improving soil aeration. 

During the past few years, an increasing number of long-term tillage 
studies have been undertaken in widely separated climatic regions, 
providing robust results, compared to earlier short-term (a few-years) 
studies. Previous studies have examined the efficacy of CT systems 
from diverse perspectives, including yield (Grigoras et al., 2011; 
Madarász et al., 2016; Kurothe et al., 2014; Dekemati et al., 2019), soil 
erosion and the role of soil organic carbon (Six et al., 1999; Rhoton et al., 
2002; Melero et al., 2009a, 2009b; Jakab et al., 2019; Van den Putte 
et al., 2012). 

In addition to the long-term analysis, the size of the plots is also a key 
factor in the study of soil erosion (Leys et al., 2010). The interpretation 
of soil erosion measurements is entirely a problem of scale (Chaplot and 
Poesen, 2012): up- and downscaling the results are very site-specific 
processes; thus, their use for general modelling is limited (Stroos
nijder, 2006; Leys et al., 2010). There are a large number of papers 
reporting and interpreting data pertaining to RO and SL, especially at a 
plot-scale, but a significant need for additional erosion studies remain, 
particularly to fill in the gaps in less-studied fields/sizes (Poesen, 2015). 
Field-scale and long-term plot measurements, including large-scale op
erations, for example tillage and plant protection, remain important. 
The number of long-term, field-scale experiments is very limited in the 
continental sub-humid region of Europe (Prasuhn, 2012). Klik and 

Rosner (2020) investigated the effects of no-tillage (NT) and 
mulch-tillage (MT) on soil erosion, from spring to autumn, in Austria. 
They used plots of 240–480 m2. Prasuhn (2012) did not use plots for 
erosion measurements and used 203 crop fields to estimate the effect of 
tillage on soil erosion, over 10 years, in the Swiss Midlands. His results 
suggested that SL was more than an order of magnitude lower under NT 
and MT than under PT. In several cases, soil erosion due to changes in 
tillage practise has been studied in an area of only a few 100 m2 (Zhang 
et al., 2015; Tuan et al., 2014; Gao et al., 2019). In other cases, rainfall 
simulation experiments were conducted across even smaller areas (a few 
m2) and these results are hardly interpretable at a field- or 
catchment-scale (Kinnell, 2016). 

The main purpose of soil erosion measurements is to understand and 
predict the process itself. One critical step is to identify key factors 
closely related to SL and erosion risks. The traditional approach for the 
selection of essential variables is a regression (Wu et al., 2018; Klik and 
Rosner, 2020) and general linear models (Francke et al., 2008). This 
approach requires the assumptions that predictor variables have a linear 
relationship with the dependent variable, and the model residuals are 
normally distributed. However, such relationships are rarely linear, and 
normality is frequently highly violated, given the frequent extreme 
erosion events and the skewed distribution in the data. In such cases, 
linear models are not suitable for predicting soil erosion (Klik and 
Rosner, 2020). 

Statistical modelling, based on machine-learning algorithms, can 
provide alternatives to traditional linear approaches and overcome some 
of their limitations (Chaudhary et al., 2016). For example, classification 
and regression trees (CARTs) can predict continuous or discrete 
dependent variables (e.g., RO and SL) using continuous or discrete 
predictor variables (e.g., soil parameters, slope, precipitation, vegeta
tion cover) (de Graffenried and Shepherd, 2009; Gayen and Pour
ghasemi, 2019). The purpose of the analyses via tree-building 
algorithms is to determine a set of if-then logical conditions that permit 
accurate prediction or classification of cases. Random Forests (RF) is a 
more robust, non-parametric, advanced method of classification tree 
analysis that can also predict erosion (Francke et al., 2008; Zimmermann 
et al., 2012; Mohr et al., 2013; Cheng et al., 2018). Databases from 
long-term field-scale experiments, on which mathematical modelling 
can be performed, are therefore of great importance. 

In this study, the long-term effects of CT and PT on RO, SL, and soil, 
under arable cropping, were analysed under continental, sub-humid 
conditions of Central Europe. The results of 16 years (2004–2019) of 
precipitation, RO, and SL monitoring at a field-scale experimental site 
were evaluated. We examined long-term changes in soil quality as a 
result of the change in tillage. Furthermore, we investigated the possi
bilities of modelling RO and SL using tillage, precipitation, and vege
tation cover data. We predicted RO and SL for the whole data set and the 
sub-dataset of maize culture in four separate Random Forest model 
developments. 

2. Material and methods 

2.1. Site description 

The study area is located in southwest Hungary, in a hilly region 7.5 
km west of Lake Balaton, near the village of Szentgyörgyvár (46.748 ◦N, 
17.147 ◦E, 150 m a.s.l.) The climate is warm-summer humid continental 
(Köppen, 1936). Long-term mean annual temperature is 11 ◦C and mean 
annual precipitation is 700 mm (Hajósy et al., 1975). During the study 
period, between 2004 and 2019, mean annual temperature was similar 
to the long-term record, but mean annual precipitation was only 628 
mm (438–870 mm) (Fig. 1). The slope of the field-scale experimental site 
was 10 %. The parent material is loess and the soil is eroded silty loam 
Luvisol with low soil organic matter content (WRB, 2014). The study site 
was previously conventionally tilled for decades and basic soil proper
ties were analysed before the establishment of the experimental plots in 
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2003 (Table 1). 

2.2. Experimental design and tillage systems 

The experiment was initiated in 2003 as part of the SOWAP (Soil and 
Surface Water Protection Using Conservation Tillage in Northern and 
Central Europe) project to study PT and CT in a comparative manner 
(Field et al., 2007; Kertész et al., 2007; Lane, 2007; Bádonyi et al., 
2008a, 2008b; Madarász et al., 2011). For the erosion experiment of PT 
and CT, 2 × 2 identical plots of 24 × 50 m (width × length, 1200 m2) 
were established. Plots were isolated from the rest of the slope using 
metal bunds. Agricultural tillage is still possible on plots of this size, but 
their size is small enough for the proper collection and measurement of 
RO and SL. The order of the plots was PT1, CT1, CT2, and PT2. The only 
difference between the plot pairs was the tillage type; they received the 
same treatment in every other aspect (crop rotation and crop type, fer
tilisation, weed control, and plant protection). 

Cultivation of the plots was across-slope. The PT consisted of 
mouldboard ploughing (to 25–30 cm depth), harrowing, and seed-bed 
preparation every year. The CT was a plough-less, non-inversion 
tillage operation, which was characterised by a reduction in the number 
of tillage operations, leaving ~30 % of the soil surface covered with crop 
residues. During the first three years, CT consisted of shallow discing 
(8–10 cm), but later, due to continual weed problems, a cultivator was 
applied (8–10 cm). In addition, in three years (2007, 2012, and 2015), 
medium deep (20–25 cm) subsoiling was undertaken across the entire 
study area. During the 16 years of the research, maize (8 times), winter 
wheat (3×), oilseed rape (2×), sunflower (2×), and spring barley (1×) 
were produced in crop rotation. Four cover crops were included in the 
rotation in all plots (2015–2018). 

Yield data were collected from each plot; however, the 0.12 ha area 
plots provided limited capacity for a precise comparison. Therefore, 
yields were studied on 10 plot-pairs, with an area of 105 ha, on a nearby 
experimental site. For the description and methodology of this research, 
refer to Madarász et al. (2016). 

2.3. Sampling and measurements 

A special, two-channel collection system was developed for the 
measurement of RO in a way that enabled collection of RO of both the 
frequent, low-intensity events and the rare (<1% probability), high- 
intensity, precipitation events. In this system, the RO was led into 

three 1 m3 collecting tanks (with 0.8 m3 useful volume) with 1/9 divi
sion between them, resulting in a total (0.8+[9 × 0.8]+[9 × 9 × 0.8]) 
72.8 m3 capacity. A detailed description of the measuring system is 
given by Kertész et al. (2007). After each RO event, RO was stored to 
allow sedimentation for one day, and the volume of the liquid portion 
was then determined, and the sediment soil was also measured and 
sampled. The sediment content of the oven-dried water and sediment 
samples was measured and used to calculate the SL and sediment con
centration of the RO. Meteorological data were collected by an auto
mated meteorological station at the experimental site every 5 min. 

Runoff and SL data were clustered by the year of study as a factor, 
using the Pálfai Drought Index (PAI; Pálfai, 1988), which was developed 
specifically for climate conditions in Hungary, and expresses the 
importance of the distribution of precipitation throughout the growing 
season. The higher the index, the deeper the drought (PAI < 4 no 
drought, PAI 4–6 slight drought, PAI > 6 moderate drought): 

PAI =

[
∑Aug

i=Apr
Ti

]

5 ∗ 100

10 +
∑Sept

i=Oct
(Pi ∗ wi)

(1)  

where Ti is mean monthly temperature (◦C), Pi is monthly precipitation 
(mm), and wi is a weight constant. 

In the spring of 2019, 18 soil samples (0–15 cm depth) were collected 
per treatment (9/plot) and used for determination of total organic car
bon (TOC) and microbial biomass carbon (MBC). All samples were 
composites of seven subsamples collected from a circle with a diameter 
of 1 m. Soil samples were air-dried for TOC, passed through a 2 mm 
sieve, and visible plant litter was removed. The TOC content was 
determined by dry combustion at 900 ◦C using a Shimadzu TOC-L device 
equipped with an SSM 5000A Solid Sample Combustion Unit (Jakab 
et al., 2016, 2019). The measured values were converted to soil organic 
matter (SOM) by multiplying by 1.72 (van Bemmelen, 1890). 

After soil sampling, all samples were stored at 4 ◦C for MBC deter
mination. Microbial biomass carbon content was determined by the 
chloroform fumigation-extraction method (Vance et al., 1987; Paul 
et al., 1999) that killed most soil organisms by destroying their mem
branes and cell walls. The organic carbon (C) content of both the 
fumigated and non-fumigated samples was extracted by potassium sul
phate extraction, and the C content of the samples was determined using 
a Shimadzu TOC-L device equipped with an OCT-L Liquid Sample Unit. 

Fig. 1. Annual precipitation and temperature at the erosion experimental site at Szentgyörgyvár (2004-2019). Data from the local automatic weather station.  

Table 1 
Physical and chemical properties of the 0–45 cm layers of soil profile representative for the experimental field in 2003 (n = 6). SOM: Soil Organic Matter; Clay = < 2 
μm; Silt = 2–20 μm; Sand = 20–2000 μm.  

Depth pH (H2O) pH (KCl) SOM CaCO3 Bulk density Clay Silt Sand 

cm – – % % g cm− 3 % % % 
0–15 6.25 4.80 2.31 0.00 1.37 3.94 59.63 36.43 
15–30 6.28 4.57 2.08 0.00 1.57 3.68 57.20 39.12 
30–45 6.36 4.72 0.45 0.00 1.59 4.80 58.46 36.74  
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The C content of MBC was determined as the difference between the C 
content of non-fumigated and fumigated samples, from which biomass 
was calculated, according to Vance et al. (1987). 

The number and weight of earthworms were determined as in
dicators of biological activity. Earthworm sampling was conducted 9 
times during the first 5 years of the experiment (2002–2008) and 6 times 
during the last four years (2016–2019) of the research. If weather and 
soil conditions enabled sample collection, samples were collected in 
spring and autumn, according to the method described by Harper Adams 
University College (2003). Samples were taken at 9 points on each plot 
using a cylinder 10 cm in diameter and height. Earthworms were 
selected and weighed manually from the soil samples. 

The ratio of water-stable aggregates (WSA) was measured in the 
spring of 2017. Nine samples were collected from the surface (0–10 cm) 
of each plot, with 18 samples per tillage type. The 1–2 mm grain size 
fraction was sieved from air-dried samples (Retsch AS200). Aggregate 
stability was then examined using the Eijkelkamp wet sieving apparatus 
by determining the ratio of soil aggregates >250 μm (Kemper and Koch, 
1966). Soil aggregates were disintegrated using 0.1 M 
Na-pyrophosphate and the remaining sand fraction >0.25 mm was 
sieved and weighed. The percentage of stable aggregate fraction was 
calculated by subtracting the weight of the sand fraction from the total 
weight of the 0.25–2 mm grain size fraction (Villar et al., 2004). 

2.4. Testing the effect of tillage on runoff and soil loss 

Statistical analysis was undertaken using R 4.0.0 (R Core Team, 
2020). To normalise the variables, RO and SL were transformed by ln 
(x+0.001) to ensure that the absolute values of skewness and kurtosis 
were both below 1.5 (n = 560). Pearson’s correlation of the transformed 
variables was highly significant (PT: R2 = 0.65, p < 0.001; CT: R2 =

0.64, p < 0.001). The RO and SL, as dependent variables, were evaluated 
using a four-way multivariate analysis of variance (MANOVA), with 
factors tillage, crop, year, and month. The normality of residuals was 
checked again by the absolute values of their skewness and kurtosis; 
they were all below 1. Homogeneity of variances was accepted for tillage 
levels because the ratios of maximum and minimum variances were both 
below 2. However, the assumption of homogeneity of variances was 
slightly violated for the factor crop (the ratios of the maximum and 
minimum variances were 2.4 and 1.9 for RO and SL, respectively). We 
calculated the Wilk’s λ and performed a follow-up four-way ANOVA 
with Bonferroni’s correction, for both dependent variables, to detect the 
tillage effect. Finally, Games-Howell’s post hoc test was undertaken to 
separate the homogeneous subsets. The effect of PT and CT treatments 
were compared for variables SOM, WSA, and ln(MBC) by Student’s t test 
(their normality was accepted because the absolute values of their 
skewness and kurtosis were below 1 and their variances were homoge
neous, as demonstrated by the F test, with p > 0.05); for the number of 
earthworms by Fisher’s exact test; for the weights of earthworms, by 
two-way ANOVA with factors treatment and time (assumptions were 

proven by skewness, kurtosis, and Levene’s test); for ln (annual RO +
0.001), ln(annual SL + 0.001), and the number of yearly runoff events, 
by one-way MANOVA (assumptions were also tested and satisfied); for 
the precipitation events ratios by Z test; for the sediment concentrations, 
by two-way ANOVA with factor treatment and whether the RO event 
was above or below 1 mm; and for sediment concentration of maize 
plots, by Student’s t test (assumptions were proven by skewness, kur
tosis, and Levene’s or F test). 

The exceedance (E; [%]) is the percentage of RO/SL events that 
exceed a given amount of RO/SL. It is calculated by a non-parametric 
method, where the observed events are ordered in terms of their size, 
and numbered from the largest to the smallest (m), the total number of 
events (N) is considered.  

E = 100* m / (N + 1)                                                                      (2)  

2.5. Random Forest modelling 

Our long-term dataset (2004–2019) consisted of 560 records of 140 
RO events and associated precipitation, RO, and SL data. One RO event 
is a precipitation event leading to RO that occurs with at least a 6 h gap 
between previous and subsequent events. Four factor - and three 
numeric-type predictor variables (features) were selected: crop culture 
(the majority was maize with 244 records, wheat, sunflower, rape, 
spring barley, no-crop/stubble), tillage (PT and CT), plant cover (1–5 
from 0 to 100 % by 20 %), the month of the event, precipitation amount 
(mm), precipitation duration (h), precipitation intensity (maximum in
tensity of 30 min, I30, mm h− 1 by Wischmeier and Smith, 1978). Plant 
cover was determined monthly, by visual survey, on 1 m2 with the help 
of a 1.0 × 1.0 m frame, with 5 replicates. Runoff and SL served as the two 
dependent variables, both divided into four categories because the 
database was not suitable for regression analysis. During the 16 years of 
the experiment, electrical and equipment failures, animal damage, and 
lightning hit the meteorological station. Consequently, approximately 
20 % of precipitation data are missing. The RO and SL categories, 
together with the total number of missing precipitation data, are pre
sented in Table 2. 

Model development was conducted in R 4.0.0 (R Core Team, 2020) 
with packages ‘randomForest’ (Liaw and Wiener, 2002; Breiman et al., 
2006.), ‘caTools’ (Tuszynski, 2020), ‘e1071’ (Meyer et al., 2019),’ caret’ 
(Kuhn, 2020) ‘vcd’ (Meyer et al., 2020) and ‘gdata’ (Warnes et al., 2017) 
to perform Random Forest (RF) models. Figures were produced using the 
package’ ggplot2’ (Wickham, 2016). Random Forest is a multivariate, 
nonparametric algorithm based on the Classification and Regression 
Tree (CART) that handles missing data of independent variables well 
(Breiman, 2001). We aimed to predict dependent variables RO and SL 
for the whole data set and for the sub-dataset of maize culture in four 
separate RF developments. With RF, we could manage missing values 
issues very successfully by imputing those using proximities (Tang and 

Table 2 
The rates of runoff (RO) and soil loss (SL) classified into four categories with total number of RO and SL records (Total), the total number of RO and SL records with 
maize culture (Total maize) and the total number of missing values from the feature variables precipitation amount, precipitation duration and precipitation intensity 
(Missing and Missing maize).   

Categories Group Total Missing Total maize Missing maize 

Runoff (RO, mm) 

RO=0 1 245 55 69 3 
0 < RO<=0.3 2 203 59 95 21 
0.3 < RO<1.2 3 52 10 34 4 
1.2 < =RO 4 60 8 46 4  

sum 560 132 244 32 

Soil loss (SL, t ha− 1) 

SL=0 1 181 39 45 2 
0 < SL<=0.03 2 193 59 92 17 
0.03 < SL<0.15 3 97 23 49 8 
0.15 < =SL 4 89 11 58 5  

sum 560 132 244 32  
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Ishwaran, 2017). 
We split the dataset into training and test subsets randomly at a fixed 

rate (75 % and 25 %). Random Forest works with a high number (ntree, 
default = 500) of datasets from the training data set created by random 
sampling with replacement (bootstrapping) and develops a very large 
number of decision subtrees. The data set that is not used in a step 
(approximately 1/3) is called Out-Of-Bag (OOB). In each step, the al
gorithm uses not all predictor variables (features), just a fixed number of 
them (mtry, default ≈ square root of the number of features), randomly. 
The decision subtrees developed from the training dataset were used to 
identify a classification consensus by selecting the most common output. 
This is then tested for the remaining test dataset. 

To measure the classification quality of the RF model with respect to 
the test data set, we used the following measures: percent of records 
correctly classified (accuracy), true positive classification rate (sensi
tivity or recall S), true negative classification rate (specificity), balanced 
accuracy (average of sensitivity and specificity), positive prediction 
value (precision, P), negative prediction value, prevalence, detection 
rate, detection prevalence (Tharwat, 2018), and the area under the 
receiver operating character (ROC) curve (AUC; Fawcett, 2006; Hosmer 
and Lemeshow, 2000), and the error rate of the tree if it is applied to the 
OOB data (OOB error), and the F1 score defined as: 

F1 =
2 ∗ P ∗ S

P + S
(3)  

based on Powers (2011). 
We optimised the RF parameters mtry and ntree with respect to the 

OOB error estimate and root mean square error (RMSE), considering 
other classification quality measurements, such as accuracy, F1 score, 
and AUC, and finally set them to ntree = 400, 500, or 550 and mtry = 4 
or 5. As a splitting rule, we applied the mean decrease in accuracy and 

the mean decrease in the Gini Index (Strobl et al., 2006). We calculated 
the variable importance based on the overall mean decrease in accuracy 
(MDA) and categories (Strobl et al., 2008; Louppe et al., 2013; Gregor
utti et al., 2015). For this, we used the OOB sample set to calculate ac
curacy. The values of a specific feature were then randomly shuffled, 
while all other feature values remained the same and the accuracy of the 
shuffled data was calculated. Finally, we took the difference between 
these two accuracy values and their mean across all trees (MDA). This 
importance measure is the overall MDA, while breaking them down by 
outcome categories, and MDA can also be provided for each category. 

The rate of agreement between observed and predicted classifica
tions can be measured by Cohen’s Kappa (Cohen, 1960). However, the 
rates of RO and SL, ranked from 1 to 4, range from no risk through 
medium, high and very high risk. Thus the misclassification cannot be 
treated equally when it is predicted, for example, no risk or high risk 
when the case is very high risk. Therefore, we preferred to use the 
weighted Kappa (Cohen, 1968), which assigns increasing weights to 
increasing misclassification errors, so that different levels of agreement 
can contribute to the value of Kappa (Fleiss and Cohen, 1973; 2003). 

3. Results and discussion 

3.1. Investigation of factors influencing runoff and soil erosion 

3.1.1. Soil organic matter 
Soil organic matter was significantly higher in the topsoil (0–15 cm) 

of CT than PT (t(34) = 14.82, p < 0.001). The low mean SOM content of 
PT (1.4 %) and 1.9 % of CT plots is similar to typical values of eroded 
Luvisols (Fig. 2A). 

The 34 % higher value of SOM under CT resulted in a small rate of 
accumulation of annual soil organic carbon (SOC) (0.18 Mg C ha–1 

Fig. 2. Distribution of soil organic matter (A), water stabile aggregates (B) and microbial biomass carbon (C) for the experimental plots at Szentgyörgyvár. PT: 
Ploughing Tillage, CT: Conservation Tillage. Quality of soil structure is given by Bartlova et al. (2015). 
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year–1). The increase in SOM as a consequence of CT has been described 
in several studies, with values differing site-to-site (Angers et al., 1997; 
González-Sánchez et al., 2012; Piazza et al., 2020). Piazza et al. (2020) 
reported a similar scale of increase in Italy. As a result of the plant 
residues remaining and tillage with no rotation, this increase is typically 
concentrated near the surface (López-Fando and Pardo, 2011; Gál et al., 
2007; Dekemati et al., 2019). The positive effect of CT can partly be 
explained by the large increase in SOC content in the topsoil, which 
improved the stability of soil aggregates (Rhoton et al., 2002). 

3.1.2. Water stable aggregates 
The average WSA value of PT was as low as 20.0 %. This was 

significantly higher under CT (30.4 %; t(34) = 2.91, p < 0.01; Fig. 2B). 
This rate was only sufficient to reach the upper threshold of the low 
quality structure category (Bartolova et al., 2015). However, the 52 % 
higher mean WSA value under CT reflects an improved aggregate 
structure and stability, which can eventually increase water infiltration, 
consequently decreasing erodibility. Similar to PT, Li et al. (2019) 
observed a 55 % increase of the WSA in an area of no-till with residue 
retention. These significantly higher WSA values are characteristic of the 
uppermost 5 cm of soil that is most exposed to erosion. At 5–15 cm 
depth, only a moderate increase of WSA was observed previously 
(Karlen et al., 2013). The increase in SOM and WSA under CT is also in 
agreement with the results of Rhoton et al. (2002), who found a strong 
relationship between aggregate stability and SOM (R = 0.92, p < 0.01). 

3.1.3. Earthworm investigations 
In the spring of the first research year (2004), the ratio of earthworm 

abundance in CT to PT plots was 1.0 (21 in.. m− 2). Across the entire time 
period, this ratio was 4.9, in accordance with the 2–9-fold increase 
observed previously (Chan, 2001; Dekemati et al., 2019); however, the 
standard deviation of the annual values was high. A significant differ
ence was observed between the tillage types during the first two years 
after the tillage shift (Fisher’s 2004–2005: F = 16.12, p < 0.001; 
2018–2019: F = 42.77, p < 0.001). The comparison of data from the first 
and last two years (2004–2005 and 2018–2019) demonstrated an in
crease of the absolute number of earthworms in soil under both tillage 
types (CT: 3.1 times, F = 43.54, p < 0.001; PT: 4.5 times, F = 21.62, p <
0.001; Fig. 3), probably due to the introduction of the cover crop in crop 
rotations during the last 4 years (Roarty et al., 2017). Although the in
crease was higher in PT plots, this means merely 55 earthworms m− 2, 
while in CT 168 earthworms m− 2 were recorded. Consequently, on 
average, 3–5 times more earthworms occurred. The larger earthworm 
activity under CT leads to an increase in the WSA and topsoil SOC, the 
formation of macropores at the surface, and stable gallery networks, 
which increase infiltration, and thus reduce RO and erosion (Ehlers, 
1975). The average weight of the earthworms ranged between 0.1 and 
0.5 g (Fig. 3B). The two-way ANOVA test demonstrated that both tillage 
treatment and time effects were significant (F(1;109) = 4.58, p < 0.05; F 
(1;109) = 7.52, p < 0.01, respectively). Earthworm weights under CT 

were somewhat larger than the averages in the first and last two years, 
but the tillage effect was significant only in 2004–2005 (F(1;27) = 4.38, 
p < 0.05; 2018–2019: F(1;83) = 2.08, p = 0.15). The difference between 
years was significant for PT only (F(1;25) = 8.40, p < 0.05; CT: F(1;81) 
= 3.63, p = 0.06). Six species of earthworm were distinguished in the 
study area (Aporrectodea caliginosa, Aporrectodea rosea, Allolobophora 
chlorotica, Octolasium lacteum, Lumbricus rubellus, Proctodrilus tuber
culatus), spending their active period within the upper 20 cm of the soil. 

3.1.4. Microbial biomass carbon 
Microbial biomass studies, contrary to our expectations, did not 

show a significant difference between the two tillage systems (t(27) =
0.07, p = 0.94). The amount of MBC was 166.3 μg g− 1 for PT and 129.4 
μg g− 1 for CT, with coefficients of variation (109.1 %, 76.1 %, respec
tively; Fig. 2C). Sampling took place in spring, when the low tempera
ture of the previous winter, combined with low soil moisture content, 
could be the reason for the lack of difference (Zelles et al., 1991; Fekete 
et al., 2016). Nunes et al. (2020). 

3.2. Effects of treatment on runoff and soil loss 

Mean annual RO from PT and CT plots was 18 mm and 4 mm, 
respectively, while mean SL was 2.8 t ha− 1 and 0.2 t ha-1, respectively. 
These differences were significant, as was the annual number of runoff 
events (Wilk’s λ = 0.76, p = 0.05; annual RO: F(1;30) = 7.53, p < 0.05; 

Fig. 3. Mean number and weight of earthworms for the experimental plots at Szentgyörgyvár in the period of 2004–2005 and 2018–2019. PT: Ploughing Tillage, CT: 
Conservation Tillage. Different letters represent significant differences (p < 0.05). Upper case: Comparison of elapsed time effect under fixed tillage; Lower case: 
comparison of tillage effect in a fixed year. 

Fig. 4. Distributions of annual runoff (A) and soil loss (B) under PT (Ploughing 
Tillage) and CT (Conservation Tillage) treatments at Szentgyörgyvár 
(2004–2019). Red line: Soil loss tolerance value (2 t ha− 1). 
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annual SL: F(1;30) = 9.38, p < 0.05; annual number of RO events: F 
(1;30) = 6.70, p < 0.05), respectively). Thus, RO was reduced by 75 % 
and SL by 95 %, from CT plots. The distributions of annual RO and SL 
between 2004 and 2019 are shown in Fig. 4. 

The acceptable magnitude of SL is the topic of a longstanding debate 
(Holý, 1980; Bronger et al., 2000; Davis, 1982; Hall et al., 1985; Dazzi 
et al., 1998). In Hungary, the normative value of 2 t ha− 1, published by 
Centeri and Pataki (2003), is considered to be the most relevant (Jakab 
et al., 2010). Soil loss from CT plots remained much lower than this 
value in each year, with a maximum value of only 1.3 t ha-1. A favour
able impression is suggested by the 16-year average of PT; however, 
examination of the yearly data revealed five major outliers. The largest 
annual rate of SL (17.4 t ha− 1) was measured in 2017 under maize, 
which was 8.7 times larger than the rate of soil formation (Fig. 4B). Soil 
loss values are considered low for both tillage types, which is partly a 
consequence of the use of cross-slope cultivation (Quinton and Catt, 
2004; Prasuhn, 2012). 

Over the 16 years of study, 140 RO events were registered on PT plots 
(249 records), while there were only 78 on CT plots (130 records). Thus, 
during approximately half of all precipitation events that generated RO 
on the PT plots, no RO was generated from CT plots and all incoming 
rainwater infiltrated these plots. The standard deviation was large due to 
the large differences in monthly and annual precipitation. The lowest 
precipitation occurred in 2011 (438 mm) and no RO was recorded, 
despite maize growing on the plots. Conversely, in 2017, when maize 
was also sown, 18 RO events occurred (Fig. 4A). Klik and Rosner (2020) 
studied an area of similar slope and soil texture and reached similar 
conclusions. 

The RO and/or SL values from the CT plots rarely exceeded those of 
the PT plots (6/140). In all cases, this occurred during the winter, when 
the surface was barren and plots were only disked on CT and ploughed 
on PT. Nevertheless, the total amount of SL was negligible compared to 
the annual record. 

In our study, there were considerable differences among the annual 
rates of precipitation, but this was not necessarily reflected by the yearly 
denudation. The PAI values for the study area fell between 2.9 and 6.5. 
The effect of date (year) was not reflected by the PAI values on SL, and it 
was minimal for RO (Fig. 5). 

There was a low, but significant correlation between RO and pre
cipitation (R2 = 0.01, p < 0.05) and an insignificant correlation between 
RO and rainfall intensity (R2 = 0.01, p = 0.06). Runoff and the amount 
of SL of each precipitation event depend on complex interactions among 
antecedent soil moisture, soil conditions, rainfall intensity, and the 
developmental stage of the crop canopy (Quinton and Catt, 2004). 
Consequently, the analysis of the effects and interactions within separate 
events is complex and requires additional data collection. The 
one-by-one examination of RO and SL values of each event demon
strated that a larger RO usually caused increased SL on both tillage 
types. The correlation between RO and SL was significant both for PT (R2 

= 0.65, p < 0.001) and CT (R2 = 0.64, p < 0.001) (Fig. 6). 
Cumulative RO and SL data demonstrated that most RO and SL were 

caused by extreme precipitation events (Fig. 7). Although these events 
were rare (their probability was <2% (Fig. 8)), their impact on soil 
erosion is very high. Their frequencies were coupled with an almost 
order-of-magnitude lower value for CT than PT. For RO and for smaller 
frequency events, the difference was smaller, because during the most 
intensive rainfall, the time available for infiltration was reduced; 
therefore, RO will have been generated regardless of soil condition and 
tillage type. However, SL remained one order-of-magnitude smaller on 
CT because of the combined effect of crop residue left on the uneven, 
cloddish soil surface. 

The seven largest (5% of all events) RO events provided 56 % and 78 
% of the total RO from PT and CT plots, and they triggered 79 % and 83 
% of the total SL from PT and CT plots, respectively. In the RO dataset, 
the most important precipitation event occurred over 21–22. August 
2005, when 113 mm of rainfall arrived in two major waves of high in
tensity precipitation (I30 = 22.4 mm h− 1). The resulting RO represented 
29 % of PT (82 mm) and 45 % of CT (32 mm) total RO of the complete 
16-year period. By the end of the summer, when rainfall arrived long 
after cessation of spring tillage operations, the soil was already settled, 
and was bearing sunflower ready to be harvested. Despite the large RO, 
the consolidated soil and plant cover were able to moderate the SL (4.6 t 
ha− 1 on PT and 0.2 t ha− 1 on CT). 

The largest SL was generated by a precipitation event of 3rd June 
2017, when the soil surface was loose and practically uncovered one 
month after the sowing of maize. This rainfall event was much smaller 
(31 mm) than the 2005 event, but with similar intensity (I30 = 24.6 mm 
h− 1). This event generated 15 t ha− 1 and 1 t ha− 1 SL on the PT and CT 
plots, respectively, which were 34 % and 42 % of the total SL recorded 
during the 16 year study. Clearly, the extraordinary, infrequent, but 
high-intensity precipitation events played a major role in soil erosion. 
Similarly, a long-term experiment in Austria demonstrated that three RO 
events accounted for 79 % of the total SL (Klik and Rosner, 2020). 

The major role of infrequent, high-intensity precipitation events in 
the generation of SL may be of great importance, considering the 
changes in climate taking place in the area (Zhiying and Haiyan, 2016). 
Climate projections for the region suggest considerable change in the 
distribution of precipitation in the Carpathian Basin, with the annual 
amount of precipitation remaining unchanged. Less frequent precipita
tion, but higher precipitation amounts are forecast (Kis et al., 2014; 
Bartholy et al., 2015). Consequently, longer periods of drought, coupled 
with high intensity rainfall, and therefore, high erosion potential are 
expected in the future. 

The average sediment concentration of the RO was 6.2 g l− 1 on PT 
and 3.2 g l− 1 on CT. The absolute concentration was significantly 
dependent on the tillage and on whether RO was above or below 1 mm 
(p < 0.01). The difference in sediment concentrations caused by 
different tillage practises was significant under maize (F(191) = 3.87, p 
< 0.001). When RO was below 1 mm, sediment concentrations were 
closer under the two tillage systems (PT: 3.3 and CT: 2.6 g l− 1, p > 0.05). 
When RO events exceeded 1 mm, the sediment concentrations from PT 
were approximately double those from CT plots (12.6 g l− 1 on PT and 6.3 
g l− 1 on CT, p < 0.01; Fig. 9). The larger sediment concentrations on PT 
were the result of the extensive soil disturbance arising from tillage and 

Fig. 5. Annual runoff (A) and soil loss (B) as functions of the Pálfai Drought 
Index (PAI) for the experimental plots at Szentgyörgyvár (2004–2019). PT: 
Ploughing Tillage, CT: Conservation Tillage. 
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the uncovered, or slightly covered soil surface. The CT surface was at 
least partly covered by crop residues and was more rugged or cloddish, 
the number of macropores was larger, and the soil structure was better. 
These factors slowed and reduced the flow of RO water, providing more 
time for infiltration and sedimentation. Similarly, Mhazo et al. (2016) 
concluded that average sediment concentrations were 56 % lower from 
no-till plots compared to PT, following a review of 41 studies. These 
authors also stated that this value is much higher (79 %–90 %) on 
steeper (10 %<) and longer (15 m<) plots. 

3.3. Data analysis 

Data derived from crops sown only 1–3 times in crop rotation have to 
be interpreted with caution (e.g., there was no RO in 1 of 2 years when 
sunflower was sown). Nevertheless, SL was greater for root crops. The 
largest annual SL values were measured in maize. 

The MANOVA analysis demonstrated that the tillage system and crop 
species, together with their interaction, had significant effects on the 
amount of RO and SL (p < 0.001). Runoff and SL were significantly 
greater from the PT than CT plots (F(1;453)>80.20, p < 0.001). The 
crop and the interaction of tillage system and crop, had a significant 
effect on both RO and SL (F(5;453)>4.65, p < 0.001). Games-Howell’s 
post hoc test demonstrated that maize showed significantly higher RO 
and SL than winter wheat and rape seed crops. 

The effects of different growing months and years on RO and SL were 
also significant (p < 0.001). However, certain species were certainly 
more affected by heavy rainfall events. For example, in the period of 

Fig. 6. The relation between runoff and soil loss at Ploughing Tillage (PT) and Conservation Tillage (CT) for the experimental plots at Szentgyörgyvár (2004–2019).  

Fig. 7. Cumulative graph of runoff and soil loss at Szentgyörgyvár, 2004–2019. 
PT: Ploughing Tillage, CT: Conservation Tillage. 

Fig. 8. Amount of runoff and soil loss as functions of their exceedance at 
experimental plots treated by Ploughing Tillage (PT) and Conservation Tillage 
(CT) at Szentgyörgyvár (2004–2019). 

Fig. 9. Sediment concentration of runoff events exceeding or below 1 mm for 
the experimental plots at Szentgyörgyvár (2004–2019). PT: Ploughing Tillage, 
CT: Conservation Tillage. Different letters represent significant differences (p <
0.05). Upper case: Comparison of differences above and below 1 mm runoff 
events under fixed tillage; Lower case: comparison of tillage effect within these 
two event classes. 
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frequent high-intensity rainstorms, the study area was occupied by 
stubble, maize, and sunflower, while the growing season of plants sown 
before winter mostly falls outside the end-of-summer rainstorm period. 

Although we could not determine all the factors influencing the rate 
of erosion, we presumed that tillage, the crop species, month, vegetation 
cover, and the amount and intensity of precipitation are suitable for 
predicting erosion risk. Because the relationships between these vari
ables and RO or SL are not linear, standard linear models are not suitable 
for describing complex associations. However, with discretisation of the 
RO and SL data, the Random Forest (RF) classification method was able 
to predict erosion risk from the available data. For the total data set, the 
RMSE values for RO and SL were 0.76 and 0.79, respectively. The ratio 
of accuracy calculated for the test and training data set was as high as 
0.99, for both RO and SL, which confirmed that overfitting did not bias 
our results (Table 3). 

The overall accuracy of the RF model applied to the test data set was 
0.71 and 0.76 for RO and SL, respectively. These values are considered 
to be high, considering the complexity of the issues surrounding RO and 
SL. Based on the sensitivity, precision, balanced accuracy, AUC values, 
and F1 scores of the categories, the RF model best predicted categories 1 
and 2, that is, when zero or small RO and erosion occurred. The sensi
tivity values of these groups exceeded 80 % for RO and 72 % for SL, and 
all exceeded 0.7 precision, 0.8 balanced accuracy, 0.85 AUC and 0.74 F1 
scores. However, the prediction of extreme erosion was the most 

important because 56 % (PT) and 78 % (CT) of the total SL was caused 
by the seven highest-intensity rainfall events. The sensitivity of category 
4 was as high as 0.73 for SL, while it was only 0.5 for RO. Precision, 
balanced accuracy, and AUC exceeded 0.72, 0.73, and 0.92, respec
tively, for both RO and SL. The F1 score of this category was 0.59 for RO; 
however, it was as high as 0.76 for SL. Therefore, we can conclude that 
the highest risk of RO can be predicted with lower success than SL. 
Moderate RO and erosion (category 3) were less reliably predicted by 
RF, with a sensitivity of 0.50 and 0.08 for RO and SL, respectively. 74 % 
and 78 % of the wrongly classified RO and SL events were placed into 
neighbouring groups, respectively, mostly to a lower category (RO: 66 
%; SL: 73 %), although with highly significant weighted Kappa values 
(RO: 0.69; SL: 0.75, p < 0.001). Thus, it was difficult to find a robust 
boundary between categories 2 and 3. The model underestimated them 
because of the large variability of the variables. 

A measure of how much the accuracy decreased when removing a 
variable was expressed by the mean decrease accuracy (MDA). Group 
variable importance values demonstrated that the effects of tillage and 
crop species on RO were most important. In contrast, the intensity of 
precipitation was one of the most important features, followed by 
tillage, in determining SL. With a slope of 10 %, the amount of precip
itation was relatively less important to the risk of erosion. The impor
tance values of tillage declined in importance for larger erosion events. 
The importance values of cover were approximately 6.6 on average, 

Table 3 
Random Forest classification quality and relative importance of different variables calculated for the dependent variables runoff (RO, mm, left) and soil loss (SL, t ha− 1, 
right). TP: true positive; TN: true negative; FP: false positive; FN: false negative; N = total number of observations; AUC: Area Under the ROC curve; ROC: receiver 
operating character; Crop: crop culture in the soil; Tillage (Ploughing or Conservation Tillage); Cover: plant cover (1 to 5 from 0 to 100 % by 20 %), Month (of event), 
Prec.mm: precipitation amount (mm); Prec.hour: precipitation duration (hour), Prec.Int.: 30 min precipitation intensity maximum (mm h− 1).  

All crops Runoff (RO) Soil loss (SL) 

Overall Statistics Accuracy 
Weighted 
Kappa 

OOB error 
rate 

Accuracy Ratio Test/ 
Train Accuracy 

Weighted 
Kappa 

OOB error 
rate 

Accuracy 
Ratio 
Test/Train 

0.71 0.69*** 48.46 % 0.99 0.76 0.75*** 38.81 % 0.99  
Group Statistics 

Categories 1 2 3 4 1 2 3 4 

RO[mm], SL [t ha− 1] RO=0 0 < RO<=0.3 
0.3 <
RO<1.2 

1.2 < =RO SL=0 0 < SL<=0.03 
0.03 <
SL<0.15 

0.15 < =SL 

OOB class eror rate 0.32 0.39 0.75 0.75 0.18 0.38 1.00 0.71 
Sensitivity or Recall 

(TPi/(TPi+FNi)) 
0.80 0.81 0.50 0.50 0.90 0.78 0.08 0.73 

Specificity 
(TNi/(TNi+FPi)) 

0.88 0.81 0.92 0.97 0.82 0.82 1.00 0.98 

Positive Prediction Value or Precision 
PPVi= (TPi/(TPi+FPi)) 

0.77 0.70 0.57 0.73 0.80 0.71 1.00 0.79 

Negative Prediction Value 
NPVi=(TNi/(TNi+FNi)) 

0.90 0.89 0.90 0.91 0.92 0.87 0.91 0.97 

Prevalence 
((TPi+FNi)/N) 

0.32 0.35 0.17 0.16 0.44 0.36 0.09 0.11 

Detection Rate 
(TPi/N) 0.26 0.28 0.09 0.08 0.39 0.29 0.01 0.08 

Detection Prevalence 
((TPi+FPi)/N) 

0.34 0.40 0.15 0.11 0.49 0.40 0.01 0.10 

Balanced Accuracy 
((Sensitivityi+Specificityi)/2) 

0.84 0.81 0.71 0.73 0.86 0.80 0.54 0.85 

AUC 0.86 0.85 0.80 0.93 0.93 0.88 0.71 0.92 
F1 score 

(2*PPV*Sensitivity/(PPV +
Sensitivity)) 

0.78 0.75 0.53 0.59 0.85 0.75 0.14 0.76  

Mean Decrease Accuracy (MDA, Variable Importance) 
Categories 1 2 3 4 1 2 3 4 
Tillage 44.75 24.44 20.49 19.03 35.41 18.3 7.21 8.54 
Crop 21.75 16.78 7.22 15.84 14.65 9.53 5.17 17.42 
Cover 0.99 8.55 6.29 12.54 8.08 5.68 0.00a 10.65 
Month 10.76 11.28 5.1 6.79 11.23 9.89 0.86 12.18 
Prec.mm 5.45 7.46 0.74 3.16 11.00 7.33 1.55 2.16 
Prec.hour 11.84 7.27 2.01 6.53 13.37 19.31 3.31 8.33 
Prec.Int 8.47 15.88 14.09 13.47 24.41 25.3 5.93 16.44  

*** significant at p < 0.001; the two most important features per categories are in bold. 
a A feature with low predictive power, being shuffled, may lead to a slight increase in accuracy due to randomisation, which can result in negative importance scores 

that were regarded as zero. 
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which was lower than expected. However, RF provides no information 
on whether a variable is important as a main effect or as part of an 
interaction. Accordingly, low values of cover should be evaluated 
together with crop (13.6) and month (8.5) since together they form a 
significant factor. 

Random Forest modelling was also performed focusing only on the 
maize (sub-dataset), which was the most common in crop rotation. 
Although we worked with fewer data in this way (Table 2), the reli
ability of the RF model did not decrease notably (Table 4). 

The overall accuracy of the RF model restricted to the maize dataset 
and applied to the test data set for RO and SL remained as high as 0.73 
and 0.71, respectively. However, based on the sensitivity, precision, 
balanced accuracy, AUC values, and F1 scores of the categories, the RF 
model predicted category 4 the most successfully, followed by category 
1. The sensitivity values of the groups with the highest and lowest risk all 
exceeded 64 % for RO and 82 % for SL, and all exceeded 0.7 precision, 
0.8 balanced accuracy, 0.9 AUC and 0.75 F1 scores. 

The worst performing category was again the third one. Neverthe
less, while the sensitivity values obtained on the sub-dataset of category 
1 for RO (0.64) and the categories 1 and 2 for SL (0.82 and 0.71) were 
lower than the complete dataset (RO: 0.80; SL: 0.90 and 0.78), the 
sensitivity values of categories 3 and 4 were higher (RO: 0.67 and 0.64 
versus 0.50 and 0.50; SL: 0.13 and 0.92 versus 0.08 and 0.73, respec
tively), which indicates that risky categories can be better predicted in 
maize fields. Comparing the RF models of RO on the maize subset with 
the complete dataset, precision, balanced accuracy, AUC, and F1 scores 

were notably higher for the maize subset for the categories of higher risk 
(3 and 4). Therefore, we conclude that for maize fields, the highest RO 
risk prediction is not less reliable than for SL. 

Table 4 
Random Forest classification quality and importance measures of the variables used in this study: runoff (RO, mm, left) and soil loss (SL, t ha− 1, right) of the sub-dataset 
with maize (TP: true positive; TN: true negative; FP: false positive; FN: false negative; N = total number of observations; AUC: Area Under the ROC curve; ROC: receiver 
operating character; Tillage (Ploughing or Conservation Tillage); Cover: plant cover rate (1 to 5 from 0 to 100 % by 20 %), Month (of event), Prec.mm: precipitation 
amount (mm); Prec.hour: precipitation duration (hour), Prec.Int.: 30 min precipitation intensity maximum (mm h− 1).  

Maize Runoff (RO) Soil loss (SL) 

Overall Statistics 
Accuracy Weighted 

Kappa 
OOB error 
rate 

Accuracy Ratio 
Test/Train 

Accuracy Weighted 
Kappa 

OOB error 
rate 

Accuracy Ratio 
Test/Train 

0.73 0.78*** 56.52 % 0.99 0.71 0.71*** 51.91 % 0.96  
Group Statistics 

Categories 1 2  4 1 2 3 4 
RO[mm], SL [t ha− 1] RO=0        
OOB class eror rate 0.65 0.38 0.78 0.61 0.52 0.35 0.92 0.56 
Sensitivity or Recall 

(TPi/(TPi+FNi)) 
0.64 0.87 0.67 0.64 0.82 0.71 0.13 0.92 

Specificity 
(TNi/(TNi+FPi)) 

1.00 0.73 0.90 0.98 0.89 0.76 1.00 0.92 

Positive Prediction Value or Precision 
PPVi= (TPi/(TPi+FPi)) 

1.00 0.67 0.62 0.90 0.74 0.65 1.00 0.73 

Negative Prediction Value 
NPVi=(TNi/(TNi+FNi)) 

0.92 0.90 0.91 0.90 0.93 0.80 0.88 0.98 

Prevalence 
((TPi+FNi)/N) 

0.18 0.38 0.20 0.23 0.28 0.39 0.13 0.20 

Detection Rate 
(TPi/N) 0.12 0.33 0.13 0.15 0.23 0.28 0.02 0.18 

Detection Prevalence 
((TPi+FPi)/N) 0.12 0.50 0.22 0.17 0.31 0.43 0.02 0.25 

Balanced Accuracy 
((Sensitivityi+Specificityi)/2) 

0.82 0.80 0.78 0.81 0.85 0.73 0.56 0.92 

AUC 0.93 0.84 0.87 0.96 0.90 0.77 0.69 0.95 
F1 score 

(2*PPV*Sensitivity/(PPV +
Sensitivity)) 

0.78 0.75 0.64 0.75 0.78 0.68 0.22 0.81  

Mean Decrease Accuracy (MDA, Group Variable Importance) 
Categories 1 2 3 4 1 2 3 4 
Tillage 25.49 14.92 14.35 10.31 28.49 2.74 2.21 11.35 
Cover 0.00a 7.79 0.00a 9.70 5.18 8.13 0.00a 16.99 
Month 0.00a 4.57 2.78 2.29 0.23 10.3 4.54 14.99 
Prec.mm 7.33 0.88 1.00 1.90 5.29 5.11 0.00a 4.67 
Prec.hour 8.07 12.03 2.51 2.34 0.84 5.43 1.97 6.08 
Prec.Int 0.00a 8.86 3.29 5.26 10.19 6.56 0.18 4.72  

*** significant at p < 0.001; the two most important features per categories are in bold. 
a A feature with low predictive power, being shuffled, may lead to a slight increase in accuracy due to randomisation, which can result in negative importance scores 

that were regarded as zero. 

Fig. 10. Overall variable importance, calculated as the mean decrease in ac
curacy (MDA) for the whole (left), and maize sub-dataset (right), based on the 
Random Forest classification model with dependent variables runoff and soil 
loss. Features: Tillage (Ploughing or Conservation Tillage); Crop (LIST); Cover: 
plant cover (1 to 5 from 0 to 100 % by 20 %), Month (of event), Prec. mm: 
precipitation amount (mm); Prec. hour: precipitation duration (hour), Prec. 
Int.: 30 min precipitation intensity maximum (mm h− 1). 
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74 % and 81 % of the wrongly classified RO and SL cases were placed 
into neighbouring groups, respectively, mostly to a lower category (RO: 
66 %; SL: 72 %), though with highly significant weighted Kappa values 
(RO: 0.71, SL: 0.78, both with p < 0.001). 

The relative importance of tillage was also largest for maize for all 
categories of RO. For SL, tillage was the most important feature for 
category 1. For the remaining categories, other variables (cover, month) 
were more important in prediction. The relative role of plant cover 
increased for maize culture, especially for major erosion events. 

Overall, the most important variable was tillage for all cases 
(Fig. 10). With respect to the whole data set, precipitation intensity was 
the most important variable explaining SL, while for RO, the joint effect 
of three main variables (intensity, precipitation duration, and crop) 
were the second most important variables. For the maize sub-dataset, 
precipitation duration, cover, and intensity were the most important 
variables explaining RO, while for SL, the joint effects of cover, month, 
and intensity were the most determining. 

4. Conclusions 

The present research focussed on the effects of reduced tillage on soil 
properties and erosion. Despite its importance for the conservation 
agriculture, this area is poorly studied, especially on field-scale plots 
under continental sub-humid climate. Here long-term soil erosion data 
measured on field-scale plots in East-Central Europe are used to deter
mine the key factors of runoff and soil loss. Besides, Random Forest (RF) 
model was successfully applied for erosion prediction. This novel 
approach will be applicable at other areas of different geographical and 
climatic settings as well. 

Microorganisms play an important role in the decomposition and 
stabilisation of organic materials. However, in the case of the microbial 
biomass carbon, no significant difference was apparent between the two 
tillage types. Nevertheless, our data showed that soil organic matter, 
water-stable aggregates, and earthworm abundance increased signifi
cantly in the soil in conservation tillage (CT) plots after 16 years. This 
improved soil structure and quality, and a stable gallery network was 
developed, which facilitated water infiltration and decreased erosion. A 
stable soil structure is more resistant to erosion by raindrops during 
storms and less prone to crust development. A large abundance of 
macropores reduced the likelihood of blockage of the network of 
channels. The crop residues left on the surface, together with the more 
rugged soil surface, resulted in a lower rate of runoff (RO) on CT plots 
(Klik and Rosner, 2020), leaving more time for infiltration. Thus, RO 
declined by 75 % and soil loss (SL) declined by 95 % on CT plots, and SL 
was one order of magnitude lower than its tolerable value. Most of the SL 
was caused by low-probability, low frequency, high-intensity rain
storms. Both RO and SL depend on the complex interaction of several 
factors, including antecedent soil quality and condition, soil water 
content, the mean and maximum intensity of rainfall, and the state of 
development of the crop canopy. Random Forest models enable the 
study of these factors and are particularly useful when dealing with 
relatively small sample sizes and correlated predictors, and when there 
are missing values in the data set. Compared to other classification 
tree-based models, RF is substantially less prone to overfitting and 
performs well when applied to new data (Breiman, 2001; de Prado, 
2018). Although RF provides no information on whether a variable is 
important as a main effect or as part of an interaction, the effect of tillage 
was clear in all four RF models (RO and SL for the whole data set and for 
the maize subset). Our results suggest that tillage type, as a factor, was 
more important, in terms of erosion risk and soil health, than the highly 
variable climate, plant cover, or crop type. 
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Kis, A., Pongrácz, R., Bartholy, J., 2014. Projected Trends of precipitation for Hungary: 
the effects of Bias correction. Lgkr 59, 117–120. 

Klik, A., Rosner, J., 2020. Long-term experience with conservation tillage practices in 
Austria: impacts on soil erosion processes. Soil Tillage Res. 203, 104669. 
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Hungarian).  

Paul, E.A., Harris, D., Klug, M.J., Ruess, R.G., 1999. The determination of microbial 
biomass. In: Robertson, G.P., Coleman, D.C., Bledsoe, C.S., Sollins, F. (Eds.), 
Standard Soil Methods for Long-Term Ecological Research. Oxford University Press, 
Oxford, pp. 291–317. 

Piazza, G., Pellegrino, E., Moscatelli, M.C., Ercoli, L., 2020. Long-term conservation 
tillage and nitrogen fertilization effects on soil aggregate distribution, nutrient stocks 
and enzymatic activities in bulk soil and occluded microaggregates. Soil Tillage Res. 
196, 104482. 

Poesen, J., 2015. Soil erosion hazard and mitigation in the Euro-Mediterranean region: 
do we need more research? Hung. Geogr. Bull. 64, 293–299. 

Powers, D.M.W., 2011. Evaluation: from precision, recall and F-Measure to ROC, 
informedness, markedness & correlation. J. of Machine Learning Technologies 2, 
37–63. 

Prasuhn, V., 2012. On-farm effects of tillage and crops on soil erosion measured over 10 
years in Switzerland. Soil Tillage Res. 120, 137–146. 

Quinton, J.N., Catt, J.A., 2004. The effects of minimal tillage and contour cultivation on 
surface runoff, soil loss and crop yield in the long-term Woburn Erosion Reference 
Experiment on sandy soil at Woburn, England. Soil Use Manag. 20, 343–349. 

R Core Team, 2020. R: a Language and Environment for Statistical Computing. R 
Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.  

Raczkowski, C.W., Reyes, M.R., Reddy, G.B., Busscher, W.J., Bauer, P.J., 2009. 
Comparison of conventional and no-tillage corn and soybean production on runoff 
and erosion in the southeastern US Piedmont. J. of Soil and Water Conservation 64, 
53–60. 

Rhoton, F.E., Shipitalo, M.J., Lindbo, D.L., 2002. Runoff and soil loss from midwestern 
and southeastern US silt loam soils as affected by tillage practice and soil organic 
matter content. Soil Tillage Res. 66, 1–11. 

B. Madarász et al.                                                                                                                                                                                                                              

http://refhub.elsevier.com/S0167-1987(21)00029-5/sbref0125
http://refhub.elsevier.com/S0167-1987(21)00029-5/sbref0125
http://refhub.elsevier.com/S0167-1987(21)00029-5/sbref0130
http://refhub.elsevier.com/S0167-1987(21)00029-5/sbref0130
http://refhub.elsevier.com/S0167-1987(21)00029-5/sbref0130
http://refhub.elsevier.com/S0167-1987(21)00029-5/sbref0135
http://refhub.elsevier.com/S0167-1987(21)00029-5/sbref0140
http://refhub.elsevier.com/S0167-1987(21)00029-5/sbref0140
http://refhub.elsevier.com/S0167-1987(21)00029-5/sbref0140
http://refhub.elsevier.com/S0167-1987(21)00029-5/sbref0145
http://refhub.elsevier.com/S0167-1987(21)00029-5/sbref0145
http://refhub.elsevier.com/S0167-1987(21)00029-5/sbref0150
http://refhub.elsevier.com/S0167-1987(21)00029-5/sbref0150
http://refhub.elsevier.com/S0167-1987(21)00029-5/sbref0155
http://refhub.elsevier.com/S0167-1987(21)00029-5/sbref0155
http://refhub.elsevier.com/S0167-1987(21)00029-5/sbref0160
http://refhub.elsevier.com/S0167-1987(21)00029-5/sbref0160
http://refhub.elsevier.com/S0167-1987(21)00029-5/sbref0160
http://refhub.elsevier.com/S0167-1987(21)00029-5/sbref0165
http://refhub.elsevier.com/S0167-1987(21)00029-5/sbref0165
http://refhub.elsevier.com/S0167-1987(21)00029-5/sbref0165
http://refhub.elsevier.com/S0167-1987(21)00029-5/sbref0170
http://refhub.elsevier.com/S0167-1987(21)00029-5/sbref0170
http://refhub.elsevier.com/S0167-1987(21)00029-5/sbref0170
http://refhub.elsevier.com/S0167-1987(21)00029-5/sbref0175
http://refhub.elsevier.com/S0167-1987(21)00029-5/sbref0175
http://refhub.elsevier.com/S0167-1987(21)00029-5/sbref0175
http://refhub.elsevier.com/S0167-1987(21)00029-5/sbref0175
http://refhub.elsevier.com/S0167-1987(21)00029-5/sbref0180
http://refhub.elsevier.com/S0167-1987(21)00029-5/sbref0180
http://refhub.elsevier.com/S0167-1987(21)00029-5/sbref0180
http://refhub.elsevier.com/S0167-1987(21)00029-5/sbref0185
http://refhub.elsevier.com/S0167-1987(21)00029-5/sbref0185
http://refhub.elsevier.com/S0167-1987(21)00029-5/sbref0185
http://refhub.elsevier.com/S0167-1987(21)00029-5/sbref0190
http://refhub.elsevier.com/S0167-1987(21)00029-5/sbref0190
http://refhub.elsevier.com/S0167-1987(21)00029-5/sbref0190
http://refhub.elsevier.com/S0167-1987(21)00029-5/sbref0195
http://refhub.elsevier.com/S0167-1987(21)00029-5/sbref0195
http://refhub.elsevier.com/S0167-1987(21)00029-5/sbref0195
http://refhub.elsevier.com/S0167-1987(21)00029-5/sbref0200
http://refhub.elsevier.com/S0167-1987(21)00029-5/sbref0200
http://refhub.elsevier.com/S0167-1987(21)00029-5/sbref0200
http://refhub.elsevier.com/S0167-1987(21)00029-5/sbref0205
http://refhub.elsevier.com/S0167-1987(21)00029-5/sbref0205
http://refhub.elsevier.com/S0167-1987(21)00029-5/sbref0210
http://refhub.elsevier.com/S0167-1987(21)00029-5/sbref0210
http://refhub.elsevier.com/S0167-1987(21)00029-5/sbref0215
http://refhub.elsevier.com/S0167-1987(21)00029-5/sbref0220
http://refhub.elsevier.com/S0167-1987(21)00029-5/sbref0220
http://refhub.elsevier.com/S0167-1987(21)00029-5/sbref0225
http://refhub.elsevier.com/S0167-1987(21)00029-5/sbref0225
http://refhub.elsevier.com/S0167-1987(21)00029-5/sbref0225
http://refhub.elsevier.com/S0167-1987(21)00029-5/sbref0230
http://refhub.elsevier.com/S0167-1987(21)00029-5/sbref0230
http://refhub.elsevier.com/S0167-1987(21)00029-5/sbref0230
http://refhub.elsevier.com/S0167-1987(21)00029-5/sbref0235
http://refhub.elsevier.com/S0167-1987(21)00029-5/sbref0235
http://refhub.elsevier.com/S0167-1987(21)00029-5/sbref0235
http://refhub.elsevier.com/S0167-1987(21)00029-5/sbref0240
http://refhub.elsevier.com/S0167-1987(21)00029-5/sbref0240
http://refhub.elsevier.com/S0167-1987(21)00029-5/sbref0245
http://refhub.elsevier.com/S0167-1987(21)00029-5/sbref0245
http://refhub.elsevier.com/S0167-1987(21)00029-5/sbref0250
http://refhub.elsevier.com/S0167-1987(21)00029-5/sbref0250
http://refhub.elsevier.com/S0167-1987(21)00029-5/sbref0255
http://refhub.elsevier.com/S0167-1987(21)00029-5/sbref0255
http://refhub.elsevier.com/S0167-1987(21)00029-5/sbref0260
http://refhub.elsevier.com/S0167-1987(21)00029-5/sbref0260
http://refhub.elsevier.com/S0167-1987(21)00029-5/sbref0265
http://refhub.elsevier.com/S0167-1987(21)00029-5/sbref0265
http://refhub.elsevier.com/S0167-1987(21)00029-5/sbref0270
http://refhub.elsevier.com/S0167-1987(21)00029-5/sbref0270
http://refhub.elsevier.com/S0167-1987(21)00029-5/sbref0270
http://refhub.elsevier.com/S0167-1987(21)00029-5/sbref0270
http://refhub.elsevier.com/S0167-1987(21)00029-5/sbref0275
http://refhub.elsevier.com/S0167-1987(21)00029-5/sbref0275
http://refhub.elsevier.com/S0167-1987(21)00029-5/sbref0280
http://refhub.elsevier.com/S0167-1987(21)00029-5/sbref0280
http://refhub.elsevier.com/S0167-1987(21)00029-5/sbref0285
http://refhub.elsevier.com/S0167-1987(21)00029-5/sbref0285
http://refhub.elsevier.com/S0167-1987(21)00029-5/sbref0290
http://refhub.elsevier.com/S0167-1987(21)00029-5/sbref0290
https://CRAN.R-project.org/package=caret
http://refhub.elsevier.com/S0167-1987(21)00029-5/sbref0300
http://refhub.elsevier.com/S0167-1987(21)00029-5/sbref0300
http://refhub.elsevier.com/S0167-1987(21)00029-5/sbref0300
http://refhub.elsevier.com/S0167-1987(21)00029-5/sbref0300
http://refhub.elsevier.com/S0167-1987(21)00029-5/sbref0305
http://refhub.elsevier.com/S0167-1987(21)00029-5/sbref0305
http://refhub.elsevier.com/S0167-1987(21)00029-5/sbref0305
http://refhub.elsevier.com/S0167-1987(21)00029-5/sbref0310
http://refhub.elsevier.com/S0167-1987(21)00029-5/sbref0310
http://refhub.elsevier.com/S0167-1987(21)00029-5/sbref0310
http://refhub.elsevier.com/S0167-1987(21)00029-5/sbref0315
http://refhub.elsevier.com/S0167-1987(21)00029-5/sbref0315
http://refhub.elsevier.com/S0167-1987(21)00029-5/sbref0315
http://refhub.elsevier.com/S0167-1987(21)00029-5/sbref0320
http://refhub.elsevier.com/S0167-1987(21)00029-5/sbref0320
http://refhub.elsevier.com/S0167-1987(21)00029-5/sbref0325
http://refhub.elsevier.com/S0167-1987(21)00029-5/sbref0325
http://refhub.elsevier.com/S0167-1987(21)00029-5/sbref0330
http://refhub.elsevier.com/S0167-1987(21)00029-5/sbref0330
http://refhub.elsevier.com/S0167-1987(21)00029-5/sbref0330
http://refhub.elsevier.com/S0167-1987(21)00029-5/sbref0335
http://refhub.elsevier.com/S0167-1987(21)00029-5/sbref0335
http://refhub.elsevier.com/S0167-1987(21)00029-5/sbref0335
http://refhub.elsevier.com/S0167-1987(21)00029-5/sbref0340
http://refhub.elsevier.com/S0167-1987(21)00029-5/sbref0340
http://refhub.elsevier.com/S0167-1987(21)00029-5/sbref0340
http://refhub.elsevier.com/S0167-1987(21)00029-5/sbref0340
http://refhub.elsevier.com/S0167-1987(21)00029-5/sbref0345
http://refhub.elsevier.com/S0167-1987(21)00029-5/sbref0345
http://refhub.elsevier.com/S0167-1987(21)00029-5/sbref0345
http://refhub.elsevier.com/S0167-1987(21)00029-5/sbref0345
http://refhub.elsevier.com/S0167-1987(21)00029-5/sbref0350
http://refhub.elsevier.com/S0167-1987(21)00029-5/sbref0350
http://refhub.elsevier.com/S0167-1987(21)00029-5/sbref0350
http://refhub.elsevier.com/S0167-1987(21)00029-5/sbref0355
http://refhub.elsevier.com/S0167-1987(21)00029-5/sbref0355
https://CRAN.R-project.org/package=e1071
https://CRAN.R-project.org/package=e1071
http://refhub.elsevier.com/S0167-1987(21)00029-5/sbref0365
http://refhub.elsevier.com/S0167-1987(21)00029-5/sbref0365
http://refhub.elsevier.com/S0167-1987(21)00029-5/sbref0370
http://refhub.elsevier.com/S0167-1987(21)00029-5/sbref0370
http://refhub.elsevier.com/S0167-1987(21)00029-5/sbref0370
http://refhub.elsevier.com/S0167-1987(21)00029-5/sbref0375
http://refhub.elsevier.com/S0167-1987(21)00029-5/sbref0375
http://refhub.elsevier.com/S0167-1987(21)00029-5/sbref0380
http://refhub.elsevier.com/S0167-1987(21)00029-5/sbref0380
http://refhub.elsevier.com/S0167-1987(21)00029-5/sbref0380
http://refhub.elsevier.com/S0167-1987(21)00029-5/sbref0385
http://refhub.elsevier.com/S0167-1987(21)00029-5/sbref0385
http://refhub.elsevier.com/S0167-1987(21)00029-5/sbref0385
http://refhub.elsevier.com/S0167-1987(21)00029-5/sbref0390
http://refhub.elsevier.com/S0167-1987(21)00029-5/sbref0390
http://refhub.elsevier.com/S0167-1987(21)00029-5/sbref0390
http://refhub.elsevier.com/S0167-1987(21)00029-5/sbref0395
http://refhub.elsevier.com/S0167-1987(21)00029-5/sbref0395
http://refhub.elsevier.com/S0167-1987(21)00029-5/sbref0400
http://refhub.elsevier.com/S0167-1987(21)00029-5/sbref0400
http://refhub.elsevier.com/S0167-1987(21)00029-5/sbref0400
http://refhub.elsevier.com/S0167-1987(21)00029-5/sbref0400
http://refhub.elsevier.com/S0167-1987(21)00029-5/sbref0405
http://refhub.elsevier.com/S0167-1987(21)00029-5/sbref0405
http://refhub.elsevier.com/S0167-1987(21)00029-5/sbref0405
http://refhub.elsevier.com/S0167-1987(21)00029-5/sbref0405
http://refhub.elsevier.com/S0167-1987(21)00029-5/sbref0410
http://refhub.elsevier.com/S0167-1987(21)00029-5/sbref0410
http://refhub.elsevier.com/S0167-1987(21)00029-5/sbref0415
http://refhub.elsevier.com/S0167-1987(21)00029-5/sbref0415
http://refhub.elsevier.com/S0167-1987(21)00029-5/sbref0415
http://refhub.elsevier.com/S0167-1987(21)00029-5/sbref0420
http://refhub.elsevier.com/S0167-1987(21)00029-5/sbref0420
http://refhub.elsevier.com/S0167-1987(21)00029-5/sbref0425
http://refhub.elsevier.com/S0167-1987(21)00029-5/sbref0425
http://refhub.elsevier.com/S0167-1987(21)00029-5/sbref0425
https://www.R-project.org/
http://refhub.elsevier.com/S0167-1987(21)00029-5/sbref0435
http://refhub.elsevier.com/S0167-1987(21)00029-5/sbref0435
http://refhub.elsevier.com/S0167-1987(21)00029-5/sbref0435
http://refhub.elsevier.com/S0167-1987(21)00029-5/sbref0435
http://refhub.elsevier.com/S0167-1987(21)00029-5/sbref0440
http://refhub.elsevier.com/S0167-1987(21)00029-5/sbref0440
http://refhub.elsevier.com/S0167-1987(21)00029-5/sbref0440


Soil & Tillage Research 209 (2021) 104959

13

Roarty, S., Hackett, R.A., Schmidt, O., 2017. Earthworm populations in twelve cover crop 
and weed management combinations. Appl. Soil Ecology 114, 142–151. 

Rothwell, A., Chaney, K., Hatydock, P., Cole, J., Schmidt, O., 2005. The effects of 
conventional and conservation tillage systems on earthworm populations. In: The 
BCPC International Congress – Crop Science & Technology 2005. Glasgow, UK, 
pp. 483–486. 

Six, J., Elliot, E.T., Paustian, K., 1999. Aggregate and soil organic matter dynamics under 
conventinal and no-tillage sestems. Soil Sci. Soc. Am. J. 63, 1350–1358. 

Strauss, P., Swoboda, D., Blum, W.E.H., 2003. How effective is mulching and minimum 
tillage to control runoff and soil loss? – a literature review. In: Proceedings of the 
Conference on 25 Years of Assessment of Erosions. Ghent, 22–26 September 2003, 
pp. 545–550. 

Strobl, C., Boulesteix, A.L., Augustin, T., 2006. Unbiased split selection for classification 
trees based on the Gini Index. Computational Statistics & Data Anal. 52, 483–501. 

Strobl, C., Boulesteix, A.L., Kneib, T., Augustin, T., Zeileis, A., 2008. Conditional variable 
importance for random forests. BMC Bioinformatics 9, 307. 

Stroosnijder, L., 2006. Measurement of erosion: Is it possible? Catena 64, 162–173. 
Tang, F., Ishwaran, H., 2017. Random Forest missing data algorithms. Statistical Anal. 

and Data Mining 10, 363–377. 
Tharwat, A., 2018. Classification assessment methods. Appl. Computing and Inform.. 
Troeh, F.R., Thompson, L.M., 1993. Soils and Soil Fertility. Oxford University Press, New 

York.  
Tuan, V.D., Hilger, T., MacDonald, L., Clemens, G., Shiraishi, E., Vien, T.D., Stahr, K., 

Cadisch, G., 2014. Mitigation potential of soil conservation in maize cropping on 
steep slopes. Field Crops Res. 156, 91–102. 

Tuszynski, J., 2020. caTools: Tools: Moving Window Statistics, GIF, Base64, ROC AUC, 
etc. R Package Version 1.18.0. https://CRAN.R-project.org/package=caTools. 

Van Bemmelen, J.M., 1890. Über die Bestimmung des Wassers, des Humus, des 
Schwefels, der in den colloïdalen Silikaten gebundenen Kieselsäure, des Mangans u. 
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