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Abstract Summation of ionotropic receptor-mediated responses is critical in neuronal

computation by shaping input-output characteristics of neurons. However, arithmetics of

summation for metabotropic signals are not known. We characterized the combined ionotropic and

metabotropic output of neocortical neurogliaform cells (NGFCs) using electrophysiological and

anatomical methods in the rat cerebral cortex. These experiments revealed that GABA receptors

are activated outside release sites and confirmed coactivation of putative NGFCs in superficial

cortical layers in vivo. Triple recordings from presynaptic NGFCs converging to a postsynaptic

neuron revealed sublinear summation of ionotropic GABAA responses and linear summation of

metabotropic GABAB responses. Based on a model combining properties of volume transmission

and distributions of all NGFC axon terminals, we predict that in 83% of cases one or two NGFCs

can provide input to a point in the neuropil. We suggest that interactions of metabotropic

GABAergic responses remain linear even if most superficial layer interneurons specialized to recruit

GABAB receptors are simultaneously active.

Introduction
Each neuron in the cerebral cortex receives thousands of excitatory synaptic inputs that drive action

potential (AP) output. The efficacy and timing of excitation is effectively governed by GABAergic

inhibitory inputs that arrive with spatiotemporal precision onto different subcellular domains. Syn-

chronization of GABAergic inputs appears to be crucial in structuring cellular and network excitation

and behaviorally relevant rhythmic population activity (Klausberger and Somogyi, 2008). Diverse

subpopulations of GABAergic neurons contribute to network mechanisms at different temporal win-

dows and synchronized cells of particular interneuron types appear to fire in a stereotyped fashion

(Klausberger and Somogyi, 2008). In general, this frequently results in coactivation of similar (and

asynchronization of dissimilar) GABAergic inputs arriving to target neurons (Jang et al., 2020;

Karnani et al., 2016; Kvitsiani et al., 2013), which leads to postsynaptic summation of GABAergic

responses synchronously activated by presynaptic cells of the same type. Most GABAergic cell types

exert inhibitory control through ionotropic GABAA receptors allowing Cl� ions to pass rapidly

through the membrane (Barker and Ransom, 1978) and depending on the magnitude of GABA

release and/or the number of synchronously active presynaptic interneurons, synaptic and extrasy-

naptic GABAA receptors could be recruited. The integration of ionotropic inhibitory signals on the

surface of target cell dendrites is temporally precise and spatially specific (Bloss et al., 2016; Klaus-

berger, 2009; Müller et al., 2012). Summation of ionotropic receptor-mediated responses are
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extensively studied in the neocortex and predominantly characterized by nonlinear rules of interac-

tion (Jadi et al., 2012; Koch et al., 1983; London and Häusser, 2005; Qian and Sejnowski, 1990;

Silver, 2010). In addition to GABAA receptors, metabotropic GABAB receptor activation can occur

during synchronized and/or long-lasting activation of GABAergic inputs (Dutar and Nicoll, 1988;

Isaacson et al., 1993; Mody et al., 1994; Scanziani, 2000; Thomson and Destexhe, 1999).

Among the various interneuron subtypes identified in the neocortex neurogliaform cells (NGFCs)

form a large subset of interneuron population (Petilla Interneuron Nomenclature Group et al.,

2008; Markram et al., 2004; Schuman et al., 2019). Compared to other interneuron subtypes,

NGFCs form dense axonal arborization with an unusually high presynaptic bouton density that is

highly interconnected with other neighboring neurons. NGFCs are known to be especially effective

in recruiting metabotropic GABAB receptors in addition to ionotropic GABAA receptors by sporadic

firing using single cell triggered volume transmission in the microcircuit (Oláh et al., 2009;

Tamás et al., 2003).

GABA binding to GABAB receptors catalyzes GDP/GTP exchange at the Ga subunit and the sep-

aration of Gbg (Bettler et al., 2004). The Gbg subunits – as membrane-anchored proteins – locally

diffuse in the plasma membrane and up to four Gbg subunits bind cooperatively to G-protein gated

inward rectifier potassium (GIRK) channels and trigger a channel opening that drives the membrane

potential toward the K+ reverse potential (Dascal, 1997; Inanobe and Kurachi, 2014;

Stanfield et al., 2002; Wang et al., 2016; Wickman and Clapham, 1995). Activation of GABAB

receptors by NGFCs controls the firing of dendritic spikes in the distal dendritic domain in pyramidal

cells (PCs) (Larkum et al., 1999; Palmer et al., 2012a; Wozny and Williams, 2011) and activity in

the prefrontal cortex is effectively controlled by the strong feed-forward GABAB inhibition mediated

by NGFCs (Jackson et al., 2018). Moreover, GABAB receptors contribute to termination of persis-

tent cortical activity (Craig et al., 2013) and slow inhibition contributes to theta oscillations in the

hippocampus (Capogna and Pearce, 2011).

Relative to the summation of ionotropic responses, postsynaptic summation properties of metab-

otropic receptors are unexplored and to date, there has been no experimental analysis of how neu-

rons integrate electric signals that are linked to inhibitory metabotropic receptors. We set out to

test the summation of metabotropic receptor-mediated postsynaptic responses by direct measure-

ments of convergent inputs arriving from simultaneously active NGFCs and to characterize the likeli-

hood and arithmetics of metabotropic receptor interactions in a model of population output by

incorporating experimentally determined functional and structural synaptic properties of NGFCs.

Results

Quantal and structural characteristics of GABAergic connections
established by individual NGFCs
NGFCs are capable of activating postsynaptic receptors in the vicinity of their presynaptic boutons

via volume transmission (Oláh et al., 2009). To gain insight into the possible effective radius of vol-

ume transmission, we characterized properties of NGFC-PC connections. In vitro simultaneous dual

whole-cell patch clamp recordings were carried out on synaptically connected L1 NGFC to L2/3 PC

pairs in brain slices from the somatosensory cortex of juvenile male Wistar rats. Pre- and postsynap-

tic cells were chosen based on their characteristic passive membrane and firing properties

(Figure 1A) and recorded neurons were filled with biocytin, allowing post hoc anatomical recon-

struction of recorded cells and estimation of putative synaptic release sites (Figure 1B,H). Single

APs triggered in NGFCs elicit biphasic GABAA and GABAB receptor-mediated responses on the tar-

get neurons (Tamás et al., 2003). To determine the number of functional release sites (Nfrs), we

recorded induced pluripotent stem cells (IPSCs) under different release probability by varying extra-

cellular Ca2+ and Mg2+ concentrations (Figure 1C,F). NGFC evoked inhibitory postsynaptic

potentials (IPSPs) show robust use-dependent synaptic depression, therefore we limited the intervals

of AP triggered in NGFCs to 1 min (Karayannis et al., 2010; Tamás et al., 2003). We collected a

dataset of n = 8 L1 NGFC to L2/3 PC pairs with an average of 65.5 ± 5.26 trials per pair and 32.75 ±

4.16 trials for a given Mg2+/Ca2+ concentration per conditions. The limited number of trials due to

the use-dependent synaptic depression of NGFCs restricted our approach to Bayesian quantal analy-

sis (BQA) previously shown to be robust for the estimation of quantal parameters (Bhumbra and

Ozsvár et al. eLife 2021;10:e65634. DOI: https://doi.org/10.7554/eLife.65634 2 of 25

Research article Neuroscience

https://doi.org/10.7554/eLife.65634


Figure 1. Quantal and structural characteristics of GABAergic connections established by individual neurogliaform cells (NGFCs). (A–E) Quantal and

structural properties of a neurogliaform to pyramidal cell (PC) connection. (A) Firing patterns of the presynaptic L1 NGFC (blue) and postsynaptic L2/3

PC (black). (B) Three-dimensional anatomical reconstruction of a recorded L1 NGFC (soma and axon blue) and L2/3 PC (soma and dendrites black, axon

gray). Horizontal line indicates the border of layer 1 (I) and layer 2 (II). (C) Presynaptic action potentials of the L1 NGFC (top, blue) elicited of unitary

induced pluripotent stem cells (IPSCs) in the postsynaptic L2/3 PC at �50 mV holding potential in different Ca2+ concentrations (middle, dark gray: 3

mM Ca2+, 1.5 mM Mg2+, light gray: 2 mM Ca2+, 2 mM Mg2+). Bottom: Representative consecutive traces of elicited unitary IPSCs. Asterisk marks

synaptic transmission failure. (D) Single IPSC peak amplitudes recorded in high (3 mM Ca2+, 1.5 mM Mg2+, dark gray) and low release probability

conditions (2 mM Ca2+, 2 mM Mg2+, light gray), respectively. (E) Distribution of IPSC peak amplitudes in 3 mM Ca2+, 1.5 mM Mg2+ (left) and 2 mM

Figure 1 continued on next page
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Beato, 2013). As expected, IPSC peak amplitudes were modulated by elevated (3 mM Ca2+ and 1.5

mM Mg2+; mean amplitude: 32.7 ± 22.17 pA; rise time: 6.47 ± 1.34 ms; decay time: 12.27 ± 2.42 ms)

and reduced (1.5 mM Ca2+ and 3 mM Mg2+; mean amplitude: 13.58 ± 6.95 pA; rise time: 7.64 ±

3.53 ms; decay time: 11.79 ± 3.21 ms or 2 mM Ca2+ and 2 mM Mg2+; mean amplitude: 12.47 ± 10.9

pA; rise time: 6.95 ± 1.52 ms; decay time: 15.5 ± 10.54 ms) extracellular Ca2+ concentrations consis-

tent with the decline in release probability (Figure 1D). Distributions of IPSC amplitudes detected in

paired recordings were in good agreement with the estimated quantal amplitude distribution

derived from the BQA (Figure 1E). According to BQA, the estimated mean Nfrs was 10.96 ± 8.1

with a mean quantal size (q) of 3.93 ± 1.21 pA (Figure 1G). We performed n=4 experiments in which

the use of low extracellular Ca2+ reduced release probability to a level at which postsynaptic uniqan-

tal events appeared in response to NGFC activation. We evaluated our uniquantal event detection

dataset by measuring multiple parameters of each event. We measured the slope of fitted line on

the initial phase of events/failures, amplitude (averaged maximum), and the area of events. Using

K-means cluster analysis on the three parameters, we managed to separate the events into three

groups having failures, uniquantal and multiquantal responses as separate groups. Having separated

uniquantal events this way, we found that averaged quantal amplitude was 4.59±0.73 pA (n=4) which

is statistically not different (p=0.68, Mann-Whitney test) from quantal amplitude measured with

BQA. (Figure 1—figure supplement 1). Full reconstruction of functionally connected NGFC-PC

pairs (n = 6) allowed comparisons of the Nfrs estimated by BQA and the number of putative release

sites by counting the number of presynaptic boutons located within increasing radial distances mea-

sured from postsynaptic dendrites (Figure 1H). Previous experiments showed that direct synaptic

junctions are not required for functional NGFC to PC connections (Oláh et al., 2009) and GABA

reaches receptors up to 3 mm from the release site (Farrant and Nusser, 2005; Overstreet-

Wadiche and McBain, 2015; Overstreet et al., 2000). In agreement with earlier observations

(Oláh et al., 2009), direct appositions were not observed in most NGFC to PC pairs and the number

of NGFC axonal boutons potentially involved in eliciting postsynaptic responses increased by sys-

tematically increasing the radial distance from the dendrites of PCs. Projecting the range of BQA-

derived Nfrs estimates over the number of NGFC boutons putatively involved in transmission for the

same connections (Figure 1H, red lines) suggests an effective range of 0.86–1.75 mm for nonsynaptic

volume transmission from NGFCs to PCs supporting previous reports on distances covered by extra-

synaptic GABAergic communication (Farrant and Nusser, 2005; Overstreet-Wadiche and McBain,

2015; Overstreet et al., 2000). Moreover, we detected linear correlation (r = 0.863, p = 0.027)

between BQA-derived Nfrs and the number of NGFC boutons putatively involved in transmission at

radial distances <1.5 mm from PC dendrites; decreasing or increasing the distance resulted in the

loss of correlation (Figure 1I).

Structural characteristics of GABAergic connections established by the
population of layer 1 NGFCs
To have a better idea about how does the volume transmission radius potentially affect the fraction

of converging outputs of L1 NGFC population to the same space, we developed a model to assess

the overall output of NGFCs located in the supragranular layers of the neocortex. Unitary volume

transmission by NGFCs is limited to their extremely dense axonal arborization (Oláh et al., 2009;

Rózsa et al., 2017) Therefore, we determined the three-dimensional (3D) distribution of axon

lengths of individual NGFCs with Sholl analysis (Figure 2A). By superimposing individual NGFC

Figure 1 continued

Ca2+, 2 mM Mg2+ (right), with projected binomial fits (blue). (F) Estimated release probability values in different experimental conditions (n = 8). (G)

Estimated quantal size (3.93 ± 1.22 pA) and number of functional release sites (Nfrs; 10.96 ± 8.1) derived from Bayesian quantal analysis in each

experiment (n = 8). (H) Number of NGFC boutons in the proximity of postsynaptic PC dendrites from anatomical reconstructions of connected NGFC

to PC pairs (n = 8; gray, individual pairs; blue, average, and SD). For comparison, red lines indicate mean ± SD of Nfrs shown on panel F corresponding

to distances between presynaptic NGFC boutons and PC dendrites. (I) Number of NGFC boutons counted at increasing distances from PC dendrites in

NGFC to PC pairs. Correlation to Nfrs in the same pairs is best when counting boutons closer than 1.5 mm from PC dendrites.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. A representative single experiment for quantal amplitude measurement during low release probability.
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Figure 2. Structural characteristics of collective GABAergic output formed by the population of layer 1 neurogliaform cells (NGFCs). (A) Sholl analysis

on the axonal arborization of an individual NGFC. Inset, axonal lengths measured in concentric shells of increasing radius (step, 10 mm). (B) Three-

dimensional arborization of a model generated axon. (C) Superimposition of three-dimensionally reconstructed axonal arborizations of NGFCs (n = 16,

blue) and the computer generated model NGFCs (n = 16, red) aligned at the center of somata. (D) Comparison of manually reconstructed axonal

Figure 2 continued on next page
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reconstructions centered by their somata (n = 16; Figure 2C), a representative distribution of axons

was calculated as a function of distance from the soma (Figure 2D). We also assessed the distance

between axonal boutons (n = 1456) along reconstructed axons of NGFCs (n = 6) and found that

interbouton distances were 3.36 ± 2.54 mm (Figure 2—figure supplement 1). Next, we developed

an algorithm that generates model NGFCs (n = 52) by growing axon arborizations similar (p = 0.99,

two-sided K-S test, Figure 2D) to the population of the experimentally reconstructed representative

distribution of NGFC axons (n = 16) using interactions of segment lengths, branch point locations,

and segment orientations while keeping the density of axonal boutons along axon segments

(Figure 2B,C). In order to achieve a relatively complete representation of all NGFC axon terminals in

a model at the population level, we performed immunhistochemical labeling of a-actinin2, which is

known to label the overwhelming majority of supragranular NGFCs in the neocortex

(Uematsu et al., 2008). Somata immunoreactive for a-actinin2 in superficial cortical layers showed

distribution along the axis perpendicular to the surface of the cortex with a peak at ~50–150 mm dis-

tance from the pia mater (Figure 2E). According to this radial distribution and with no apparent ten-

dency along the horizontal axis, we placed NGFC somatas in a 354 � 354 � 140 mm3 volume to

create a realistic spatial model of L1 NGFC population (Figure 2F). 3D pairwise shortest distances

between a-actinin2 + somata (n = 152) and distances between somata placed into the model space

(n = 374) were similar (p = 0.51, two-sided K-S test, Figure 2G). We then used the axon growing

algorithm detailed above from each soma position to model a population-wide distribution of NGFC

axonal release sites. Quantal and structural properties of NGFC to PC connections shown above sug-

gest a volume transmission distance of ~1.5 mm from potential sites of release (Figure 1H,I), thus we

mapped the coverage of surrounding tissue with GABA simultaneously originating from all NGFC

terminals with a 1.5 mm of transmitter diffusion in the model. Using these conditions in simulations

(n = 36), less than eight NGFC axonal terminals contributed as effective GABA sources at any loca-

tion in the superficial neocortex (Figure 2H). Moreover, these boutons originated from a limited

number of presynaptic NGFCs; when considering the extreme case of population-level cooperativity,

that is, when all putative NGFCs were active, most frequently a single NGFC release site serves as a

GABA source (67.7 ± 7%) and potential interactions between two, three, or more different NGFCs

take place in limited occasions (15.34 ± 2.1%, 8.5 ± 2.6%, and 8.45 ± 3.16%, respectively). The out-

come of these simulations is consistent with earlier results suggesting that single cell-driven volume

transmission covers only the close proximity of NGFCs (Oláh et al., 2009) but also indicates poten-

tial interactions between a restricted number of neighboring NGFCs.

Coactivation of putative NGFCs in L1 somatosensory cortex in vivo
Transcallosal fibers establish interhemispheric inhibition that operates via GABAB receptor activation

located on apical dendrites (Palmer et al., 2012b) and it has been suggested that this massive

GABAB receptor recruitment in the superficial layers includes the activation of NGFCs (Palmer et al.,

2012b). To assess the fraction of synchronously active putative NGFCs under close to physiological

conditions, we applied in vivo two-photon Ca2+ imaging. We monitored the activity of L1 neurons

bulk-loaded with calcium indicator Oregon Green BAPTA-1-AM (OGB-1-AM) (Figure 3A) during hin-

dlimb stimulation, which results in the activation of transcallosal inputs in L1 of the somatosensory

cortex of urethane-anesthetized rats (n = 5). Stimulation of the ipsilateral hindlimb (200 mA, 10 ms)

evoked Ca2+ signals in a subpopulation of neurons in L1 (n = 114 neurons; n = 46 versus 68 respon-

sive versus non-responsive neurons, respectively; data pooled from six animals; Figure 3B and C).

Figure 2 continued

arborizations of NGFCs (n = 16; blue, mean; light blue, SD) and model generated axons (n = 52; red, mean; light red, SD). (E) Left: a-Actinin2

immunohistochemistry in supragranular layers of the neocortex (scale bar, 100 mm). Right: Distribution of a-actinin2 immunopositive somata. (F) Top:

Three-dimensional model of NGFCs somata, axonal arborizations, and bouton distributions in a 354 � 354 � 140 mm3 volume. Bottom: heat map

showing the number of axonal boutons interacting at distances of <1.5 mm. (G) Distribution of the shortest distance between somata in the model (red)

and in a-actinin2 immunohistochemistry experiments (blue). (H) Percentage distribution of the number of interacting boutons within 1.5 mm distance

from each NGFC.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Calculation of neurogliaform cells (NGFCs) interbouton interval.
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On average, 38.2 ± 5.2% of the L1 neurons were active following ipsilateral hindlimb stimulation,

which is remarkably similar to the proportion found earlier (Palmer et al., 2012b; Figure 3E). To fur-

ther identify L1 neurons active during hindlimb stimulation, we performed immunohistochemistry for

the actin-binding protein a-actinin2 (Uematsu et al., 2008; Figure 3D and F) using the same cortical

area of L1 on which two-photon imaging was performed previously. Mapping a-actinin2 positive

Figure 3. Coactivation of neurogliaform cell population in L1 somatosensory cortex in vivo. (A) Experimental setup. Head-fixed anesthetized rats were

placed under a two-photon microscope having a cranial window above the hindlimb somatosensory cortex. OGB-1 AM and SR 101 were injected into

L1. Ipsilateral hindlimb stimulation was performed with an electric stimulator. (B) Two-photon image of neurons that were labeled with OGB-1 in L1. SR

101 labeled astrocytes. Right: DF/F changes of Ca2+ signals (gray: individual traces; black: mean of 10 consecutive traces) during series of ipsilateral

stimulation (black arrowhead). Traces correspond to the marked cells. (C) Time-series heat map of 44 L1 interneurons evoked DF/F changes in Ca2+

signals during ipsilateral hindlimb stimulation in a single experiment (black arrowhead). (D) Scatter plot showing the spatial location of L1 interneuron

somata in a single experiment. Colors are corresponding to the responsiveness shapes to the molecular identity (not responsive and a-actinin2�, blue

dots; responsive and a-actinin2�, green dots; responsive and a-actinin2+, green triangles). (E) Stack columns show the fraction of responsive versus not

responsive cells in different experiments (n = 5 animals). Far-right columns show the mean value. (F) In vivo two-photon image showing imaged

neurons. To the right, confocal images from the same area show immunohistochemical detection of a-actinin2+ neurons (arrowhead). a-Actinin2� cells

were visualized by exclusive DAPI (40,6-diamidino-2-phenylindole) staining (arrow). Scale bar, 20 mm. (G) Stack columns show the proportion of a-

actinin2 immunoreactivity among responsive versus not responsive cells (n = 2 animals). Far-right columns show the mean value.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Spatial relationship of responsive and not responsive L1 interneurons during ipsilateral hindlimb stimulation.
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cells among in vivo two-photon Ca2+ imaging monitored interneurons (Figure 3D) showed that

closely located presumed NGFCs were active (on average 216.09 ± 77.93 mm soma to soma distance

from two experiments, Figure 3—figure supplement 1) allowing summation of outputs by presump-

tive NGFCs. Cross-examination of neurons responsive/non-responsive to hindlimb stimulation versus

neurons immunopositive/negative for a-actinin2 revealed that the majority of the active neurons

were a-actinin2 positive (10 out of 15 neurons, 67%, n = 2 animals) and the majority of inactive neu-

rons were a-actinin2 negative (22 out of 26 neurons, 85%, Figure 3G) suggesting that a substantial

fraction of L1 NGFCs are activated during hindlimb stimulation. Combination of the datasets derived

from the structural analysis of GABAergic connections established by the population of layer 1

NGFCs above and the in vivo mapping of coactivated putative NGFCs suggests that summation of

NGFC output is feasible and, at the same time, is dominated by GABA released from boutons of a

one or two NGFCs: having approximately two-thirds of NGFCs simultaneously active further sup-

presses the potentially synchronous contribution of three or more NGFCs (8.5% and 8.45%, see

above) already constrained by structural properties in a point of the cortex.

Summation of convergent, unitary IPSPs elicited by NGFC
Our in vivo measurements above corroborate earlier results (Palmer et al., 2012b) on widespread

simultaneous activation of putative L1 NGFCs in response to transcallosal inputs. To directly measure

the summation of converging inputs from superficial NGFCs, in vitro simultaneous triple recordings

were performed from two presynaptic NGFCs and a target PC (n = 4, Figure 4A). First, we mea-

sured the amplitude of unitary IPSPs (n = 8) elicited by single L1 NGFCs in the target L2/3 PC and

found that smaller and bigger inputs in a triplet were �1.68 ± 1.51 and �2.19 ± 1.33 mV (rise time:

4.66 ± 2 ms; half-width: 19.29 ± 5.76 ms; decay time: 8.94 ± 2.91 ms), respectively. Next we acti-

vated the two L1 NGFC inputs synchronously (0.17 ± 0.05 ms) and such coactivation resulted in mod-

erately sublinear summation of convergent IPSPs (maximal nonlinearity, �9.1 ± 4.3%) measured as

the difference of calculated (�3.81 ± 2.76 mV) and experimentally determined (�3.57 ± 2.55 mV)

sums of convergent single inputs (n = 4, Figure 4B). These results are in line with experiments show-

ing moderately sublinear interactions between identified, single cell evoked fast IPSPs (Tamás et al.,

2002). Interestingly, the time course of sublinearity followed the fast, presumably GABAA receptor-

mediated part of the unitary and summated IPSPs (Figure 4C) suggesting that ionotropic and

metabotropic GABAergic components of the same input combinations might follow different rules

of summation. To test the interaction of unitary GABAB receptor-mediated IPSPs directly, we

repeated the experiments above with the application of the GABAA receptor antagonist gabazine

(10 mM). Pharmacological experiments on the output of NGFCs are very challenging due to the

extreme sensitivity of NGFC triggered IPSPs to presynaptic firing frequency (Capogna, 2011;

Tamás et al., 2003) forcing us to collect the data in a different set of triple recordings (n = 8,

Figure 4D). As expected (Tamás et al., 2003) unitary, gabazine-insensitive, slow IPSPs had onset

latencies, rise times, and half-widths similar to GABAB receptor-mediated responses (49.42 ± 5.8,

86.95 ± 8.82, and 252.27 ± 36.92 ms, respectively, n = 16, Figure 4E). Peak amplitudes of converg-

ing smaller and bigger slow IPSPs were �0.66±0.22 and �0.94±0.37 mV, respectively. Synchronous

activation of two presynaptic L1 NGFC converging onto the same L2/3 PC resulted in linear (�1.6 ±

6.6%) summation of slow IPSPs as peak amplitudes of calculated sums of individual inputs versus

experimentally recorded compound responses were �1.58 ± 0.53 and �1.60 ± 0.55 mV, respectively

(Figure 4F). Taken together, our triple recordings in gabazine versus control conditions suggest sig-

nificantly different (p = 0.021, two-sided MW U-test) linear interactions between slow, GABAB IPSPs

as opposed to sublinearly summating fast, GABAA IPSPs elicited by the same presynaptic interneu-

ron population.

Integration of GABAB receptor-mediated responses are not affected by
HCN channel and GABA reuptake
The predominant target area of the superficial NGFCs, the distal apical dendritic membrane of PCs,

express voltage-dependent hyperpolarization-activated cyclic nucleotide-gated channel 1 (HCN1)

known to attenuate dendritic signals (Berger et al., 2001; Kalmbach et al., 2018; Lörincz et al.,

2002; Robinson and Siegelbaum, 2003; Sheets et al., 2011). To investigate whether HCN1 chan-

nels contribute to mechanisms of interactions between GABAB receptor-mediated postsynaptic
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Figure 4. Summation of convergent, unitary inhibitory postsynaptic potentials (IPSPs) elicited by neurogliaform cells (NGFCs). (A) Schematic

experimental setup of triplet recordings. Firing pattern of two presynaptic NGFCs (light blue and blue) and a postsynaptic pyramidal cell (PC) (black).

(B) Action potential triggered under control conditions in the NGFCs individually (1, 2) or synchronously (1 and 2) elicited unitary (1, 2) and convergent

(1 and 2) IPSPs in the postsynaptic PC. Below, the time course of the difference between the measured (1 and 2) and calculated (1 + 2) sums of

Figure 4 continued on next page
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responses, we performed experiments on NGFC-to-PC pairs and evoked one to four APs in a single

presynaptic NGFC at 100 Hz. The high stimulus frequency allows to induce GABA release with up to

four APs and still remain within the time window where the presynaptic GABAB receptors are not yet

activated and unable to inhibit voltage-dependent Ca2+ channels (Chen and van den Pol, 1998).

This ensures that short-term plasticity does not have a presynaptic effect that could hinder the

release of GABA by later APs (Karayannis et al., 2010). This experimental configuration mimics the

extreme conditions when multiple presynaptic release sites converge in a tight space and creating

excessive GABAB receptor-mediated inhibition (Figure 5A). Triggering a single spike in the presence

of gabazine (10 mM) did not saturate postsynaptic GABAB receptors since the postsynaptic response

induced by two spikes was proportional to the arithmetic sum of unitary postsynaptic responses

(experimental sums: �1.25 mV calculated sums: �1.26 mV; unitary IPSP rise time: 78.69 ± 27.28 ms;

decay time: 56.27 ± 15.88 ms), apparently showing linear summation properties similar to triple

recordings testing summation convergent inputs above. However, further increase in the number of

evoked APs to 3 and 4 introduced sublinearity to summation (n = 6, 1AP: �0.63 ± 0.50 mV, 2APs:

�1.25 ± 1.06 mV, 3APs: �1.53 ± 0.84 mV, 4APs: �1.61 ± 1.09 mV, Figure 5B; normalized values:

2APs: 2.00 ± 1.08, 3APs: 2.34 ± 1.16, 4APs: 3.17 ± 1.26, Figure 5C). Importantly, recordings in the

presence of HCN1 channel blocker, ZD7288 (10 mM) showed summation properties similar to con-

trol, summation was linear with two APs and changed to slightly sublinear upon the 3rd to 4th spike

(n = 5, 1AP: �0.82 ± 0.63 mV, 2APs: �1.59 ± 0.76 mV, 3APs: �1.66 ± 0.72 mV, 4APs: �1.90 ± 1.07

mV, unitary IPSP rise time: 97.7 ± 29.05 ms and decay time: 103.57 ± 48.94 ms; Figure 5B; normal-

ized values and its comparison to control: 2APs: 2.06 ± 1.06, p = 0.983; 3APs: 1.99 ± 1.17, p =

0.362; 4APs: 2.56 ± 1.6, p = 0.336; two-sided MW U-test, Figure 5C). These experiments suggest

that when a physiologically probable number of NGFCs are simultaneously active, HCN1 channels

are locally not recruited to interfere with the summation of GABAB receptor-mediated responses.

Previous experiments suggested that a single AP in an NGFC is able to fill the surrounding extra-

cellular space with an effective concentration of GABA (Oláh et al., 2009) and, in turn, extracellular

GABA concentration producing GABAB receptor activation is tightly regulated via GABA transport-

ers (GAT-1) (Gonzalez-Burgos et al., 2009; Isaacson et al., 1993; Rózsa et al., 2017;

Szabadics et al., 2007). Therefore, we tested whether GAT-1 activity affects the summation of

GABAB receptor-mediated responses potentially limiting the number of GABAB receptors reached

by GABA released by NGFCs. Selective blockade of GAT-1 with NO-711 (10 mM) increased the

amplitude of GABAB receptor-mediated IPSP; however, it did not influence summation properties

(n = 6, 1AP: �1.11 ± 0.62 mV, 2APs: �2.28 ± 1.07 mV, 3APs: �3.1 ± 0.40 mV, 4APs: �3.54 ± 1.59

mV, unitary IPSP rise time: 118.85 ± 37.58 ms; decay time: 80.54 ± 40.94 ms; Figure 5B; normalized

values and its comparison to control: 2APs: 2.06 ± 1.17, p = 0.853; 3APs: 2.36 ± 0.31, p = 0.645;

4APs: 2.97 ± 1.54, p = 0.515; two-sided MW U-test, Figure 5C). Accordingly, interactions between

an in vivo realistic number of simultaneously active NGFCs lead to linear GABAB response summa-

tion even if increased concentration of GABA is present in the extracellular space.

Subcellular localization of GABAB receptor-GIRK channel complex
determines summation properties
High-resolution quantitative electron microscopy showed that GABAB receptors and GIRK channels

are segregated on dendritic shafts; however, receptor-channel complexes colocalize on dendritic

spines (Kulik et al., 2006). Theoretical studies suggest that the distance between the receptor and

effector limits the recruitment of effector molecules to the vicinity of receptors (Brinkerhoff et al.,

2008; Kulik et al., 2006), thus we asked if summation properties were influenced by the relative

location of of GABAB receptors and GIRK channels when several presynaptic inputs converge. To

this end, we constructed a simulation environment based on a previously published 3D

Figure 4 continued

convergent IPSPs. (C) The linearity of response summation in a single experiment (top) and on populations of convergent NGFC triggered IPSPs

(bottom) recorded in control conditions (n = 4) (dark green, population average; light green, SD). (D) Same as experimental setup as (A) on a different

set of cells but in the presence of GABAA receptor antagonist, gabazine. (E) Identical stimulation protocol as (B), note the disappearance of the

difference between the measured (1 and 2) and calculated (1 + 2) sums of convergent IPSPs. (F) Same as (C), but under blocking GABAA receptors with

gabazine (n = 8) (dark green, population average; light green, SD).
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Figure 5. Integration of GABAB receptor-mediated responses are not affected by HCN channel and GABA reuptake. (A) Schematic experimental setup

of paired recordings. Bursts of up to four action potentials (APs) were elicited in neurogliaform cells (NGFCs) at 100 Hz in the presence of gabazine. (B)

NGFC to pyramidal cell (PC) paired recordings showed similar linear GABAB receptor-mediated summation under control conditions. Top: Individual

traces showing inhibitory postsynaptic potential (IPSP) kinetics upon AP burst protocol (vertical lines indicating the triggered APs) during control (green

traces, n = 6), in presence of hyperpolarization-activated cation (HCN) channel blocker ZD7288 (red traces, n = 5) or GABA reuptake blocker NO-711

(blue traces, n = 6). Bottom: Traces show measured IPSP from two consecutive presynaptic stimulation (measured) and the arithmetic sum of two unitary

IPSP (calculated). (C) Summary of normalized IPSP peak amplitudes. Compare to control conditions (2APs: 2.00 ± 1.08; 3APs: 2.34 ± 1.16; 4APs: 3.17 ±

1.26), summation properties of GABAB mediated unitary IPSPs are neither affected by application of ZD7288 (2APs: 2.06 ± 1.06, p = 0.983; 3APs: 1.99 ±

1.17, p = 0.362; 4APs: 2.56 ± 1.6, p = 0.336; two-sided MW U-test) nor NO-711 (2APs: 2.06 ± 1.17, p = 0.853; 3APs: 2.36 ± 0.31, p = 0.645; 4APs: 2.9 7±

1.54, p = 0.515; two-sided MW U-test). Dashed line indicates the linearity.
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reconstruction of a postsynaptic dendritic segment (Edwards et al., 2014) targeted by realistically

positioned release sites of NGFCs (Figure 6A and B). Molecular interactions in this spatially realistic

system were modeled using Monte Carlo algorithms to simulate movements and reactions of mole-

cules (Kerr et al., 2008). Membranes of the postsynaptic dendritic segment were populated (see

Materials and methods, Figure 6—figure supplement 1) with GABAB receptors and GIRK channels

according to compartment-dependent data from SDS-digested freeze-fracture replica immunolabel-

ing (Kulik et al., 2006; Figure 6C). Neurotransmitter diffusion in the brain is influenced by tissue tor-

tuosity and the fraction of extracellular space in total tissue volume (Syková and Nicholson, 2008),

thus we simulated realistic molecular diffusion in tortuous extracellular space (Tao et al., 2005) (see

Materials and methods). The number and position of NGFC presynaptic boutons around the post-

synaptic dendritic segments in the model were used according to structural characteristics of

GABAergic connections established by individual NGFCs (n = 4 boutons 1.2 ± 0.7 mm from the den-

drite; Figure 1I,H, Figure 6—figure supplement 2) and according to the bouton density deter-

mined for the overall output of NGFC population (Figure 2F). Previous work suggests that a single

AP in an NGFC generates GABA concentrations of 1–60 mM lasting for 20–200 ms

(Karayannis et al., 2010). In our model, the amount of released GABA was consistent from release

event to release event and dropped off exponentially with distance from the synapse ([GABA]: 0.0

mm, 1 mM; 0.5 mm, 60 mM; 2.0 mm, 1 mM; Figure 6—figure supplement 3, Supplementary file 1,

2). The GABA exposure time was 114.87 ± 2.1 ms with decay time constants of 11.52 ± 0.14 ms. Our

modeling trials show that single AP triggered GABA release can activate a total of 5.82 ± 2.43

GABAB receptors (2.81 ± 1.55 on spine, 3.01 ± 1.71 on the shaft). Furthermore, activation of GABAB

receptors triggers intracellular mechanisms and the initial GDP/GTP exchange at the Ga subunit

separates the G-protein heterotrimeric protein and produces Gbg subunits (peak number of Gbg

subunits for single AP: 338.54 ± 138.75). Lateral membrane diffusion of Gbg subunits lead to the acti-

vation of 3.66 ± 2.17 GIRK channels in total (2.47 ± 1.88 on spine, 1.17 ± 1.26 on the shaft) in

response to single AP. Next, consecutive GABA releases were induced with 10 ms delays to repli-

cate the 100 Hz stimulation protocol used in the experiments above (Figure 5A). The increased

GABA concentration from two sequential stimuli raised the number of active GABAB receptors to

11.29 ± 3.48 (5.57 ± 2.36 on spine, 5.72 ± 2.52 on the shaft). Three and four consecutive releases

activated a total of 16.19 ± 3.88 and 20.99 ± 4.99 GABAB receptors, respectively (7.96 ± 2.74 on

spine, 8.23 ± 2.97 on the shaft and 10.62 ± 3.28 on spine, 10.37 ± 3.53 on the shaft, respectively).

When modeling consecutive GABA releases, massive amount of Gbg subunits were produced

together with a decline in relative production efficacy per APs, possibly due to the limited number

of G-proteins serving as a substrate in the vicinity of active receptor clusters (peak number of Gbg

subunits for 2AP: 612.10 ± 171.95; 3AP: 857.78±194.14; 4AP: 1081.81 ± 229.57). Two consecutive

APs resulted in the activation of 6.98 ± 3.29 GIRK channels (2.13 ± 1.63 on dendritic shaft and 4.85 ±

2.65 on spine) in the simulations. Importantly, this number of activated GIRK channels in response to

two APs was close to the arithmetic sum of the number of GIRK channels activated by two single AP

responses (�4.87% in total, �1.86% on spines and �9.86% on the shaft; Figures 4E and

5A). Further increase in the GABA exposure proportional to three and four APs leads to the activa-

tion of 10.39 and 12.89 GIRK channels, respectively (7.01 ± 3.11 and 8.68 ± 3.46 on spines and 3.37

± 2.08 and 4.21 ±2. 48 on the shaft, respectively). These numbers of GIRK channels corresponded to

�5.68% and �13.58% of the arithmetic sum of GIRK channels activated by three and four single AP

responses (�5.71% and 13.82% on spines and �4.15% and �11.16% on the shaft). The increased lin-

earity of total GIRK channel activation relative to experimental results could be a result of several

unknown properties of the cascade linking GABAB receptors to GIRK channels and/or due to vesicle

depletion in terminals of NGFCs during multiple rapid release of GABA not incorporated into our

model.

GABAB receptor and GIRK channel complexes located in particular subcellular compartments

appeared to have different effectiveness of recruiting GABAB receptors and active GIRK channels in

our simulations (Figure 6D). We observed different numbers of GABAB receptors activated on the

shaft and spine (normalized values to 1AP: 2APs: shaft: 1.91 ± 0.84, spine: 1.98 ± 0.84, n = 534, p =

0.009; 3APs: shaft: 2.74 ± 0.99, spine: 2.84 ± 0.98, n = 1871, p = 0.173; 3APs: shaft: 3.45 ± 1.18,

spine: 3.78 ± 1.17, n = 709, p< 0.005, two-sided MW U-test, Figure 6E). The recruitment of GIRK

channels was more effective on spines compared to shafts when triggering two APs (normalized val-

ues to 1AP: shaft: 1.8±1.37, spine: 1.96±1.07, n=534, p<0.005); the trend was similar in response to
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Figure 6. Subcellular localization of GABAB receptor-G-protein gated inward rectifier potassium (GIRK) channel complex determines summation

properties. (A) Visualization of the complete MCell-based model in the course of GABA release. (B) Magnified view of the model. (C) Distribution of

GABAB receptors and GIRK channel clusters on the dendritic membrane in the model (gray bars: dendritic spine; black bars: dendritic shaft). (D)

Overview of the molecular interactions during increasing GABA release. Top to bottom: NGFC output simulated by releasing GABA (red) in the

extracellular space proportional to one to four action potential (AP) stimulation. Below, the total number of produced Gbg subunits (brown) by activated

GABAB receptors (green) located on the dendritic shaft and spine. After lateral diffusion in the plasma membrane, Gbg subunits bind to GIRK channels

(blue). (E) Boxplot of GABA, Gbg subunits, GABAB receptors, and GIRK channels quantity normalized to 1AP (GABA: 2APs: 1.67 ± 0.004, 3APs: 2.12 ±

0.005, 4APs: 2.42 ± 0.006, Gbg subunits: 2APs: 1.85 ± 0.51, 3APs: 2.53 ± 0.57, 4APs: 3.2 ± 0.68; GABAB receptor shaft: 2APs: 1.91 ± 0.84, 3APs: 2.74 ±

0.99, 4APs: 3.45 ± 1.18; GABAB receptor spine: 2APs: 1.98 ± 0.84, 3APs: 2.84 ± 0.98, 4APs: 3.78 ± 1.17; GIRK channel shaft: 2APs: 1.8 ± 1.37, 3APs: 2.84 ±

1.75, 4AP: 3.55 ± 2.09; GIRK channel spine: 2APs: 1.96±1.07, 3APs: 2.84 ± 1.26, 4APs: 3.52 ± 1.4). Square indicates the mean, line shows the median

inside the boxplot. (F) Quantification of the signaling effectiveness on the shaft and spine region of the model dendrite during increasing GABA release

(1AP: shaft: 0.39 ± 0.06, spine: 0.82 ± 0.21, p < 0.005, n = 1164, two-sided MW U-test; 2AP: shaft: 0.35 ± 0.086, spine: 0.84 ± 0.19, p < 0.005, n = 534,

two-sided MW U-test; 3AP: shaft: ± 0.41 ± 0.036, spine: 0.85 ± 0.15, p < 0.005, n = 1871, two-sided MW U-test; 4AP: shaft: 0.39 ± 0.05, spine: 0.81 ± 0.01,

p < 0.005, n = 709, two-sided MW U-test). Square indicates the mean, line shows the median inside the boxplot.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. GABAB receptor and G-protein gated inward rectifier potassium (GIRK) channel distribution, created by a cascade reaction.

Figure 6 continued on next page
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three and four APs, but results were not significant (normalized values to 1AP: 3AP: shaft: 2.84±1.75,

spine: 2.84 ± 1.26, n = 1871, p = 0.109; 4AP: shaft: 3.55 ± 2.09, spine: 3.52 ± 1.4, n = 709, p =

0.216, two-sided MW U-test, Figure 6E). The compartment-specific effectiveness of signaling as the

ratio of activated GIRK channels and active GABAB receptors (Figure 6F) shows that spines repre-

sent the preferred site of action corroborating earlier suggestions (Qian and Sejnowski, 1990).

Discussion
The unique inhibitory communication via volume transmission separates NGFC interneurons from

other interneuron classes in the neocortex. Numerous observations support the idea of volume

transmission (Overstreet-Wadiche and McBain, 2015). (1) NGFC activation generates an unusually

prolonged inhibition on the postsynaptic cell (Karayannis et al., 2010; Mańko et al., 2012;

Oláh et al., 2009; Szabadics et al., 2007). (2) Released GABA acts on synaptic and extrasynaptic

GABA receptors (Karayannis et al., 2010; Oláh et al., 2009; Price et al., 2005; Tamás et al.,

2003), (3) as well as on nearby presynaptic terminals (Oláh et al., 2009). (4) NGFCs show a very high

rate of functional coupling between the neighboring neurons (Jiang et al., 2015; Oláh et al., 2009).

(5) Ultrastructural observations showed the lack of clearly defined postsynaptic elements in the

apposition of the NGFC boutons (Mańko et al., 2012; Oláh et al., 2009; Vida et al., 1998). (6)

NGFCs act on astrocytes within the reach of their axonal arborization through nonsynaptic coupling

(Rózsa et al., 2017). The distance of effective operation through NGFC-driven volume transmission,

however, is not clear. Here, we used functional and structural characterization of NGFC-PC inhibitory

connections and suggest that GABA released from NGFC axonal terminals activates GABA recep-

tors up to about ~1.8 mm, a result remarkably similar to previous estimations for the range of extra-

synaptic action of synaptically released GABA (Farrant and Nusser, 2005; Overstreet-Wadiche and

McBain, 2015; Overstreet et al., 2000). Given that our distance estimates are not based on ultra-

structural evidence and we cannot exclude that fraction of anatomically defined boutons were not

functional, the accuracy of our prediction for the range of volume transmission is limited. Our experi-

ments also shed light to some quantal properties of NGFC’s GABA release. These experiments are

constrained by the robust use-dependent depression mediated by NGFCs (Karayannis et al., 2010;

Tamás et al., 2003), therefore implementation of multiple probability fluctuation analysis (Sil-

ver, 2003), the gold standard for quantal analysis, was not feasible and BQA (Bhumbra and Beato,

2013) was needed as an alternative. The revealed linear correlation between BQA-derived Nfrs and

the number of NGFC boutons putatively involved in transmission is compatible with the release of a

single docked vesicle from individual NGFC boutons. However, our light microscopic methods

applied in this study are insufficient for definitive claims concerning single or multivesicular release

from neurogliaform boutons, especially in the light of studies highlighting the inaccuracy of compar-

ing the Nfrs with the anatomical synaptic contacts detected by light microscopy (Oláh et al., 2009,

Molnár et al., 2016, Holler et al., 2021).

The functional distance of volume transmission is particularly important for the characterization of

interactions between NGFCs and for understanding the population output of NGFCs. Realistic

representation of an entire subpopulation of neurons is considered essential for the interpretation of

network functions (Karnani et al., 2014; Markram et al., 2015) and pioneering full-scale data-driven

models were effective in deciphering emerging functions of interneuron populations (Bezaire et al.,

2016). However, network diagrams addressing the function of NGFCs exclusively based on synaptic

connectivity underestimate the spread of output without incorporating volume transmission by an

order of magnitude (Oláh et al., 2009). Although the concept of blanket inhibition has been sug-

gested for networks of interneuron populations having overlapping axonal arborizations and dense

synaptic output (Karnani et al., 2014), our spatial model based on high-resolution reconstructions of

labeled NGFCs takes the concept to its extremes and reveals an unprecedented density of release

sites for a population of cortical neuron and shows that the overwhelming majority of the superficial

Figure 6 continued

Figure supplement 2. Calculation of the neurogliaform cell (NGFC) release site density for the MCell model.

Figure supplement 3. Estimated GABA spatial concentration profiles during multiple releases.
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cortical space is effectively covered by at least one NGFC. At the same time, the redundancy of the

NGFC population is limited and a single cortical spatial voxel is reached by GABA released from a

limited number of individual NGFCs, ~83% of space is covered by one or two NGFCs. Our relatively

simple in vivo approach to gauge potential synchronous action of NGFCs gave positive results. This

is in line with earlier observations suggesting widespread action of putative NGFCs in terminating

persistent activity (Craig et al., 2013), or powerfully suppressing dendritic Ca2+ dynamics in L2/3

and L5 (Palmer et al., 2012a; Wozny and Williams, 2011). Strong cholinergic neuromodulation of

NGFCs (Poorthuis et al., 2018) and frequent gap junctional coupling between NGFCs

(Simon et al., 2005) further facilitate concerted action and are likely to play a major role in synchro-

nizing the NGFC network (Yao et al., 2016).

When studying simultaneous action of NGFCs, our direct measurements of two converging

NGFC inputs on L2/3 PC from simultaneous triple whole-cell patch clamp recordings revealed sublin-

ear summation properties for ionotropic GABAA receptor-mediated responses. These results sup-

port classic theories on synaptic input interactions (Jadi et al., 2012; Koch et al., 1983; London and

Häusser, 2005; Qian and Sejnowski, 1990; Silver, 2010) and are in line with earlier experiments

measuring interactions of anatomically identified inputs converging to neighboring areas of the den-

dritic tree of the same postsynaptic cell (Hao et al., 2009; Tamás et al., 2002). Mechanisms of inter-

action between convergent inputs from NGFCs might be similar to those suggested for short-term

synaptic depression of GABAA responses such as local drops in Cl� driving force and membrane

conductance (Huguenard and Alger, 1986; McCarren and Alger, 1985; Staley and Proctor,

1999). To our knowledge, the simultaneous triple recordings of two presynaptic NGFCs targeting

the same postsynaptic PC represent the first direct experimental attempt addressing the summation

of metabotropic receptor-mediated postsynaptic interactions. To date, scarce computational model

studies were aimed to explore the integration properties of GABAB receptor-mediated responses

and suggested a highly supralinear interaction through the amplification effect of G-protein cooper-

ativity (Destexhe and Sejnowski, 1995). Our experimental approach indicates linear interactions

between GABAB receptor-mediated responses in case the number of converging presynaptic cells

corresponds to the number of NGFCs cooperating during in vivo network operations. This suggests

that converging afferents that act on inhibitory metabotropic receptors in the same postsynaptic

voxel show linear or slightly sublinear summation, conserving the impact of individual inputs. How-

ever, we cannot exclude the possibility that widespread synchronization across various interneuron

populations might shift the summation arithmetic in a nonlinear fashion.

Intrinsic properties of postsynaptic PCs might also contribute to the regulation of summation.

HCN1 channels are known to be enriched in the distal dendrites of PCs and mediate K+ cationic cur-

rent activated by membrane hyperpolarization (Kalmbach et al., 2018; Lörincz et al., 2002;

Robinson and Siegelbaum, 2003). Our experiments presented above show that summation proper-

ties in response to synchronized inputs from NGFCs are not significantly affected by HCN1 channels,

presumably due to the relatively moderate local hyperpolarization arriving from NGFCs; again, fur-

ther studies are needed to test the influence of additional interneuron classes coactivated together

with NGFCs. We predict that further GABAergic activity is unlikely to change summation arithmetics

based on our negative results when blocking the high-affinity plasma membrane GABA transporters

concentrated in the perisynaptic and extrasynaptic areas (Melone et al., 2015) effective in modulat-

ing GABA-mediated inhibition through extrasynaptic GABA spillover (Barbour and Häusser, 1997;

Hamann et al., 2002; Scanziani, 2000; Szabadics et al., 2007). Despite having similar summation

arithmetics of two consecutive APs to the triple-recording configuration, it remains undefined as to

what extent multiple presynaptic APs resemble synchronous activation of individual release sites.

Presynaptic GABAB receptor-mediated decrease in Ca2+ is unlikely (Karayannis et al., 2010); how-

ever, depletion of the readily releasable pool of vesicles leading to synaptic depression cannot be

ruled out – this may contribute to the apparent inconsistency between the simulation and the experi-

mental data concerning summation during more than three repetitive APs, since our model does not

incorporate short-term synaptic depression. As suggested by pioneering simulations on the summa-

tion of GABAB receptor-mediated signaling (Destexhe and Sejnowski, 1995), a crucial intrinsic fac-

tor in the postsynaptic cells is the molecular cascade linking GABAB receptors to the GIRK channels

through G-proteins. Our experimental evidence for close to linear or slightly sublinear summation of

GABAB receptor-mediated responses suggests that even if amplification through G-proteins plays a

role, it is unable to overturn local membrane or K+ concentration-dependent factors promoting
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sublinearity (Dascal, 1997; Inanobe and Kurachi, 2014; Stanfield et al., 2002; Wickman and Clap-

ham, 1995). Amplification of GIRK current by G-proteins could be hampered by the need of cooper-

ative action of up to four G-protein bg subunits to be effective in opening GIRK channels. In

addition, hyperpolarization and the accompanying relatively low [Na+]i might also limit GIRK channel

activation knowing that high [Na+]i promotes GIRK channel opening in depolarized cells

(Wang et al., 2016). The latter scenario might promote a brain state-dependent summation of

metabotropic inhibitory signals in active neuronal networks, which remains to be tested in future

experiments. On the other hand, our ultrastructural model corroborates pioneering suggestions

(Kulik et al., 2006; Qian and Sejnowski, 1990) that the effect of GABAB receptors is more promi-

nent on dendritic spines compared to dendritic shafts, having approximately twice the number of

activated GIRK channels per GABAB receptor on spines versus shafts. Admittedly, our simulations

could not cover the extensive intracellular signaling pathways known to be influenced by GABAB

receptors (Gassmann and Bettler, 2012; Padgett and Slesinger, 2010; Terunuma, 2018) and

future availability of comprehensive transporter and extracellular space distributions of layer 1 would

enrich the model (Hrabetova et al., 2018; Korogod et al., 2015; Pallotto et al., 2015). Neverthe-

less, our experiments and simulations suggest that nonsynaptic GABAergic volume transmission pro-

viding relatively homogeneous and sufficient concentrations of GABA combined with increased

clustering of GABAB receptors and on spines compared to shafts governs compartment-dependent

efficacy.

Taken together, our experimental results and modeling analysis suggest that a randomly chosen

location in the neuropil of layer 1 is targeted by a moderate number (usually one or two) presynaptic

NGFCs. In turn, there is no apparent gap in the neurogliaform coverage of layer 1, that is, most ele-

ments of the neuropil including classic postsynaptic compartments, presynaptic terminals, or non-

neuronal cells are located sufficiently close to terminals of at least one NGFC and receive GABA non-

synaptically. Interestingly, when two NGFCs which share target territory are coactivated or a single

NGFC has a limited number of consecutive spikes, linear arithmetics accompany GABAB receptor

summation. This supports the hypothesis that the density and distribution of neocortical NGFCs and

their axonal terminals combined with the effective range of GABAergic volume transmission appear

optimized for a spatially ubiquitous and predominantly linear metabotropic GABAB receptor

summation.

Materials and methods

Slice preparation
Experiments were conducted to the guidelines of University of Szeged Animal Care and Use Com-

mittee (ref. no. XX/897/2018). We used young adult (19–46 days of age, (P) 23.9 ± 4.9) male Wistar

rats for the electrophysiological experiments. Animals were anesthetized by inhalation of halothane,

and following decapitation, 320-mm-thick coronal slices were prepared from the somatosensory cor-

tex with a vibration blade microtome (Microm HM 650 V; Microm International GmbH, Walldorf,

Germany). Slices were cut in ice-cold (4˚C) cutting solution (in mM) 75 sucrose, 84 NaCl, 2.5 KCl, 1

NaH2PO4, 25 NaHCO3, 0.5 CaCl2, 4 MgSO4, 25 D(+)-glucose, saturated with 95% O2 and 5% CO2.

The slices were incubated in 36˚C for 30 min, subsequently the solution was changed to (in mM) 130

NaCl, 3.5 KCl, 1 NaH2PO4, 24 NaHCO3, 1 CaCl2, 3 MgSO4, 10 D(+)-glucose, saturated with 95% O2

and 5% CO2, and the slices were kept in it until experimental use. The solution used for recordings

had the same composition except that the concentrations of CaCl2 and MgSO4 were 3 and 1.5 mM

unless it is indicated otherwise. The micropipettes (3–5 MW) were filled (in mM) 126 K-gluconate, 4

KCl, 4 ATP-Mg, 0.3 GTP-Na2, 10 HEPES, 10 phosphocreatine, and eight biocytin (pH 7.25; 300

mOsm).

In vitro electrophysiology and pharmacology
Somatic whole-cell recordings were obtained at ~37˚C from simultaneously recorded triplets and

doublets of NGF and PC cell visualized by infrared differential interference contrast video micros-

copy at depths 60–160 mm from the surface of the slice (Zeiss Axio Examiner LSM7; Carl Zeiss AG,

Oberkochen, Germany), 40� water-immersion objective (1.0 NA; Carl Zeiss AG, Oberkochen, Ger-

many) equipped with Luigs and Neumann Junior micromanipulators (Luigs and Neumann, Ratingen,
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Germany) and HEKA EPC 10 patch clamp amplifier (HEKA Elektronik GmbH, Lambrecht, Germany).

Signals were filtered 5 kHz, digitalized at 15 kHz, and analyzed with Patchmaster software.

Presynaptic cells were stimulated with a brief suprathreshold current pulse (800 pA, 2–3 ms),

derived in >60 s interval. In experiments, where two presynaptic NGFCs were stimulated simulta-

neously, the interval was increased >300 s. The stimulation sequence in which one or the other or

both presynaptic NGFCs were stimulated was constantly altered, therefore the potential rundown

effect or long-term potentiation would affect all three stimulation conditions equally. In the case of

100 Hz presynaptic burst stimulation, the interval was increased >300 s. During stimulation protocol,

the order of triggering a set of one to four APs on the NGFC was randomized. The postsynaptic

responses were normalized to the single AP in each individual set. During postsynaptic current-

clamp recording, �50 mV holding current was set. The experiments were stopped if the series resis-

tance (Rs) exceeded 35 MW or changed more than 20%. During postsynaptic voltage-clamp record-

ings, Rs and whole-cell capacitance were monitored continuously. The experiment was discarded if

the compensated Rs change reached 20% during recording.

Pharmacological experiments were carried out on NGFC-PC pairs using ACSF with the following

drugs: 10 mM SR 95531 hydrobromide (Tocris), 10 mM D-(-)�2-amino-5-phosphonopentanoic acid

(D-AP5) (Tocris), 10 mM 2,3-dioxo-6-nitro-1,2,3,4-tetrahydrobenzo[f]quinoxaline-7-sulfonamide

(NBQX) (Tocris), 10 mM 4-(N-ethyl-N-phenylamino)-1,2 dimethyl-6-(methylamino)pyrimidinium chlo-

ride (ZD7288) (Sigma-Aldrich), 10 mM 1-[2-[[(diphenylmethylene)imino]oxy]ethyl]-1,2,5,6-tetrahydro-

3-pyridinecarboxylic acid hydrochloride hydrochloride (NO711) (Sigma-Aldrich).

We performed BQA by altering the extracellular Ca2+ and Mg2+ in two different conditions

(Bhumbra and Beato, 2013). One of the conditions was to provide consistently a high release prob-

ability, in which the ACSF contained (in mM): 3 Ca2+/1.5 Mg2+. For the reduced release probability,

we tested two different compositions (in mM): either 2 Ca2+/2 Mg2+ or 1.5 Ca2+/ 3 Mg2+. During

BQA experiments, the ACSF solution contained the following substances: 10 mM D-AP5 (Tocris), 10

mM NBQX (Tocris). Each epoch of the BQA experiment contains a stable segment of 28 up to 42 uni-

tary IPSCs (mean 32.75 ± 4.15). BQA experiments required at least 60 min of recording time (up to

90 min). We tested all epochs for possible long-term plasticity effect by measuring the linear correla-

tion between IPSCs amplitude and elapsed time during the experiment, and we found no or negligi-

ble correlation (Pearson’s r values from all of the experiments [n = 8] were between �0.39 and 0.46,

mean �0.01 ± 0.29).

The rise time of evoked IPSCs-Ps was determined as the time interval between the points corre-

sponding to 10% and 90% of the peak amplitude, respectively. The peak current/voltage was deter-

mined as the maximum within a window of 2 ms duration after the presynaptic AP. The decay time

constant of IPSCs/Ps were measured at 67.3%. For measuring the linearity, we measured the differ-

ence of calculated and experimentally recorded IPIS peak amplitudes from converging inputs.

Immunohistochemistry and anatomical analysis
After electrophysiological recordings, slices were fixed in a fixative containing 4% paraformaldehyde,

15% picric acid, and 1.25% glutaraldehyde in 0.1 M phosphate buffer (PB; pH = 7.4) at 4˚C for at

least 12 hr. After several washes in 0.1 M PB, slices were cryoprotected in 10% then 20% sucrose

solution in 0.1 M PB. Slices were frozen in liquid nitrogen then thawed in PB, embedded in 10% gel-

atin, and further sectioned into slices of 60 mm in thickness. Sections were incubated in a solution of

conjugated avidin-biotin horseradish peroxidase (ABC; 1:100; Vector Labs) in Tris-buffered saline

(TBS, pH = 7.4) at 4˚C overnight. The enzyme reaction was revealed by 3’3-diaminobenzidine tetra-

hydrochloride (0.05%) as chromogen and 0.01% H2O2 as an oxidant. Sections were post-fixed with

1% OsO4 in 0.1 M PB. After several washes in distilled water, sections were stained in 1% uranyl ace-

tate, dehydrated in ascending series of ethanol. Sections were infiltrated with epoxy resin (Durcupan

[Sigma-Aldrich]) overnight and embedded on glass slices. 3D light microscopic reconstructions were

carried out using Neurolucida system with a 100� objective.

Surgery for imaging experiments
Experiments were conducted to the guidelines of University of Szeged Animal Care and Use Com-

mittee. Young adult (22–28 days of age, (P) 24.75 ± 2.75) male Wistar rats were initially anesthetized

with halothane before urethane anesthesia (1.4 g/kg of body weight) was administrated
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intraperitoneally. Body temperature was maintained at 37˚C with a heating pad (Supertech Instru-

ments, Pécs, Hungary). Before surgery, dexamethasone sodium phosphate (2 mg/kg of body weight)

was administrated subcutaneously, and carprofen (5 mg/kg of body weight) was administrated intra-

peritoneally. Anesthetized animals’ head were stabilized in a stereotaxic frame and headbars were

attached to the skull with dental cement (Sun Medical, Mariyama, Japan). Circular craniotomy (3 mm

diameter) was made above the primary somatosensory cortex, centered at 1.5 mm posterior and 2.2

mm lateral from the bregma with a high-speed dental drill (Jinme Dental, Foshan, China). Dura

mater was carefully removed surgically. Finally, the craniotomy was filled with 1.5% agarose and cov-

ered with a coverslip to limit motion artifacts. The craniotomy was then submerged with HEPES buff-

ered ACSF recording solution containing (in mM) 125 NaCl, 3.5 KCl, 10 HEPES, 1 MgSO4, 1 CaCl2,

0.5 D(+)-glucose, pH = 7.4.

Two-photon calcium imaging in L1
Before covering the craniotomy with the coverslip calcium indicator, Oregon Green 488 BAPTA-1

AM (10 mM) (OGB-1 AM, Thermo Fisher Scientific) and astrocytic marker sulforhodamine 101 (1 mM)

(SR101, Thermo Fisher Scientific) were pressure-injected with a glass pipette (1–2 MW) in L1 cortical

region under the visual guide of Zeiss Axio Examiner LSM7 (Carl Zeiss AG, Oberkochen, Germany)

two-photon microscope using 40� water-immersion objective (W-Plan, Carl Zeiss, Germany). Subse-

quently, the craniotomy was filled with agarose and covered with a coverslip. Imaging experiments

were performed 1 hr after preparation. The activity of L1 interneurons was monitored during ipsilat-

eral hindlimb electrical stimulation (Digimeter, Hertfordshire, UK, 200 mA, 10 ms). OGB-1 AM was

excited at 800 nm wavelength with a femtosecond pulsing Ti:sapphire laser (Mai Tai DeepSee [Spec-

tra-Physics, Santa Clara, CA]). In the somatosensory hindlimb region, Z-stack image series (volume

size 304 � 304 � 104 mm3) were acquired. Calcium signals from interneurons were obtained within

this volume in full-frame mode (256 � 100 pixel), acquired at a frequency of ~20 Hz. The Ca2+-

dependent fluorescence change DF/F was calculated as R(t)=(F(t)�F0(t))/F0(t) based on Jia et al.,

2011. The R(t) denotes the relative change of fluorescence signal, F(t) denotes the mean fluores-

cence of a region of interest at a certain time point, F0(t) denotes the time-dependent baseline. Cells

were considered responsive if there was a measurable DF/F change (�3 of the standard deviation of

the noise) in the averaged trace of 10 trials to ipsilateral hindlimb stimulus. Image stabilization was

performed by ImageJ (Fiji) software using the Image stabilizer plugin (Li, 2008; Schneider et al.,

2012). At the end of the experiments, few L1 neurons were filled with biocytin containing intracellu-

lar solution to make the immunohistochemical remapping easier.

Tissue preparation for immunohistochemistry
After imaging experiments, rats were deeply anesthetized with ketamine and xylazine. Subsequently,

perfusion was performed through the aorta, first with 0.9% saline for 1 min, then with an ice-cold fix-

ative containing 4% paraformaldehyde in 0.1 M PB (pH = 7.4) for 15 min. The whole brain was

extracted and stored in 4% paraformaldehyde for 24 hr, afterward in 0.1 M PB (pH = 7.4) until slic-

ing. Later 60-mm-thick sections were cut from the same two-photon Ca2+ imaged brain area parallel

to the pia mater and washed overnight in 0.1 M PB.

Fluorescence immunohistochemistry and remapping
After several washes in 0.1 M PB, slices were cryoprotected with 10%, then 20% sucrose solution in

0.1M PB than frozen in liquid nitrogen. The sections were incubated for 2 hr in Alexa-488 conjugated

streptavidin (1:400, Molecular Probes) solved in TBS (0.1 M; pH = 7.4) at room temperature to visual-

ize the biocytin labeled cells. After several washes in TBS, sections were blocked in normal horse

serum (NHS, 10%) made up in TBS, followed by incubation in mouse anti-a-actinin (1:20,000, Sigma-

Aldrich) diluted in TBS containing 2% NHS and 0.1% Triton X-100 at room temperature for 6 hr. Fol-

lowing several washes in TBS, Cy3 conjugated donkey anti-mouse (1:500, Jackson ImmunoResearch)

secondary antibody was used to visualize the immunoreactions. After several washes in TBS, then in

0.1 M PB, slices were counterstained with DAPI (40,6-diamidino-2-phenylindole, Thermo Fisher Scien-

tific). Sections were then mounted on slides in Vectashield (Vector Laboratories). Images were taken

with LSM 880 confocal laser scanning microscope (Carl Zeiss AG, Oberkochen, Germany) using 40�

oil-immersion objective (1.4 NA). Confocal image z-stack was tilted and panned manually to match

Ozsvár et al. eLife 2021;10:e65634. DOI: https://doi.org/10.7554/eLife.65634 18 of 25

Research article Neuroscience

https://doi.org/10.7554/eLife.65634


with the in vivo two-photon z-stack, allowing to profile imaged interneurons. During this process bio-

cytin labeled neurons were used as a reference point.

Data analysis
Electrophysiological data were analyzed with Fitmaster (HEKA Elektronik GmbH, Lambrecht, Ger-

many), Origin 7.5 (OriginLab Corporation, Northampton, MA), IgorPro (Wavemetrics, Portland, OR).

BQA experiments were analyzed using a Python written program (Bhumbra and Beato, 2013),

incorporating NumPy and SciPy packages. Two-photon calcium imaging data were acquired with

ZEN 2 (Carl Zeiss AG, Oberkochen, Germany) and analyzed with MATLAB (The MathWorks, Natick,

MA), using Statistical Toolbox, Image Processing Toolbox, and custom-written scripts.

MCell model construction
The model framework was constructed in Blender v2.7. The simulation environment contained a 3D

reconstruction of a dendritic structure based on a series section of electron microscopic data (avail-

able from VolRoverN program; Edwards et al., 2014) and realistically positioned release sites of

NGFCs. In the simulation environment, the extracellular space was also modeled by creating an array

of cubic cells containing cavities based on previous work from Tao et al., 2005. The cubic cells have

800 � 800 nm2 length, containing cavity that is 400 � 400 nm2 wide, and 340 nm deep. The cubic

cells and the dendritic segment were spaced 32 nm apart. The established array of cubic compart-

ments creates an extracellular space that provides a volume fraction and tortuosity identical to the

cortical brain tissue (volume fraction = 0.2 and tortuosity = 1.6). The overall dimensions of the mod-

eled space surrounding the ultrastructurally reconstructed dendrite were 13.28 � 13.28 � 6.592 mm3

and the total volume was 1162.55 mm3.

Simulation of GABAB receptor-GIRK channel interaction was carried out with MCell v3.4 (http://

www.mcell.org) (Kerr et al., 2008). Custom Matlab scripts created the MDL (Model Description Lan-

guage) file that required for MCell simulation. MCell simulated the release and diffusion of GABA,

GABAB receptors, and GIRK channel interaction. First, to manage a biological like distribution for

the receptors and channels, a reaction cascade was used (Figure 6—figure supplement 2). This cas-

cade was constructed and tested in a simple simulation environment first, containing only a plane

surface. At the beginning of every iteration, primary seed particles were placed on the dendritic

membrane. Primary seed particles subdivided into secondary seed particles, that which then pro-

duce GABAB receptor or GIRK channel clusters. Those secondary seed particles that produce the

GIRK channel clusters – which contain one to four channels – were immobile in the membrane.

Meanwhile, the secondary seed particles that produce GABAB receptor clusters – which contain one

to eight receptors – can diffuse laterally in the membrane. At the end, the distance was defined

between the center of receptor and channel clusters by calculating the distance between each

receptor and channel cluster in the 2D plane surface. Delay and the forward rate of the reaction was

set to allow secondary seeds, that generate GABAB receptor clusters to diffuse to specified distance,

resulting in the required GABAB receptor-GIRK channel cluster distribution as seen from Kulik et al.,

2006. Optimization algorithm based on simulated annealing technique (Henderson et al., 2006;

Kirkpatrick et al., 1983) was written in Matlab for approximating the optimal values for the delay

and the forward rate of the reaction. Optimal values of delay and the forward rate of the reaction

were set to allow secondary seeds, that generate GABAB receptor clusters to diffuse to specified

distance, resulting in the required GABAB receptor-GIRK channel cluster distribution as seen in

Kulik et al., 2006.

Since we were interested in the interaction between the GABAB receptors and GIRK channels,

our model does not include GABAA receptors and GABA amino transporters. Previous work sug-

gests that a single AP in the NGFC generates GABA concentration of 1–60 mM lasting for 20–200

ms (Karayannis et al., 2010), therefore in our model we used similar GABA concentration range of

at 0.5–2 mm distance from the release sites.

Up to six MCell simulations were run with 1 ms time steps in parallel on PC with Intel (R) Core i7-

4790 3.6 GHz CPU, 32 GB RAM. Total of 4278 iterations were simulated.
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Model NGFC
Based on the experimental data of NGFCs’ total axonal length and its distribution, a 3D model

NGFC was constructed. A custom-written Matlab algorithm generates the model NGFCs.

First single NGFC 3D models were created by expanding axonal segments from a center point

that was considered to be the soma of the model cell. Three parameters were used to create model

cells randomly. Total axonal length was taken from previously reconstructed cells, we used an aver-

age and SD value to determine the model NGFC’s axonal length. From reconstructions, the number

of branching points was the other parameter that was used as an average and SD. Finally, the orien-

tation of the axonal segments was set, we optimized the polar angle and azimuthal angle values of

the generated axonal segments in the spherical coordinate system where the origin was the soma.

In each run, a Sholl analysis was done on the completed model NGFC cell, and it was compared

with the experimental values of axonal distribution. The parameters were optimized to the point

when statistical difference was not measurable between the model NGFCs’ and reconstructed

NGFCs’ axonal distribution.

Statistics
The number of experimental recordings used in each experiment is indicated in the text. Statistical

tests were performed using Origin 7.5 (OriginLab Corporation, Northampton, MA) and SPSS soft-

ware (IBM, Armonk, NY). Data are represented as mean ± standard deviation (SD). Data were first

subject to a Shapiro-Wilk test of normality, and based on the result to the indicated parametric and

non-parametric tests. Results were considered significantly different if p<0.05.

Acknowledgements
This work was supported by the ERC INTERIMPACT project, by the Eötvös Loránd Research Net-
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Writing - review and editing; Gáspár Oláh, Formal analysis, Investigation, Visualization, Methodol-

ogy, Writing - review and editing; Judith Baka, Formal analysis, Validation, Investigation, Visualiza-

tion, Methodology, Writing - review and editing; Gábor Molnár, Formal analysis, Supervision,
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Berger T, Larkum ME, Lüscher HR. 2001. High I(h) channel density in the distal apical dendrite of layer V
pyramidal cells increases bidirectional attenuation of EPSPs. Journal of Neurophysiology 85:855–868.
DOI: https://doi.org/10.1152/jn.2001.85.2.855, PMID: 11160518

Bettler B, Kaupmann K, Mosbacher J, Gassmann M. 2004. Molecular structure and physiological functions of
GABA(B) receptors. Physiological Reviews 84:835–867. DOI: https://doi.org/10.1152/physrev.00036.2003,
PMID: 15269338

Bezaire MJ, Raikov I, Burk K, Vyas D, Soltesz I. 2016. Interneuronal mechanisms of hippocampal theta oscillations
in a full-scale model of the rodent CA1 circuit. eLife 5:e18566. DOI: https://doi.org/10.7554/eLife.18566,
PMID: 28009257

Bhumbra GS, Beato M. 2013. Reliable evaluation of the quantal determinants of synaptic efficacy using bayesian
analysis. Journal of Neurophysiology 109:603–620. DOI: https://doi.org/10.1152/jn.00528.2012,
PMID: 23076101

Bloss EB, Cembrowski MS, Karsh B, Colonell J, Fetter RD, Spruston N. 2016. Structured dendritic inhibition
supports Branch-Selective integration in CA1 pyramidal cells. Neuron 89:1016–1030. DOI: https://doi.org/10.
1016/j.neuron.2016.01.029, PMID: 26898780

Breitwieser GE, Szabo G. 1988. Mechanism of muscarinic receptor-induced K+ channel activation as revealed by
hydrolysis-resistant GTP analogues. Journal of General Physiology 91:469–493. DOI: https://doi.org/10.1085/
jgp.91.4.469, PMID: 2455765

Brinkerhoff CJ, Choi JS, Linderman JJ. 2008. Diffusion-limited reactions in G-protein activation: unexpected
consequences of antagonist and agonist competition. Journal of Theoretical Biology 251:561–569.
DOI: https://doi.org/10.1016/j.jtbi.2008.01.002, PMID: 18289560

Capogna M. 2011. Neurogliaform cells and other interneurons of stratum lacunosum-moleculare gate entorhinal-
hippocampal dialogue. The Journal of Physiology 589:1875–1883. DOI: https://doi.org/10.1113/jphysiol.2010.
201004, PMID: 21135049

Capogna M, Pearce RA. 2011. GABA A,slow: causes and consequences. Trends in Neurosciences 34:101–112.
DOI: https://doi.org/10.1016/j.tins.2010.10.005, PMID: 21145601

Chen G, van den Pol AN. 1998. Presynaptic GABAB autoreceptor modulation of P/Q-type calcium channels and
GABA release in rat suprachiasmatic nucleus neurons. The Journal of Neuroscience 18:1913–1922.
DOI: https://doi.org/10.1523/JNEUROSCI.18-05-01913.1998, PMID: 9465016

Craig MT, Mayne EW, Bettler B, Paulsen O, McBain CJ. 2013. Distinct roles of GABAB1a- and GABAB1b-
containing GABAB receptors in spontaneous and evoked termination of persistent cortical activity. The Journal
of Physiology 591:835–843. DOI: https://doi.org/10.1113/jphysiol.2012.248088, PMID: 23266934

Dascal N. 1997. Signalling via the G protein-activated K+ channels. Cellular Signalling 9:551–573. DOI: https://
doi.org/10.1016/S0898-6568(97)00095-8, PMID: 9429760

Degro CE, Kulik A, Booker SA, Vida I. 2015. Compartmental distribution of GABAB receptor-mediated currents
along the somatodendritic Axis of hippocampal principal cells. Frontiers in Synaptic Neuroscience 7:6.
DOI: https://doi.org/10.3389/fnsyn.2015.00006, PMID: 25852540

Destexhe A, Sejnowski TJ. 1995. G protein activation kinetics and spillover of gamma-aminobutyric acid may
account for differences between inhibitory responses in the Hippocampus and thalamus. PNAS 92:9515–9519.
DOI: https://doi.org/10.1073/pnas.92.21.9515, PMID: 7568165

Dutar P, Nicoll RA. 1988. A physiological role for GABAB receptors in the central nervous system. Nature 332:
156–158. DOI: https://doi.org/10.1038/332156a0, PMID: 2831457

Edwards J, Daniel E, Kinney J, Bartol T, Sejnowski T, Johnston D, Harris K, Bajaj C. 2014. VolRoverN: enhancing
surface and volumetric reconstruction for realistic dynamical simulation of cellular and subcellular function.
Neuroinformatics 12:277–289. DOI: https://doi.org/10.1007/s12021-013-9205-2, PMID: 24100964

Farrant M, Nusser Z. 2005. Variations on an inhibitory theme: phasic and tonic activation of GABA(A) receptors.
Nature Reviews Neuroscience 6:215–229. DOI: https://doi.org/10.1038/nrn1625, PMID: 15738957

Gassmann M, Bettler B. 2012. Regulation of neuronal GABA(B) receptor functions by subunit composition.
Nature Reviews Neuroscience 13:380–394. DOI: https://doi.org/10.1038/nrn3249, PMID: 22595784

Gonzalez-Burgos G, Rotaru DC, Zaitsev AV, Povysheva NV, Lewis DA. 2009. GABA transporter GAT1 prevents
spillover at proximal and distal GABA synapses onto primate prefrontal cortex neurons. Journal of
Neurophysiology 101:533–547. DOI: https://doi.org/10.1152/jn.91161.2008, PMID: 19073797

Hamann M, Rossi DJ, Attwell D. 2002. Tonic and spillover inhibition of granule cells control information flow
through cerebellar cortex. Neuron 33:625–633. DOI: https://doi.org/10.1016/S0896-6273(02)00593-7,
PMID: 11856535

Hao J, Wang XD, Dan Y, Poo MM, Zhang XH. 2009. An arithmetic rule for spatial summation of excitatory and
inhibitory inputs in pyramidal neurons. PNAS 106:21906–21911. DOI: https://doi.org/10.1073/pnas.
0912022106, PMID: 19955407

Henderson D, Jacobson SH, Johnson AW. 2006. The Theory and Practice of Simulated Annealing. In: Handbook
of Metaheuristics. Norwell, MA: Kluwer Academic Publishers. p. 287–319.
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Hrabetova S, Cognet L, Rusakov DA, Nägerl UV. 2018. Unveiling the extracellular space of the brain: from
Super-resolved microstructure to In Vivo Function. The Journal of Neuroscience 38:9355–9363. DOI: https://
doi.org/10.1523/JNEUROSCI.1664-18.2018, PMID: 30381427

Ozsvár et al. eLife 2021;10:e65634. DOI: https://doi.org/10.7554/eLife.65634 22 of 25

Research article Neuroscience

https://doi.org/10.1152/jn.2001.85.2.855
http://www.ncbi.nlm.nih.gov/pubmed/11160518
https://doi.org/10.1152/physrev.00036.2003
http://www.ncbi.nlm.nih.gov/pubmed/15269338
https://doi.org/10.7554/eLife.18566
http://www.ncbi.nlm.nih.gov/pubmed/28009257
https://doi.org/10.1152/jn.00528.2012
http://www.ncbi.nlm.nih.gov/pubmed/23076101
https://doi.org/10.1016/j.neuron.2016.01.029
https://doi.org/10.1016/j.neuron.2016.01.029
http://www.ncbi.nlm.nih.gov/pubmed/26898780
https://doi.org/10.1085/jgp.91.4.469
https://doi.org/10.1085/jgp.91.4.469
http://www.ncbi.nlm.nih.gov/pubmed/2455765
https://doi.org/10.1016/j.jtbi.2008.01.002
http://www.ncbi.nlm.nih.gov/pubmed/18289560
https://doi.org/10.1113/jphysiol.2010.201004
https://doi.org/10.1113/jphysiol.2010.201004
http://www.ncbi.nlm.nih.gov/pubmed/21135049
https://doi.org/10.1016/j.tins.2010.10.005
http://www.ncbi.nlm.nih.gov/pubmed/21145601
https://doi.org/10.1523/JNEUROSCI.18-05-01913.1998
http://www.ncbi.nlm.nih.gov/pubmed/9465016
https://doi.org/10.1113/jphysiol.2012.248088
http://www.ncbi.nlm.nih.gov/pubmed/23266934
https://doi.org/10.1016/S0898-6568(97)00095-8
https://doi.org/10.1016/S0898-6568(97)00095-8
http://www.ncbi.nlm.nih.gov/pubmed/9429760
https://doi.org/10.3389/fnsyn.2015.00006
http://www.ncbi.nlm.nih.gov/pubmed/25852540
https://doi.org/10.1073/pnas.92.21.9515
http://www.ncbi.nlm.nih.gov/pubmed/7568165
https://doi.org/10.1038/332156a0
http://www.ncbi.nlm.nih.gov/pubmed/2831457
https://doi.org/10.1007/s12021-013-9205-2
http://www.ncbi.nlm.nih.gov/pubmed/24100964
https://doi.org/10.1038/nrn1625
http://www.ncbi.nlm.nih.gov/pubmed/15738957
https://doi.org/10.1038/nrn3249
http://www.ncbi.nlm.nih.gov/pubmed/22595784
https://doi.org/10.1152/jn.91161.2008
http://www.ncbi.nlm.nih.gov/pubmed/19073797
https://doi.org/10.1016/S0896-6273(02)00593-7
http://www.ncbi.nlm.nih.gov/pubmed/11856535
https://doi.org/10.1073/pnas.0912022106
https://doi.org/10.1073/pnas.0912022106
http://www.ncbi.nlm.nih.gov/pubmed/19955407
https://doi.org/10.1038/s41586-020-03134-2
http://www.ncbi.nlm.nih.gov/pubmed/33442056
https://doi.org/10.1523/JNEUROSCI.1664-18.2018
https://doi.org/10.1523/JNEUROSCI.1664-18.2018
http://www.ncbi.nlm.nih.gov/pubmed/30381427
https://doi.org/10.7554/eLife.65634


Huguenard JR, Alger BE. 1986. Whole-cell voltage-clamp study of the fading of GABA-activated currents in
acutely dissociated hippocampal neurons. Journal of Neurophysiology 56:1–18. DOI: https://doi.org/10.1152/
jn.1986.56.1.1, PMID: 3746390

Inanobe A, Kurachi Y. 2014. Membrane channels as integrators of G-protein-mediated signaling. Biochimica Et
Biophysica Acta (BBA) - Biomembranes 1838:521–531. DOI: https://doi.org/10.1016/j.bbamem.2013.08.018

Isaacson JS, Solı́s JM, Nicoll RA. 1993. Local and diffuse synaptic actions of GABA in the Hippocampus. Neuron
10:165–175. DOI: https://doi.org/10.1016/0896-6273(93)90308-E, PMID: 7679913

Jackson J, Karnani MM, Zemelman BV, Burdakov D, Lee AK. 2018. Inhibitory control of prefrontal cortex by the
claustrum. Neuron 99:1029–1039. DOI: https://doi.org/10.1016/j.neuron.2018.07.031, PMID: 30122374

Jadi M, Polsky A, Schiller J, Mel BW. 2012. Location-dependent effects of inhibition on local spiking in pyramidal
neuron dendrites. PLOS Computational Biology 8:e1002550. DOI: https://doi.org/10.1371/journal.pcbi.
1002550, PMID: 22719240

Jang HJ, Chung H, Rowland JM, Richards BA, Kohl MM, Kwag J. 2020. Distinct roles of parvalbumin and
somatostatin interneurons in gating the synchronization of spike times in the neocortex. Science Advances 6:
eaay5333. DOI: https://doi.org/10.1126/sciadv.aay5333, PMID: 32426459

Jia H, Rochefort NL, Chen X, Konnerth A. 2011. In vivo two-photon imaging of sensory-evoked dendritic calcium
signals in cortical neurons. Nature Protocols 6:28–35. DOI: https://doi.org/10.1038/nprot.2010.169,
PMID: 21212780

Jiang X, Shen S, Cadwell CR, Berens P, Sinz F, Ecker AS, Patel S, Tolias AS. 2015. Principles of connectivity
among morphologically defined cell types in adult neocortex. Science 350:aac9462. DOI: https://doi.org/10.
1126/science.aac9462, PMID: 26612957

Kalmbach BE, Buchin A, Long B, Close J, Nandi A, Miller JA, Bakken TE, Hodge RD, Chong P, de Frates R, Dai
K, Maltzer Z, Nicovich PR, Keene CD, Silbergeld DL, Gwinn RP, Cobbs C, Ko AL, Ojemann JG, Koch C, et al.
2018. h-Channels contribute to divergent intrinsic membrane properties of supragranular pyramidal neurons in
human versus mouse cerebral cortex. Neuron 100:1194–1208. DOI: https://doi.org/10.1016/j.neuron.2018.10.
012, PMID: 30392798

Karayannis T, Elfant D, Huerta-Ocampo I, Teki S, Scott RS, Rusakov DA, Jones MV, Capogna M. 2010. Slow
GABA transient and receptor desensitization shape synaptic responses evoked by hippocampal neurogliaform
cells. Journal of Neuroscience 30:9898–9909. DOI: https://doi.org/10.1523/JNEUROSCI.5883-09.2010,
PMID: 20660272

Karnani MM, Agetsuma M, Yuste R. 2014. A blanket of inhibition: functional inferences from dense inhibitory
connectivity. Current Opinion in Neurobiology 26:96–102. DOI: https://doi.org/10.1016/j.conb.2013.12.015,
PMID: 24440415

Karnani MM, Jackson J, Ayzenshtat I, Tucciarone J, Manoocheri K, Snider WG, Yuste R. 2016. Cooperative
subnetworks of molecularly similar interneurons in mouse neocortex. Neuron 90:86–100. DOI: https://doi.org/
10.1016/j.neuron.2016.02.037, PMID: 27021171

Kerr RA, Bartol TM, Kaminsky B, Dittrich M, Chang JC, Baden SB, Sejnowski TJ, Stiles JR. 2008. Fast monte carlo
simulation methods for biological reaction-diffusion systems in solution and on surfaces. SIAM Journal on
Scientific Computing 30:3126–3149. DOI: https://doi.org/10.1137/070692017, PMID: 20151023

Kirkpatrick S, Gelatt CD, Vecchi MP. 1983. Optimization by simulated annealing. Science 220:671–680.
DOI: https://doi.org/10.1126/science.220.4598.671, PMID: 17813860

Klausberger T. 2009. GABAergic interneurons targeting dendrites of pyramidal cells in the CA1 area of the
Hippocampus. European Journal of Neuroscience 30:947–957. DOI: https://doi.org/10.1111/j.1460-9568.2009.
06913.x

Klausberger T, Somogyi P. 2008. Neuronal diversity and temporal dynamics: the unity of hippocampal circuit
operations. Science 321:53–57. DOI: https://doi.org/10.1126/science.1149381, PMID: 18599766

Koch C, Poggio T, Torre V. 1983. Nonlinear interactions in a dendritic tree: localization, timing, and role in
information processing. PNAS 80:2799–2802. DOI: https://doi.org/10.1073/pnas.80.9.2799, PMID: 6573680

Korogod N, Petersen CCH, Knott GW. 2015. Ultrastructural analysis of adult mouse neocortex comparing
aldehyde perfusion with cryo fixation. eLife 4:e05793. DOI: https://doi.org/10.7554/eLife.05793

Kulik A, Vida I, Fukazawa Y, Guetg N, Kasugai Y, Marker CL, Rigato F, Bettler B, Wickman K, Frotscher M,
Shigemoto R. 2006. Compartment-dependent colocalization of Kir3.2-containing K+ channels and GABAB
receptors in hippocampal pyramidal cells. The Journal of Neuroscience 26:4289–4297. DOI: https://doi.org/10.
1523/JNEUROSCI.4178-05.2006, PMID: 16624949

Kvitsiani D, Ranade S, Hangya B, Taniguchi H, Huang JZ, Kepecs A. 2013. Distinct behavioural and network
correlates of two interneuron types in prefrontal cortex. Nature 498:363–366. DOI: https://doi.org/10.1038/
nature12176, PMID: 23708967

Larkum ME, Kaiser KM, Sakmann B. 1999. Calcium electrogenesis in distal apical dendrites of layer 5 pyramidal
cells at a critical frequency of back-propagating action potentials. PNAS 96:14600–14604. DOI: https://doi.org/
10.1073/pnas.96.25.14600, PMID: 10588751

Li K. 2008. The Image Stabilizer Plugin for ImageJ. http://www.cs.cmu.edu/~kangli/code/Image_Stabilizer.html
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