View metadata, citation and similar papers at core.ac.uk

2103.09604v1 [cs.SE] 17 Mar 2021

arxXiv

brought to you by .{ CORE

provided by Repository of the Academy's Library

On the Rise and Fall of Simple Stupid Bugs: a
Life-Cycle Analysis of SStuBs

Baldzs Mosolygé!, Norbert Vandor!, Gabor Antalf, Péter Hegediis*f
TDepartment of Software Engineering, University of Szeged, Szeged, Hungary
{mbalazs | vandor | antal } @inf.u-szeged.hu
*MTA-SZTE Research Group on Artificial Intelligence, ELKH, Szeged, Hungary
hpeter @inf.u-szeged.hu

Abstract—Bug detection and prevention is one of the most
important goals of software quality assurance. Nowadays, many
of the major problems faced by developers can be detected or
even fixed fully or partially with automatic tools. However, recent
works explored that there exists a substantial amount of simple
yet very annoying errors in code-bases, which are easy to fix,
but hard to detect as they do not hinder the functionality of
the given product in a major way. Programmers introduce such
errors accidentally, mostly due to inattention.

Using the ManySStuBs4J dataset, which contains many simple,
stupid bugs, found in GitHub repositories written in the Java
programming language, we investigated the history of such bugs.
We were interested in properties such as: How long do such
bugs stay unnoticed in code-bases? Whether they are typically
fixed by the same developer who introduced them? Are they
introduced with the addition of new code or caused more by
careless modification of existing code? We found that most of
such stupid bugs lurk in the code for a long time before they
get removed. We noticed that the developer who made the
mistake seems to find a solution faster, however less then half of
SStuBs are fixed by the same person. We also examined PMD’s
performance when to came to flagging lines containing SStuBs,
and found that similarly to SpotBugs, it is insufficient when it
comes to finding these types of errors. Examining the life-cycle of
such bugs allows us to better understand their nature and adjust
our development processes and quality assurance methods to
better support avoiding them.

Index Terms—Bug life-cycle, bug fixing times, code history
analysis, SStuBs

I. INTRODUCTION

In our current climate of rapidly evolving expectations and
needs towards software, fast development is a necessity. This,
however, comes at a cost: bugs are unavoidable. Finding and
fixing them have become an almost everyday activity to most
developers. This task is as important as it is difficult, and
as such many bugs remain unnoticed for lengthy periods of
time, with many bugs being noticed after they have already
made their negative impact. To prevent this in a critical
software, in-depth testing must be performed to ensure correct
functionality. Despite the in-depth testing and code reviews,
released software may still contain numerous bugs as the
source code of such software systems are written by human
beings. A famous example of a simple, unnoticed bug having
catastrophic consequences is the case of the ESA ARIANE
5 space shuttle launch of 11th December 2002, where a

single wrong conversion caused millions of dollars worth of
damage [1], [2].

Bugs like this are not as prevalent as others, making them
harder to find. A subset of these type of bugs are called
simple stupid bugs [3]], or SStuBs for short, which are minor
inaccuracies that do not prevent the code from running or
compiling, but change its behavior in a subtle way that may
lead to unforeseen consequences.

To gain a deeper understanding about these issues we
have analyzed the SStuBs found in a subset of the
ManySStuBs4J [3]] dataset that contains over 25,000 instances
of such bugs and their fixes, written in the Java program-
ming language. Out of these records we eventually processed
22,275, examining 10,168 individual commits. We wanted
to find out how and where SStuBs get introduced: are they
simple mistakes the original author of the code overlooked, or
were they caused by a different person? Following this line
of thought, we also wanted to know who fixes these issues
typically, is it done by the same person who introduced them
or someone else? Do the developers who made the mistakes
find and fix them faster than others seeing that code possibly
for the first time?

Karampatsis and Sutton [3] examined whether SpotBugsﬂ
can detect SStuBs and found that SpotBugs flagged only 12%
of them. However, it reported another 200 million possible
bugs that makes this tool infeasible for detecting SStuBs. We
were curious if another static analyzer tool (namely PM]fI)
performs better in flagging SStuB lines, to have a more
thorough understanding on how far or close tools already are
to being able to detect these simple mistakes.

II. RELATED WORK

The study of software bugs and their life-cycle has quite a
big literature, and has been an active research area for decades.
One of the first studies was conducted by Perry and Stieg [4].
This research is as relevant as it was in 1993, as bug fixing
activities are and always will be a significant part of every
software engineer’s work.

Zimmermann et al. [5] mapped defects from the bug
database of Eclipse to source code locations, they also added

Uhttps://spotbugs.github.io
Zhttps://pmd.github.io

https://core.ac.uk/display/478821138?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://spotbugs.github.io
https://pmd.github.io

Commit
source
search

Many$5tuBs4l)

Source
commits for
each sstub

pmd

5

Y
Section A

pmd flag
search
Results
Git
information
processing
L 4
Y
Section B

Fig. 1: A visual representation of our process

common complexity metrics. Their other work [6] maps
failures to components, code, process, and developers.

Kim et al. [[7] analyzed two open-source projects to compute
bug fixing times. They determined the fixing time by identify-
ing bug-introducing changes (based on the work of Sliwerski
et al. [8]). Their results showed that bug fixing times range
between 100 and 200 days. Weiss et al. [9]] uses only previous
bug report data to approach an unforeseen bug’s fixing time.
Giger et al. [10] also uses data from the issue tracker system
to gain information about bugs and use the collected data to
predict bug fixing times.

Lamkanfi et al. [[11] investigated whether the severity of
a reported bug can be predicted accurately by analyzing its
textual description. They used open-source projects to validate
their approach.

In his paper, Lucas D. Panjer [[12] used Eclipse’s Bugzilla
dataset to predict the lifetime of a bug (from the new to
resolved bugs). He used WEKA toolkit [[13]] to perform data
mining and analysis for prediction.

Saha et al. [|[14] analyzed long lived bugs in four open-source
systems, and from five different perspectives: their proportion
(between all bugs), severity, assignment (i.e where was most
of the time spent in the bug fixing process), reasons (why these
bugs were long lived) and the nature of fixes.

Other works analyze the life-cycle of vulnerabilities [15]—
[18]], a special type of bugs.

Although our work is similar to the above mentioned papers,
namely we use code history to examine the life-cycle of bugs,
we focus on and characterize a special subset of bugs, the
SStuBs.

III. METHODOLOGY

We analyzed bugs found in the ManySStuBs4J [3] dataset,
which are characterized by their simplicity and lack of obvious

malfunction of the code. We looked into their origin (i.e.,
the source commit introducing the SStuB) to analyze their
life-cycle, and possibly gain a better understanding of them.
Figure [I] shows an overview of our data analysis process.

A. Finding the Source Commit

The process of finding the origin of a SStuBE] was performed
by the git blame command, which returns with the revision
and author that last modified each line of a file F] We could not
use the bugLineNum information directly to track the SStuBs
as the exact position in the origin might be different than that
in the code the SStuB was identified. Therefore, we relied
on the bugNodeStartChar and the bugNodeLength
attributes in the entries of the dataset to find and store the
SStuB-containing code blocks. However, due to this it became
ambiguous which of the lines in the block was the actual
SStuB. We handled this problem by looking through the file
we know contains the SStuB, and searching for a matching
code block (i.e., the code diff in the SStuB entry) in the parent
files from the source commits. This check is simple but time
consuming, since it needs to be done for every potential source
commit, of which there will be multiple in the cases where
SStuB blocks appear.

B. Collecting History Data

The main challenge we faced while analyzing the history
data was that to decide whether the SStuB was simply added
in the source commit or it was introduced in the course of a
modification of an existing line. Our approach was to check the
patch generated by the git format-patch command, and
if the addition of the given line is preceded by a removal, it is
treated as a modification. We were conservative in calculating

3https://github.com/MBalazs8796/MSR2021_LifeCycle
4https://git-scm.com/docs/git-blame

https://github.com/MBalazs8796/MSR2021_LifeCycle
https://git-scm.com/docs/git-blame

the statistics shown in this paper, meaning that any partial
results except for the potential source commits’ hashes have
been omitted.

C. Research Questions

Our main goal with the examination of SStuBs was to find
their sources and the way they are introduced and later fixed.
Aligned with this, we formulated four research questions,
from which the first two is concerned with the introduction
of SStuBs:

RQ1 Are SStuBs more likely to occur in code that is
modified by multiple developers?

RQ2 Are SStuBs more likely to appear in newly added
or modified code blocks?

Our third research question is connected with the removal,
thus the end of life of a SStuB:

RQ3 How long does it take to fix a SStuBs, do authors
notice their own mistakes faster?

Regarding the static analysis tools’ capability of finding
these issues, we thought that it would be interesting to know,
how a static analyzer tool other than SpotBugs can protect
against these kinds of bugs, leading us to our final research
question:

RQ4 Can PMD flag SStuB lines as being error prone?

IV. RESULTS

When it comes to SStuBs, the main questions are the same
as with any other bugs, how were they introduced, and how
were they fixed. These are important, since our ultimate goal
is to either prevent or detect them fast enough, so that they do
not cause any major issues.

A. The Nature of SStuB Introduction

In predicting potential issues such as SStuBs, or even major
bugs, it is a reasonable idea to put an emphasis on code that is
changed frequently, and/or is modified by multiple developers
since discrepancies in their goals or even just coding styles
could lead to a higher potential for bugs. We examined these
ideas, first by checking whether most SStuBs were really
written by a different developer than the surrounding lines,
secondly by checking if the SStuB was introduced in the same
commit as its surroundings (i.e., introduced in a newly added
code block or by modifying an existing, previously correct
code part). We looked at buggy code blocks marked by the
start character and length of a SStuB in the dataset.

We found that in 90.35% of the cases the developer who
created the surrounding lines also introduced the SStuB, and
that in 76.22% of cases the SStuB was created in the same
commit as the surrounding lines. These figures show that
when it comes to the SStuBs presence in the dataset, in
the vast majority of the cases the bugs were created by the

same developer who worked on the neighboring lines as well,
meaning that these minor issues were likely caused by a
slight oversight on the developers part, and not by some other
external factor.

RQ1 The SStuBs typically do not occur in code
modified by multiple developers, in fact they seem to
appear more in larger chunks of code written by the
same developer, meaning that these kinds of mistakes are
more likely to be due to the loss of attention rather than
misunderstanding the code functionality.

Based on the observed majority of SStuBs that were written
in the same commit as their surrounding counterparts, we can
answer another research question.

RQ2 Most SStuBs are added in the same commit as
their neighboring lines, meaning that they are not added
at a later stage of development rather, when the block is
first added to the code-base. Since these bugs are rarely
introduced in later modifications, it is safe to assume that
frequent changes do not increase the likelihood of SStuBs
significantly.

B. A closer look at SStuBs’ lifetimes

A good measure of how hard it is to find SStuBs is the
time it takes to fix them. Given that they are “’simple stupid
bugs”, it is safe to assume that they are not difficult to fix,
and as such are patched as soon as they are found. In the
case of bugs present in the dataset, the average time taken to
fix a SStuB is approximately 240 days, however, the median
time is only 58 days, with a standard deviation of 440 days. It
is clear that some of them are significantly harder to find,
thus hide in the code-base much longer than the average.
However, even the relatively small median is large given the
simplicity of these bugs, and leads to more questions. One of
those questions is, do developers not check their code after
it is written? The answer is, of course they do. When the fix
times are grouped based on if the same developer fixed the
problem who introduced the SStuB or not, it becomes clear
that when developers double-check their own code, they find
these issues quicker than if someone was to look for a bug.
As can be seen in Figure 2] when the same developer fixes the
SStuB they wrote, they do it on average 3 times faster, in only
81 days, and with an even lower median of only 4 days. In
the case when someone else handles the problem, the average
increases to 349 days, and the median also jumps to 136 days,
showing that developers find issues in their own code faster
than others.

The significant difference in these statistics tells us that it
would be favorable for developers to look for these issues
themselves, however, data shows that this is not a usual case.
Of the SStuBs found in the dataset, only 40% were fixed by
the same author who introduced them, leading to the overall
increase in the time it takes to fix SStuBs seen above.

600

500

400

300

200

Elapsed time (days)

100

Average

Same fixer Different fixer

Standard deviation

Median

Fig. 2: Figure demonstrating the difference in time elapsed between the creation and fix of SStuBs based on whether the
same developer fixed it or not

RQ3 On average, SStuB fixes take around 240 days,
which is too long for any bug to stay unnoticed. Around
40% of them seem to be relatively quickly noticed by the
developer who introduced them, hinting at the possibility
that double-checking ones own code is the fastest way to
get rid of the potential SStuBs.

C. Can a Static Analyzer Find SStuBs?

We were curious whether only the SpotBugs tool was unable
to efficiently find SStuBs, or it is simply too difficult task to
a static analyzer. To answer this question, we used PMD, a
static analyzer widely used in Java projects. In the end, not
a single SStuB was flagged by PMD, further reinforcing the
idea that these bugs are particularly hard to find and mostly
undetectable by static analyzers.

RQ4 Lines with SStuBs are not considered error prone
by neither SpotBugs [3]], nor PMD, while these tools are
not representative of every static analyzer, we can at least
say that these kinds of bugs are difficult to find by static
analyzers.

V. THREATS TO VALIDITY

We were limited by the resources available, and so we could
only work on the smaller version of the dataset, processing
only 25,539 SStuB records instead of the total available
153,652. This impacts the accuracy of our research, but not
the overall conclusion. To confirm this, we looked through a
smaller subset of our results, and the overall values have not
changed significantly, leading us to the conclusion that the
patterns we observed are consistent.

We used a strict interpretation of neighboring lines, when
we created the statistics that involve surroundings, namely
the bugNodeLength, which does not always contain extra
lines. We chose this approach instead of selecting a fixed
surrounding size ourselves because this way we stay as close
to the representation in the dataset as possible. If we were to
chose a fixed surrounding size, we may have examined parts
of blocks completely irrelevant to the SStuB at hand.

VI. CONCLUSION

We have looked through the life-cycle of bugs in the
ManySStuBs4J dataset in order to gain a better understanding
of their behavior when it comes to their introduction and the
time it takes to fix them. We found that most SStuBs are
introduced by the same developer who created the surrounding
nodes, meaning that most of the times they are not due to
a lack of understanding the context in which the issue was
created, rather a loss of attention while adding new code.
A majority of SStuBs are created in the same commit as
their surroundings, pointing us again towards the conclusion
described above. However, the likelihood of the SStuBs being
introduced in a different commit is higher than it being made
by a different developer, meaning that some SStuBs are caused
by later modifying potentially correct code.

We also found, that most SStuBs take a significant time to
find and fix, which reinforces the idea of them being hard to
find, while barely having a noticeable impact on functionality.
We showed that the fix times of SStuBs are significantly
shorter in the cases when the same developer who introduced
also fixes them. Unfortunately, the majority of the SStuBs are
not fixed by the same developer who introduced them.

We also looked at whether another static analyzer would
mark any of the lines containing SStuBs as error prone or not,
but found that PMD was unable to mark any SStuBs in the
analyzed dataset.

ACKNOWLEDGMENT

The presented work was carried out within the SETIT
Project (2018-1.2.1—NKP-2018-00004f] and supported by the
Ministry of Innovation and Technology NRDI Office within
the framework of the Artificial Intelligence National Labora-
tory Program (MILAB).

Furthermore, Péter Hegedlis was supported by the Bolyai
Janos Scholarship of the Hungarian Academy of Sciences and
the UNKP-20-5-SZTE-650 New National Excellence Program
of the Ministry for Innovation and Technology.

SProject no. 2018-1.2.1-NKP-2018-00004 has been implemented with the
support provided from the National Research, Development and Innovation
Fund of Hungary, financed under the 2018-1.2.1-NKP funding scheme.

[1]

[2]
[3]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

REFERENCES

J.-L. Lions, L. Luebeck, J.-L. Fauquembergue, G. Kahn, W. Kubbat,
S. Levedag, L. Mazzini, D. Merle, and C. O’Halloran, “Ariane 5 flight
501 failure report by the inquiry board,” 1996.

B. Nuseibeh, “Ariane 5: who dunnit?” IEEE Software, vol. 14, no. 3,
p. 15, 1997.

R.-M. Karampatsis and C. Sutton, “How Often Do Single-Statement
Bugs Occur? The ManySStuBs4] Dataset,” in Proceedings of the In-
ternational Conference on Mining Software Repositories (MSR 2020),
2020.

D. E. Perry and C. S. Stieg, “Software faults in evolving a large,
real-time system: a case study,” in European Software Engineering
Conference. Springer, 1993, pp. 48-67.

T. Zimmermann, R. Premraj, and A. Zeller, “Predicting defects for
eclipse,” in Third International Workshop on Predictor Models in
Software Engineering (PROMISE’07: ICSE Workshops 2007), 2007, pp.
9-9.

A. Schroter, T. Zimmermann, R. Premraj, and A. Zeller, “If your bug
database could talk,” in Proceedings of the 5th international symposium
on empirical software engineering, vol. 2. Citeseer, 2006, pp. 18-20.
S. Kim and E. J. Whitehead Jr, “How long did it take to fix bugs?”
in Proceedings of the 2006 international workshop on Mining software
repositories, 2006, pp. 173-174.

J. Sliwerski, T. Zimmermann, and A. Zeller, “When do changes induce
fixes?” ACM sigsoft software engineering notes, vol. 30, no. 4, pp. 1-5,
2005.

C. Weiss, R. Premraj, T. Zimmermann, and A. Zeller, “How long will
it take to fix this bug?” in Fourth International Workshop on Mining
Software Repositories (MSR’07: ICSE Workshops 2007). 1EEE, 2007,
pp. 1-1.

E. Giger, M. Pinzger, and H. Gall, “Predicting the fix time of bugs,”
in Proceedings of the 2nd International Workshop on Recommendation
Systems for Software Engineering, ser. RSSE ’10. New York, NY,
USA: Association for Computing Machinery, 2010, p. 52-56. [Online].
Available: https://doi.org/10.1145/1808920.1808933

A. Lamkanfi, S. Demeyer, E. Giger, and B. Goethals, “Predicting the
severity of a reported bug,” in 2010 7th IEEE Working Conference on
Mining Software Repositories (MSR 2010). 1EEE, 2010, pp. 1-10.

L. D. Panjer, “Predicting eclipse bug lifetimes,” in Fourth International
Workshop on Mining Software Repositories (MSR’07:1CSE Workshops
2007), 2007, pp. 29-29.

M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and 1. H.
Witten, “The weka data mining software: an update,” ACM SIGKDD
explorations newsletter, vol. 11, no. 1, pp. 10-18, 2009.

R. K. Saha, S. Khurshid, and D. E. Perry, “An empirical study of
long lived bugs,” in 2014 Software Evolution Week - IEEE Conference
on Software Maintenance, Reengineering, and Reverse Engineering
(CSMR-WCRE), 2014, pp. 144-153.

S. Frei, M. May, U. Fiedler, and B. Plattner, “Large-scale vulnerability
analysis,” in Proceedings of the 2006 SIGCOMM workshop on Large-
scale attack defense, 2006, pp. 131-138.

R. Wita, N. Jiamnapanon, and Y. Teng-Amnuay, “An ontology for
vulnerability lifecycle,” in 2010 Third International Symposium on
Intelligent Information Technology and Security Informatics. 1EEE,
2010, pp. 553-557.

H. Joh and Y. K. Malaiya, “A framework for software security risk
evaluation using the vulnerability lifecycle and cvss metrics,” in Proc.
International Workshop on Risk and Trust in Extended Enterprises, 2010,
pp. 430-434.

G. Antal, B. Mosolygd, N. Vandor, and P. Heged(s, “A data-mining
based study of security vulnerability types and their mitigation in
different languages,” in International Conference on Computational
Science and Its Applications. Springer, 2020, pp. 1019-1034.

https://doi.org/10.1145/1808920.1808933

	I Introduction
	II Related Work
	III Methodology
	III-A Finding the Source Commit
	III-B Collecting History Data
	III-C Research Questions

	IV Results
	IV-A The Nature of SStuB Introduction
	IV-B A closer look at SStuBs' lifetimes
	IV-C Can a Static Analyzer Find SStuBs?

	V Threats to Validity
	VI Conclusion
	References

