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Abstract Nowadays, when aquatic habitats are

threatened by human and climatic disturbances lead-

ing to reductions in biodiversity and ecosystem

functions, the study of the abundance–occupancy

relationships of species traits and their underlying

mechanisms is of great importance to future conser-

vation management. To study the distribution patterns

of benthic diatom traits, lakes were sampled during the

summer and early autumn. Niche breadth, niche

position (NP), regional occupancy and local abun-

dances (LAs) of benthic diatom traits and their

combinations were determined along different envi-

ronmental gradients. Benthic diatom traits were iden-

tified in all possible niche types (14% non-marginal–

narrow, 37% non-marginal–broad, 8% marginal–nar-

row and 41% marginal–broad niche). On the basis of

increased niche differentiation, it is possible to

achieve an improved and more effective utilization

of the eco-morphological concept of diatom traits. The

relationships between the occupancy, abundance and

niche characteristics suggest that the broader the

niche, the wider the distribution and the greater the

LA; the more marginal the NP, the more restricted

spatially the distribution and the lower the LA. With

regard to the key factors driving the occupancy of

benthic diatom traits in lentic ecosystems, the NP

hypothesis proves to be the best predictor of its

variation.

Keywords Niche breadth � Niche position � Lentic

ecosystem � Distribution

Introduction

In recent years, the acceleration of ecosystem degra-

dation, together with a rapid and continuous decline in

the Earth’s biodiversity, may be observed. These

phenomena are caused by anthropogenic disturbances

and climate change (Butchart et al., 2010), and by the

fragmentation and homogenization of habitats (Bal-

vanera et al., 2006; Cardinale et al., 2012), both of

which exercise considerable influence on species

distribution. Generally speaking, species distribution

depends on an array of different factors, such as local

environmental conditions, species dispersal and spe-

cies interactions (Leibold et al., 2004). The success of

a particular species is closely related to and dependent

on its traits and tolerance (e.g. phenotypic plasticity by

widening the ecological niche; Nicotra et al., 2010);
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these are also recognized as key features in the spread

of invasive species (Stachowicz et al., 1999; Gurvich

et al., 2005). An understanding of the mechanisms

underlying and driving distribution patterns is a key

question in a situation, where the maintenance of

ecosystem functions and services is the primary and

urgent task of the day.

At the species level, a positive relationship between

local mean abundance and regional distribution has

been identified and recognized as the main macroe-

cological pattern in the case of a variety of organisms

(e.g. Gaston et al., 2000; Gaston, 2003; Tales et al.,

2004; Soininen & Heino, 2005; Heino & Virtanen,

2006; Frisk et al., 2011; Heino & Grönroos, 2014); a

number of ecological hypotheses (including both

sampling artefacts and real ecological-based ones)

have been devised to account (summarized by Heino

2005). Among them, metapopulation dynamics and

niche differentiation [niche breadth (NB) and position

hypothesis] have come to be regarded as among the

most powerful ecological notions concerning the

influence of species distribution (e.g. Soininen &

Heino, 2005; Rocha et al., 2018; Teittinen et al., 2018;

Vilmi et al., 2019). On the basis of the NB hypothesis

(Brown, 1984), species with a wider tolerance range

are regarded as generalist, and assumed to be more

widespread. According to the niche position (NP)

hypothesis (Hanski, 1993; Venier & Fahrig, 1996),

species can be found in average (non-marginal posi-

tion, meaning high habitat availability) or extreme

(marginal position, meaning low habitat availability)

environmental conditions, and this, in turn, results in

different distributions of species: the higher the habitat

availability, the wider the distribution. Metapopula-

tion dynamics (Hanski, 1993, 1994) assumes that

locally abundant species will have wider distribution

due to their ability to colonize empty habitats and

consequently, rescue their other populations.

Most of the research in aquatic sciences has focused

on the distribution–occupancy relationships of species

(e.g. Tales et al., 2004; Heino, 2005; Soininen &

Heino, 2005; Heino & Soininen, 2006; Siqueira et al.,

2009; Tonkin et al., 2016; Rocha et al., 2018), while

trait-based functional studies are relatively rare,

having begun only relatively recently (such as Heino

& Grönroos, 2014; Heino & de Mendoza, 2016; Heino

& Tolonen, 2018; Teittinen et al., 2018; Soininen

et al., 2019; Vilmi et al., 2019). Functional approaches

are very important, since a species’ contribution to

ecosystem functions is closely related to its functional

traits (e.g. de Bello et al., 2010; Villnäs et al., 2018).

The maintenance of ecosystem stability, functions and

consequent services can be achieved by balancing

compensatory processes of traits against some level of

species loss (Walker, 1992; Walker, 1995). In addi-

tion, most of the niche-based researches related to lotic

rather than lentic ecosystems generating further lack in

this field. In turn, the process forming occupancy–

abundance relationship in lentic ecosystem is less

complex than in lotic systems which could result in

clearer patterns (Dent et al., 2002; Vilmi et al., 2019).

Diatoms are the key organisms in recent research

focusing on the occupancy–abundance relationship in

aquatic ecosystems (e.g. Soininen & Heino, 2005;

Heino & Soininen, 2006; Rocha et al., 2018; Teittinen

et al., 2018; Vilmi et al., 2019). Diatoms form a major

algal group in both lotic and lentic environments, and

are commonly the key organisms of phytobenthos in

ecological status assessments (Stevenson & Pan,

1999). Additionally, diatoms have numerous advan-

tages which make them good target organisms: they

present a widespread and diverse group; they play a

key role in food webs, primary production and the

biogeochemical cycle; they are good bioindicators;

and they are also relatively easy to examine (e.g.

Stevenson & Pan, 1999). Finally, diatoms are affected

directly and indirectly by an array of environmental

factors, such as pH, conductivity, nutrients (nitrogen

and phosphorous), silica, temperature and habitat size

(e.g. Stenger-Kovács et al., 2014; Lengyel et al., 2016;

Bolgovics et al., 2019).

The primary aim of the present study is to recognize

the distribution patterns of a major aquatic group in the

hope of overcoming the previously mentioned short-

comings in this field. Therefore, to investigate the

drivers of regional occupancy (RO) of functional

diatom traits in lentic ecosystems, (i) niche character-

istics (NP and NB) were determined along the main

environmental gradients, and (ii) the local abundance

(LA) of each trait was also specified. On the basis of

recent and applied trait categories, some general

assumptions were made. These were as follows:

(i) Higher niche differentiation (in terms of NB,

as well as position) will be found in the case

of combined traits than in that of the simple

trait categories;
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(ii) As in species-based studies, positive relation-

ships may be predicted between RO and local

mean abundances of traits;

(iii) Diatom traits will be clearly distinguishable

into generalist/specialist and marginal/non-

marginal traits on the basis of their niche.

Material and methods

Altogether, 200 samples were collected from different

lentic ecosystems between 2006 and 2017: 99 samples

from soda pans, and 101 samples from freshwater

lakes in Hungary and Germany. Sampling was

restricted to the summer and early autumn period to

eliminate the effects of seasonality. The lakes can be

characterized by a broad range of their salinity (from

freshwater to hyposaline), their trophic state (from

oligo- to hypertrophic), their pH (from neutral to

highly alkaline) and water body size (from shallow to

deep with differing extents, Table 1).

Water temperature (�C), pH, conductivity (lS

cm-1), and dissolved oxygen (mg l-1) were measured

in situ using a portable multimeter. In order to study

the effect of lake size, the area–depth ratio (SDR) was

used, obtained on the basis of OVF (General Direc-

torate of Water Management, 2015; http://www.ovf.

hu/en/) and Szabó et al. (2017). In the laboratory, the

concentrations of dissolved inorganic nitrogen (DIN,

as the sum of nitrite, nitrate and ammonium, mg l-1),

total phosphorus (TP, lg l-1) and soluble reactive

silica (SRSi, mg l-1) were determined using spec-

trophotometric methods, according to APHA (1998).

Benthic diatom communities were collected from

the most characteristic substrates (mud in soda pans,

stone in Lake Stechlin and reed in other lakes).

Samples were preserved in ethanol and prepared using

the hot hydrogen-peroxide method (Comité Européen

de Normalisation, CEN, 2003); the diatom valves

were then embedded in a mounting resin. At least 400

diatom valves were identified at species level under a

light microscope (1,000 9 magnification, plan-apoc-

hromat lens with DIC, Zeiss Axiovert 1) and the use of

up-to-date taxonomic books. Each species was clas-

sified by trait, employing diatom ecological guilds

(Passy, 2007; Rimet & Bouchez, 2012b). Diatoms

were classified further according to their morpholog-

ical traits (Rimet & Bouchez, 2012a) on the basis of

their biovolume (S) and length/width ratio (LW).

Besides the basic traits, the various combinations of

the traits were also investigated, following the eco-

morphological concept found in B-Béres et al. (2016).

The traits used in the present study are detailed in

Table 2.

RO (% sample number, in where the given trait is

presented) and mean LA (% average relative abun-

dances of a given trait counted within a sample) were

calculated for each diatom trait. NP (the distance

between the average habitat conditions used by a

species and the average habitat conditions of the

studied region) and NB (index of tolerance to envi-

ronmental conditions) for each trait and their combi-

nations were determined by outlying mean index

(OMI) analyses (Dolédec et al., 2000). To distinguish

the niches (non-marginal/marginal and narrow/broad

niches), a corresponding percentage of variability set

at 15% was employed, as in Dolédec et al. (2000).

Monte-Carlo test using 1,000 random permutation was

implemented for statistical significance comparing the

observed species’ marginality and the simulated

values. Before the analyses, in order to obtain a

normal distribution, the transformation of the data was

carried out: Hellinger transformation for diatoms, and

further transformations (see Table 1) for environmen-

tal variables. For the principal component analyses

Table 1 Main limnological

parameters of the studied

lakes and their applied

transformations in the

statistical analyses

Parameter Unit Min. Max. Mean Transformation

TP lg l-1 3 14,720 1446 ln(Y ? 1)

DIN mg l-1 0.01 199 10 Y1/3

SRSi mg l-1 0.01 57 8 Y1/4

Conductivity lS cm-1 91 37,700 3173 Y1/7

DO mg l-1 0.4 24 8 Y1/3

pH 7.4 10.4 8.8 –

SDR km 1 716,667 13,773 ln(Y ? 1)
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(PCA), the environmental parameters were standard-

ized. Linear regression models were run to examine

the relation between the niche parameters (NB and

NP), the distributions and the mean LA of traits. Prior

to the analyses, log transformation (log(x ? 1)) was

used to improve the degree of normality. Variation

partitioning was employed to reveal the importance of

individual and shared effects of the three explanatory

variables (such as NP, NB and mean LA) on the

regional distribution of the different traits. All statis-

tical analyses were performed in the 3.4.3 version of R

statistical software (Team, 2010) using the vegan

(Oksanen et al., 2012), ade4 (Bougeard & Dray, 2018),

adegraphics (Dray & Siberchicot, 2018) and subniche

packages (Karasiewicz et al., 2017).

Results

In the total of 200 samples, altogether 463 diatom

species were identified belonging to 4 ecological

guilds, 5 size traits, 6 LW traits and their 79 combined

groups. On the basis of the OMI analysis, axis 1 and

axis 2 were the most important axes, together

explaining 68.84% of the variance in the abundance

of the traits. The major variables were conductivity,

TP, DIN for axis 1, while these for axis 2 were pH and

SRSi (Fig. 1).
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Fig. 1 Principal component analysis (PCA) of the measured

environmental parameters (cond conductivity, DIN dissolved

inorganic nitrogen, DO dissolved oxygen, SDR surface:depth

ratio, SRSi soluble reactive silica, TP total phosphorus)
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The NP and NB of each trait, as well as their RO

and mean LA are summarized in Table 2. The inertia

of the traits varied from 2.9 to 12.6. Among the 94

diatom traits only 63 (= 67%) traits proved to be

having significant OMI values, to which the further

analysis of niche parameters was restricted. Almost

the half of the diatom traits (51%) can be characterized

as occupying a non-marginal position (e.g. H, LW1,

S1, MS3LW3), while 49% were found to be in a

marginal position (e.g. LS3LW1, PS2LW1). On the

basis of the NB values, 22% of the traits occupied a

narrow niche (e.g. HS3LW4, MS4LW6, LS1LW1),

and 78% a broad one (e.g. M, LW1, MS4LW5).

Considering the combinations of NP and NB, it was

found that 14% of the traits had a non-marginal

position and narrow niche, 37% a non-marginal

position and broad niche (Fig. 2). A further 5 diatom

traits (8%) occupied niches which were both marginal

and narrow, and 26 traits (41%) niches which were

marginal and broad (Fig. 2).

The RO of the traits ranged from 1% (e.g.

HS1LW1) to 100% (M), 40 traits were rare

(MS3LW4, PS3LW4), 39 common (P, LW5, LW6)

and 15 widespread (e.g. H, L, M, LW1–4, S1–5)

(Table 2). The mean LA varied between 0.3% (such as

HS2LW6, MS3LW5) and 58.2% (M). With regard to

the relationship between these parameters (LA, RO),

the RO proved to be positively and significantly

related to mean LA (Fig. 3). NP was strongly and

negatively related to occupancy (R2 = 0.42 and P\
0.0001), and to the LA (R2 = 0.21 and P\0.0001) of

Fig. 2 Distribution of benthic diatom traits on the basis of their

ecological niche types (a) and the ecological niches of the three

most widespread diatom traits (for trait codes see Table 2) found

in each niche type (b non-marginal/broad, c marginal/broad,

d non-marginal/narrow, e marginal/narrow)

Fig. 3 Relationship between the proportion of regional occu-

pancy and mean local abundance of benthic diatom traits (R2 =

0.53 and P\0.0001) (axes are on logarithmic scales)
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the traits (Fig. 4). NB showed a significant but weak-

positive relationship to the occupancy (R2 = 0.06 and

P = 0.03) and LA (R2 = 0.11 and P = 0.005) of the traits

(Fig. 4).

As a result of the variation partitioning, NP was the

most important variable accounting for variation in

occupancy (individual effect: 16%), followed by mean

LA (individual effect: 11%), whilst NB only had

minor effects on it (individual effect: 2%) (Fig. 5).

The greater part of the variation was shared between

these explanatory variables, particularly between NP

and mean LA (their shared effect: 31%), as well as

between NB and mean LA (their shared effect: 12%).

Nevertheless, 35% of variation in occupancy remained

unexplained by the variables studied here.

Discussion

Similarly to other organisms, diatoms living in every

type of aquatic environment are facing climatic

changes, variations in environmental conditions,

increases in environmental stress and vanishing habi-

tat (e.g. Dokulil et al., 2010; Mitsch, 2013; Lengyel

et al., 2020). Since the success of the various species is

closely related to their traits, the investigation of their

abundance–occupancy relationship and the underlying

Fig. 4 Relationships between niche parameters and regional occupancy (a, b) and mean local abundance (c, d) of benthic diatom traits

(axes are on logarithmic scales)

Fig. 5 Partitioning of variation in the occupancy of benthic

diatom traits between the three explanatory variables (NP niche

position, NB niche breadth, LA mean local abundance).

Individual and shared fractions are shown as percentages of

total variation on the basis of adjusted R2 values
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mechanism are very important in the making of future

projections and the formulation of suitable conserva-

tion plans to maintain biodiversity and ecosystem

functions. This study provides fresh information about

the distribution patterns of the diatom traits in lake

ecosystems on the basis of the most typical determi-

nant environmental parameters.

The few existing examples of research focusing on

trait-based approaches have concluded that biological

traits—mainly size and life-forms—can affect occu-

pancy and/or abundance (Verberk et al., 2010; Passy,

2012; Heino & Grönroos, 2014; Rocha et al., 2018):

colonial and attached species tended to be more

abundant and widespread than non-colonial and non-

attached species (Heino & Soininen, 2006; Passy,

2016). Additionally, species of similar size and

displaying similar life forms tend to display similar

occupancies and abundance (Rocha et al., 2018; Vilmi

et al., 2019). As far as organisms with a passive

dispersal ability (such as diatoms) are concerned, cell

size is generally negatively related to distribution due

to the ability of small species to maintain larger

populations, to produce more propagules, to achieve

more effective dispersion, to be better competitors for

all nutrients and to have better resource utilization

(Kristiansen, 1996; Soininen & Heino, 2005; Heino &

Soininen, 2006; Edwards et al., 2011; Passy, 2012).

The results of the present study show up a disparate

niche differentiation between the different trait cate-

gories. The simple, non-combined trait categories

(such as guilds, biovolume and length/width ratio)

have a great degree of overlap in their niches (inertia

varied between 5.1 and 7.8), implying their decreased

niche differentiation. Although the categorization of

the main traits was based on clear and significant

features, such as differences in nutrient uptake ability

or resistance to physical disturbances due to the

growth form of guilds (e.g. Passy, 2007), these

separations do not appear to be sufficient to be

reflected in their degree of niche differentiation.

Almost all categories can be characterized as occupy-

ing a niche which is both central and broad, with high

abundance leading to negligible effects on the differ-

ent distributions (all of them are widespread or

common) found in present study. Similar results have

been arrived at by other researchers: the distribution of

subarctic diatom species differed only slightly

between life-forms (like motile, adnate, pedunculate

and colonial forms), and not at all between guilds

(Teittinen et al., 2018); furthermore, the biological

traits of stream insects also seemed to be unimportant

in the degree of predictability of species distribution

(Heino & de Mendoza, 2016; Heino & Tolonen,

2018). Instead of the main trait categories, the better

and more effective utilization of the eco-morpholog-

ical concept of diatom traits (B-Béres et al., 2016) is

presented in a way similar to that found in some recent

research (e.g. B-Béres et al., 2016; Stenger-Kovács

et al., 2018), since smaller amount of overlap in their

niches was found (inertia varied from 2.9 to 12.6),

implying an increased niche differentiation between

them.

With regard to the driving factors of the distribution

patterns of functional traits, as has been the case in

other species-based studies focusing on a variety of

organisms (e.g. Soininen & Heino, 2005; Rocha et al.,

2018; Teittinen et al., 2018; Vilmi et al., 2019) the

results presented here show that (i) the relationship

between occupancy and abundance is significantly

positive, and (ii) the regional occurrence of the

functional traits of diatoms is related to niche charac-

teristics (such as NP and NB) and LA s, respectively.

A positive relation with NB suggests that generalist

functional traits (that is, those having a broad tolerance

range) had wider distribution and were locally more

abundant than specialist traits (those having a narrow

tolerance range). A negative relationship with NP

implies that traits characterized by a marginal NP tend

to be less widely distributed and less locally abundant

than traits in non-marginal positions. As has been

previously reported, the findings of the present study

generally agree on the importance of niche character-

istics in distribution and LA (e.g. Heino, 2005; Heino

& Soininen, 2006; Heino & Grönroos, 2014; Rocha

et al., 2018; Teittinen et al., 2018). Only a few

researchers have concluded that niche characteristics

are not suitable predictors of LA, due to their more

stochastic nature and proneness to error than is the

case with occupancy (e.g. Heino & Grönroos, 2014;

Tonkin et al., 2016; Rocha et al., 2018). Also as in the

present study, it has been found that niche-based

mechanisms can dominate and be significant in a

positive occupancy–abundance relationship in cases

where multiple-drainage environments with steep

environmental gradients (Passy, 2012) are examined

on the regional scale (Brändle & Brandl, 2001).

Nevertheless, in the case of diatom traits, besides

niche characteristics, LA is also a key factor in driving
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their occupancy in lentic ecosystems. The possibility

of time-dependent dispersal in relatively isolated

habitats such as lakes situated in different drainage

basins, together with the passive propagation of

diatoms leads to an assumption of the negligible

effects of metapopulation dynamics on the basis of the

conclusions of Heino & Grönroos (2014). In contrast

to this, the results arrived at here using the trait-based

approach reinforce the conclusions of earlier studies,

including those conducted in the same region and

focusing on benthic diatom species, in which meta-

community dynamics were recognized in the form of a

mass-effect concept (Szabó et al., 2019) and species-

sorting (Szabó et al., 2018).

On the basis of the individual contributions of the

ecological theories studied here, the NP hypothesis is

the best predictor of variation in occupancy of diatom

traits, followed by metapopulation dynamics and

finally the NB hypothesis. The occupancy patterns

observed here—that the NP hypothesis overrode the

NB—are in accordance with general ecological find-

ings (e.g. Tales et al., 2004; Heino, 2005; Heino &

Soininen, 2006; Rocha et al., 2018) and are likely to be

dependent on spatial extents. Sites belonging to

different catchments allow the presence of more

non-marginal niches, and therefore lead to the justi-

fication of the NP hypothesis, while within one

catchment NB is usually more important than NP,

due to the possibility of the real separation of

generalist and specialist characteristics (Heino, 2005;

Siqueira et al., 2009; Heino & Grönroos, 2014).

Therefore, the greater predictive power of NB over NP

has rarely been encountered in studies focusing

distribution patterns, such as in the case of diatom

species in subarctic ponds (Teittinen et al., 2018).

The results of the present study carry important

ecological significance from the point of view of

conservation. On the basis of recent trait-based

research, some diatom traits can indeed be used as

indicators of environmental changes: motile, small

sized diatom traits with lower LW categories for

higher conductivity (Stenger-Kovács et al., 2018), and

low-profile diatom traits with small cell size and lower

LW categories for a healthy ecological status in

streams (Stenger-Kovács et al., 2020). These trait

combinations are usually characterized by a marginal

NP, and their distribution is limited due to the key

driving role of NP in the occupancy patterns of diatom

traits. A marginal position is often associated with

rarity, and therefore, these traits are more vulnerable to

human- or climate-induced environmental changes (as

well as being potential victims of extension) than

widespread or non-marginal traits. The preservation of

these diatom traits is very important for the future, and

may be achieved by, for instance, the extension of

protected status to a wide range of habitat conditions,

since aside from their importance in ecological status

assessments, less common traits may have significant

effects on invasion events, or on the maintenance of

ecosystem function and stability, as has already been

concluded to be the case in terrestrial and marine

ecosystems (Lyons & Schwartz, 2001; Ellingsen et al.,

2007).
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