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����������
�������

Citation: Antal, G.; Tóth, Z.;
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Abstract: Bug prediction aims at finding source code elements in a software system that are likely
to contain defects. Being aware of the most error-prone parts of the program, one can efficiently
allocate the limited amount of testing and code review resources. Therefore, bug prediction can
support software maintenance and evolution to a great extent. In this paper, we propose a function
level JavaScript bug prediction model based on static source code metrics with the addition of a
hybrid (static and dynamic) code analysis based metric of the number of incoming and outgoing
function calls (HNII and HNOI). Our motivation for this is that JavaScript is a highly dynamic
scripting language for which static code analysis might be very imprecise; therefore, using a purely
static source code features for bug prediction might not be enough. Based on a study where we
extracted 824 buggy and 1943 non-buggy functions from the publicly available BugsJS dataset
for the ESLint JavaScript project, we can confirm the positive impact of hybrid code metrics on
the prediction performance of the ML models. Depending on the ML algorithm, applied hyper-
parameters, and target measures we consider, hybrid invocation metrics bring a 2–10% increase
in model performances (i.e., precision, recall, F-measure). Interestingly, replacing static NOI and
NII metrics with their hybrid counterparts HNOI and HNII in itself improves model performances;
however, using them all together yields the best results.

Keywords: bug prediction; hybrid code analysis; call-graph; source code metrics

1. Introduction

Bug prediction aims at finding source code elements in a software system that are
likely to contain defects. Being aware of the most error-prone parts of the program, one can
efficiently allocate the limited amount of testing and code review resources. Therefore,
bug prediction can support software maintenance and evolution to a great extent. However,
practical adoption of such prediction models always depends on their real-world perfor-
mance and the level of disturbing misclassification (i.e., false-positive hits) they produce.
Despite the relative maturity of the bug prediction research area, the practical utilization of
the state-of-the-art models is still very low due to the reasons mentioned above.

Bug prediction models can use a diverse set of features to build effective prediction
models. The most common types of such features are static source code metrics [1–4], pro-
cess metrics [5–7], natural language features [8,9], and their combination [10–12]. All these
metrics proved to be useful in different contexts, but the performance of these models may
vary based on, for example, the language of the project, the composition of the project
team, or the domain of the software product. We need further studies to understand better
how and when these models work best in certain situations. Additionally, we can refine
source code metrics by using static and dynamic analysis in combination, which has a yet
unknown impact on the performance of bug prediction models.

In this paper, we propose a function level JavaScript bug prediction model based
on static source code metrics with the addition of a hybrid (static and dynamic) code
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analysis based metrics of the number of incoming and outgoing function calls. JavaScript
is a highly dynamic scripting language for which static code analysis might be very
imprecise. Although static source code metrics proved to be very efficient in bug prediction,
the imprecision due to the lack of dynamic information might affect the bug prediction
models using on them.

To support the hybrid code analysis of JavaScript programs, we created a hybrid
call-graph framework, called hcg-js-framework (https://github.com/sed-szeged/hcg-js-
framework) that can extract call-graph information of JavaScript functions using both static
and dynamic analysis. Based on the hybrid call-graph results of the ESLint (https://eslint.
org/) JavaScript project, which we used as a subject system for bug prediction, we refined
the Number of Incoming Invocations (NII) and Number of Outgoing Invocations (NOI)
metrics. We added them to a set of common static source code metrics to form the predictor
features in a training dataset consisting of 824 buggy and 1943 non-buggy functions
extracted from the publicly available BugsJS [13] bug dataset (https://github.com/BugsJS).
These invocation metrics are typically very imprecise in JavaScript calculated based only
on static analysis, as lots of calls happen dynamically, like higher-order function calls,
changes in prototypes, or executing the eval() function, which is impossible to capture
statically. We analyzed the impact of these additional hybrid source code metrics on the
function-level bug prediction models trained on this dataset.

We found that using invocation metrics calculated by a hybrid code analysis as bug
prediction features consistently improves the performance of the ML prediction mod-
els. Depending on the ML algorithm, applied hyper-parameters, and target measure we
consider, hybrid invocation metrics bring a 2–10% increase in model performances (i.e., pre-
cision, recall, F-measure). Interestingly, even though replacing static NOI and NII metrics
with their hybrid counterparts HNOI and HNII in itself improve model performances,
keeping them all together yields the best results. It implicates that hybrid call metrics
indeed add some complementary information to bug prediction.

The rest of the paper is structured as follows. In Section 2 we overview the JavaScript
call-graph related literature and their usage for refining static source code metrics. We sum-
marize our methodology for collecting ESLint bugs, mapping them to functions, extracting
hybrid call-graphs, and assembling the training dataset in Section 3. Section 4 contains the
results of comparing bug prediction models using only static, only hybrid, or both static
and hybrid metrics as features for machine learning models. We enlist the possible threats
to our work in Section 5 and conclude the paper in Section 6.

2. Related Work

Using call-graphs for source code and program analysis is a well-established and
mature technique; the first papers dealing with call-graphs date back to the 1970’s [14–16].
Call-graphs can be divided into two subgroups based on the method used to construct
them: dynamic [17] and static [18].

Dynamic call-graphs can be obtained by the actual run of the program. During the run,
several runtime information is collected about the interprocedural flow [19]. Techniques such
as instrumenting the source code can be used for dynamic call-graph creation [16,20].

In contrast, there is no need to run the program in the case of static call-graphs, as it is
produced by a static analyzer which analyzes the source code of software without actually
running it [16]. On the other hand, static call-graphs might include false edges (calls) since
a static analyzer identifies several possible calls between functions that are not feasible
in the actual run of a program; or they might miss real edges. Static call-graphs can be
constructed in almost any case from the source code, even if the code itself is not runnable.

Different analysis techniques are often combined to obtain a hybrid solution, which
guarantees a more precise call-graph, thus a more precise analysis [21].

With the spread of scripting languages such as Python and JavaScript, the need for
analyzing programs written in these languages also increased [22]. However, constructing
precise static call-graphs for dynamic scripting languages is a very hard task that is not

https://github.com/sed-szeged/hcg-js-framework
https://github.com/sed-szeged/hcg-js-framework
https://eslint.org/
https://eslint.org/
https://github.com/BugsJS
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fully solved yet [23]. The eval(), apply(), and bind() constructions of the languages make it
especially hard to analyze the code statically. There are several approaches to construct
such static call-graphs for JavaScript with varying success [22,24–26]. However, the most
reliable method is to use dynamic approaches to detect such call edges. We decided to use
both dynamic and static analysis to ensure better precision even though it increases the
analysis time, and the code should be in a runnable state due to the dynamic analysis.

Wei and Ryder presented blended taint analysis for JavaScript, which uses a combined
static-dynamic analysis [27]. By applying dynamic analysis, they could collect information
for even those situations that are hard to analyze statically. Dynamic results (execution
traces) are propagated to a static infrastructure, which embeds a call-graph builder as well.
This call-graph builder module makes use of the dynamically identified calls. However,
in the case of pure static analysis, they wrapped the WALA tool (https://github.com/
wala/WALA) to construct a static call-graph. As previously said, our approach works
similarly and also supports additional call graph builder tools to be included in the flow of
the analysis.

Feldthaus et al. presented an approximation method to construct a call-graph [22]
by which a scalable JavaScript IDE support could be guaranteed. We used a static call-
graph builder tool in our toolchain, which is based on this approximation method (https:
//github.com/Persper/js-callgraph). Additional static JavaScript call-graph building
algorithms were evaluated by Dijkstra [28]. Madsen et al. focused on the problems induced
by libraries used in the project [29]. They used pointer analysis and a novel “use analysis”
to enhance scalability and precision.

There are also works intending to create a framework for comparing call-graph con-
struction algorithms [30,31]. However, these are done for algorithms written in Java and C.
Call-graphs are often used for preliminary analysis to determine whether an optimization
can be done on the code or not. Unfortunately, as they are specific to Java and C, we could
not use these frameworks for our paper.

Clustering call-graphs can have advantages in malware classification [32], they can
help localizing software faults [33], not to mention the usefulness of call-graphs in debug-
ging [34].

Musco et al. [35] used four types of call-graphs to predict the software elements that
are likely to be impacted by a change in the software. However, they used mutation testing
to assess the impact of a change in the source code. The same methodology could have been
used but with a slight change: instead of using an arbitrary change, it can be a vulnerability
introducing or a vulnerability mitigating change.

Nuthan Munaiah and Andrew Meneely [36] introduced two novel attack surface
metrics with their approach, which are the “Proximity” and “Risky Walks” metrics. Both of
them are defined by the call-graph representation of the program. Their empirical study
proved that using their metrics to build a prediction model can help to predict more accu-
rately as their metrics are statistically significantly associated with the vulnerable functions.

Nguyen et al. [37] proposed a model to predict vulnerable components based on a
metric set generated from the component dependency graph of a software.

Cheng et al. [38] presented a new approach to detect control-flow-related vulnera-
bilities called VGDetector. They applied a recent graph convolutional network to embed
code fragments in a compact representation (while the representation still preserves the
high-level control-flow information).

Neuhaus et al. [39] presented a fully automatic way to map vulnerabilities to software
components and a tool called Vulture that can automatically build predictors to predict
vulnerabilities in a new component. They identified that imports and function calls have
an impact on whether a component vulnerable or not. They also made an evaluation of
Mozilla’s codebase that showed that their approach is accurate.

Lee et al. [40] proposed a new approach to generate semantic signatures from programs
to detect malware. They extracted the call-graph of the API call sequence that would be
generated by malware, called code graph. This graph is used for the semantic signature.

https://github.com/wala/WALA
https://github.com/wala/WALA
https://github.com/Persper/js-callgraph
https://github.com/Persper/js-callgraph
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They used semantic signatures to detect malware even if the malware is obfuscated or
the malware slightly differs from its previous versions (these are the main reasons why a
commercial anti-virus does not detect them as malware).

As these previous studies show, the advantage of call-graphs is present in predict-
ing vulnerabilities in software systems. We did not narrow down the type of defects.
Our approach is generally applicable to arbitrary bug prediction.

The most similar to our study is possibly the work of Punia et al. [41] who presented a
call-graph based approach to predict and detect defects in a given program. They also de-
fined call-graph based metrics such as Fan In, Fan Out, Call-Graph Based Ranking (CGBR)
and Information Flow Complexity (IFC). They investigated the correlation between their
metrics and several types of bugs. They proved the hypothesis that there is a correlation
between call-graph based metrics and bugs in software design. The authors performed
their study in the Java domain; contrarily, we focused on JavaScript systems. Besides J84,
LMT, and SMO, we applied additional machine learning algorithms and also evaluated
deep learning techniques to find potential bugs in the software. As many papers, we also
focused on different source code metrics; however, we adopted coupling metrics for the
so-called hybrid call-graph.

3. Methodology

Our approach consists of numerous steps, which we present in detail in this section.
Figure 1 shows the steps required to produce input for the machine learning algorithms.

Figure 1. Applied Toolchain.

3.1. BugsJS Dataset

BugsJS [13] is a bug dataset inspired by Defects4J [42]; however, it provides bug related
information for popular JavaScript-based projects instead of Java projects. Currently,
BugsJS includes bug information for ten projects that are actively maintained Node.js
server-side programs hosted on GitHub. Most importantly, BugsJS includes projects which
adopt the Mocha testing framework; consequently, we can implement dynamic analysis
experiments easier.

BugsJS stores the forks of the original repositories and extends them by adding tags
for their custom commits in the form of:

• Bug-X: The parent commit of the revision in which the bug was fixed (i.e., the buggy
revision)

• Bug-X-fix: A revision (commit) containing only the production code changes (test
code and documentation changes were excluded) introduced in order to fix the bug

where X denotes a number associated with a given bug. As out of the total 453 bugs, ESLint
(https://github.com/eslint/eslint) itself contains 333 bugs, we chose this project as input
in our study.

https://github.com/eslint/eslint
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3.2. Hybrid Invocation Metrics Calculation

As a first step, we have to produce the so-called hybrid call-graphs from which we
can calculate the hybrid invocation metrics (i.e., HNII and HNOI). In order to understand
what a hybrid call-graph is, let us consider Figure 2, which shows the details of the node
“hcg-js-framework” presented earlier in Figure 1.

As can be seen, the input of the hcg-js-framework is the JavaScript source code that we
want to analyze, which can be either a Git repository or a local folder. Then we analyze the
source code with various static and dynamic tools. Following the analyses, the framework
converts all the tool-specific outputs to a unified JSON format. Once we have the JSON
files, the framework combines them into a merged JSON. This merged JSON contains every
node and edge (JavaScript function nodes and call edges between them) that either of the
tools found.

After this step, we augment this merged JSON with confidence levels for the edges.
The confidence levels are calculated based on a manual evaluation of 600 out of 82,791
call edges found in 12 real-world Node.js modules. We calculated the True Positive Rate
for each tool intersection. We estimate the confidence of a call edge with these rates.
For instance, if a call edge was found by tools A and B, and in the manually evaluated
sample, there were ten edges found by only these tools, from which five turned out to be a
valid call edge, we add confidence of 0.5 to all these edges.

Figure 3 shows a Venn diagram of the call edges found in 12 Node.js modules. We have
an evaluation ratio for each intersection, which the framework uses for edge confidence
level estimation.

To sum it up, a hybrid call-graph is a call-graph (produced by combining the results
of both static and dynamic analysis) which associates a confidence factor to each call edge,
which shows how likely an edge is valid (higher confidence means higher validity).

This hybrid call-graph is the input of the HNII, HNOI Counter which is responsible
for calculating the exact number of incoming and outgoing invocations (i.e., NII, NOI).
At this point, we have to specify the threshold value, which defines the lower limit from
which we consider a call edge as a valid call edge, thus contributing to the value of the
number of incoming and outgoing invocations. We considered four threshold values: 0.00,
0.05, 0.20 and 0.30. In the case of the first one, all edges are considered as possibly valid
call edges, while the latter one only includes edges with a high confidence factor. We name
these two new metrics as HNII (Hybrid Number of Incoming Invocations) and HNOI
(Hybrid Number of Outgoing Invocations) to differentiate them from the original static NII
and NOI metrics.

The HNII, HNOI Counter traverses all call edges and considers those edges where
the confidence level is above the given threshold. The edges fulfilling this threshold
criteria contribute to the HNOI metric of the source node and the HNII metric of the target
node. As a result, the tool produces a JSON file as its output, which contains only the
nodes (i.e., the JavaScript functions) with their corresponding HNII, HNOI metric values,
and additional information about their position in the system, such as source file, line,
and column. Listing 1 shows an example of a single node output.
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Figure 2. Hybrid call-graph framework architecture.
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Figure 3. Venn diagram of found edges.

Listing 1: Sample output from the HNII, HNOI Counter.

{
" pos " : " e s l i n t / l i b /ast − u t i l s . j s : 1 6 9 : 2 5 " ,
" entry " : f a l s e ,
" f i n a l " : f a l s e ,
" h n i i " : 1 ,
" hnoi " : 3
}
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3.3. SourceMeter and Patch Extraction

Besides computing the HNII and HNOI metrics, a standard set of metrics is provided
by a static source code analyzer named SourceMeter (https://www.sourcemeter.com/).
SourceMeter also takes JavaScript source code as input and outputs (amongst others)
different CSV files for different source code elements (functions, methods, classes, files,
system). In this study, we used the resulting CSV file that contains function level entries,
which captures static size metrics (LOC, LLOC, NOS), complexity metrics (McCC, NL),
documentation metrics (CD, CLOC, DLOC), and traditional coupling metrics (NII, NOI) as
well. These metrics are calculated for all the 333 bugs in ESLint before and after the bug is
fixed, which means 666 static analyses in total.

Similarly, we extracted the patches for these 333 bug fixing commits, which is done by
Patch Extractor.

3.4. Composing Buggy Entries

At this point, we have all the necessary inputs to combine them in one CSV, which
contains the buggy entries with their static source code metrics extended with the HNII
and HNOI metrics. The core of the algorithm is the following. We traverse all the bugs
one-by-one. For bugi , we retrieved a set of entries from the ith static analysis results,
which were touched by the fixing patchi (determined based on entry name and positional
information) and extended these entries with the corresponding HNII and HNOI metric
values. We included the before-fix state (i.e., the buggy) for the touched JavaScript functions,
and used the date of the latest bug to select non-buggy instances from that corresponding
version of the code (i.e., Bug-79 fixed at 2018-03-21 17:23:34). For non-buggy entries, we also
extracted the corresponding HNII and HNOI values also from the latest buggy version.

4. Results

To calculate the HNOI and HNII metrics, one needs to apply a threshold to the call
edges (to decide which edges to consider as valid) in the underlying hybrid (also called
as fuzzy) call-graph produced by the hcg-js-framework (see Section 3). We calculated the
metric values (all the data used in this study is available online [43]) with four different
thresholds: 0, 0.05, 0.2, and 0.3. Table 1 shows the descriptive statistics of the metrics on
our ESLint dataset.

Table 1. Descriptive statistics of the HNII and HNOI (Hybrid Number of Incoming/Outgoing
Invocations) metrics calculated using different thresholds.

HNII HNOI

Threshold Avg. Median Std.dev. Avg. Median Std.dev.

0.00 7.026021 1 26.95583 5.341887 2 27.27586
0.05 6.96133 1 26.95997 5.243224 2 26.91228
0.20 0.840622 1 2.823739 1.018793 0 9.236607
0.30 0.840622 1 2.823739 1.018793 0 9.236607

As can be seen, thresholds 0.20 and above significantly reduces the number of consid-
ered edges for HNII and HNOI calculation. We wanted to use as many of the extracted call
edges as possible, so we selected to use the 0.00 threshold later on (i.e., we considered each
edge in the fuzzy call-graph where the weight/confidence is greater or equal to zero).

We trained several models on the dataset with three different configurations for
the features:

• Purely static metrics (S − 0_00_s.csv): the dataset contains only the pure static source
code metrics (i.e., original versions of NOI and NII plus all the provided metrics by
SourceMeter, see Section 3.3).

https://www.sourcemeter.com/
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• Static metrics with only hybrid NOI and NII versions (H − 0_00_h.csv): the dataset
contains all the static metrics except NOI and NII, which are replaced by their hybrid
counterparts (HNOII and HNII) calculated on the output of hcg-js-framework.

• Both static and hybrid metrics (S + H − 0_00_s + h.csv): the dataset contains all
the static metrics plus the hybrid counterparts of NOI and NII (HNOII and HNII)
calculated on the output of hcg-js-framework.

To have a robust understanding of the hybrid metrics’ impact, we trained nine different
machine learning models:

• Logistic Regression Classifier—Logistic regression is a statistical model that uses
a logistic function to model a binary dependent variable (implemented by
sklearn.linear_model.LogisticRegression);

• Naive Bayes Classifier—Naive Bayes classifier is a simple “probabilistic classifier”
based on applying Bayes’ theorem with strong (naïve) independence assumptions
between the features (implemented by sklearn.naive_bayes.GaussianNB);

• Decision Tree Classifier—Decision Trees (DTs) are a non-parametric supervised learn-
ing method used for classification and regression, where the goal is to create a model
that predicts the value of a target variable by learning simple decision rules inferred
from the data features (implemented by sklearn.tree.DecisionTreeClassifier an
optimized version of the CART algorithm);

• Linear Regression Classifier—Linear regression is a linear approach to modeling
the relationship between a scalar response and one or more explanatory variables
also known as dependent and independent variables (implemented by
sklearn.linear_model.LinearRegression);

• Standard DNN Classifier—A deep neural network (DNN) is an artificial neural net-
work (ANN) with multiple layers between the input and output layers (implemented
using tensorflowf.layers.dense);

• Customized DNN Classifier—A custom version of the standard DNN implementing
th early stopping mechanism, where we do not train the models for a fixed number of
epochs, rather stop when there is no more reduction in the loss function (implemented
using tensorflowf.layers.dense);

• Support Vector Machine Classifier—Support-vector machine (SVM) is a supervised
learning model, which is a representation of the examples as points in space, mapped
so that the examples of the separate categories are divided by a clear gap that is as
wide as possible (implemented by sklearn.svm.SVC);

• K Nearest Neighbors Classifier—The k-nearest neighbors algorithm (k-NN) is
a non-parametric method for classification and regression, where the input
consists of the k closest training examples in the feature space (implemented by
sklearn.neighbors.KNeighborsClassifier);

• Random Forest Classifier—Random forest is an ensemble learning method for classifi-
cation, regression and other tasks that operates by constructing a multitude of decision
trees at training time and outputting the class that is the mode of the classes (classifi-
cation) or mean/average prediction (regression) of the individual trees (implemented
by sklearn.ensemble.RandomForestClassifier).

With the various hyper-parameters, it added up to a total of 36 configurations. We ex-
ecuted all these 36 training tasks on all three feature sets, so we created 108 different ML
models for comparison. To cope with the highly imbalanced nature of the dataset (i.e., there
are significantly more non-buggy functions than buggy ones), we applied a 50% oversampling
on the minority class. We also standardized all the metric values to bring them to the same
scale. For the model training and evaluation, we used our open-source DeepWater Frame-
work (https://github.com/sed-inf-u-szeged/DeepWaterFramework) [44], which contains
the implementation of all the above algorithms.

To ensure that the results are robust against the chosen threshold, we trained the same
108 models with the threshold value of 0.30 for HNII and HNOI calculation. We found that
the differences among S, H, and S + H feature sets became less, but the general tendency

https://github.com/sed-inf-u-szeged/DeepWaterFramework
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that H and especially S + H features achieved better results remained. Therefore, in the
rest of the paper, we can use the HNII and HNOI metrics calculated with the 0.00 threshold
without the loss of generality. In the remaining, we present our findings.

4.1. The Best Performing Algorithms

Figure 4 displays a heat-mapped table of the top 10 model results based on their recall
values. We ranked all 108 models, meaning that all three feature sets are on the same list.
We can measure recall with the following formula:

Recall =
TP

TP + FN
,

where TP means True Positive samples, while FN means False Negatives. As we can see,
DNN (0.642) and KNN (0.635) models achieve the best recall values on the S + H feature
set. The same models produce almost as high recall values (0.631) using only the H feature
set. The best performing model on the S feature set is KNN, with a significantly lower
(0.619) recall value. It shows that hybrid invocation metrics do increase the performance of
ML models in terms of recall. The best values are achieved by keeping both the original
NOI and NII metrics and adding their hybrid counterparts HNOI and HNII, but using
only the latter ones as substitutes for the static metrics still improves recall values.

Figure 4. Top 10 recall measures.

To visualize the difference in the various performance measures, we plotted a bar-
chart (Figures 5 and 6) with the best DNN configurations (i.e., applying the set of hyper-
parameters with which the model achieves the best performance) for all three feature sets.
Blue marks the results using the S + H feature set, cyan the H feature set, while yellow the
S feature set. S + H results are superior, while H results are better than the S results except
for the False Positive and True Negative instances. The chart shows that there is a constant
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3–4% improvement in all aspects of the DNN model results if we add the hybrid metrics to
the feature sets.

Figure 5. Deep neural network.

Figure 6. Deep neural network.

Figure 7 displays a heat-mapped table of the top 10 model results based on their
precision values. We ranked all 108 models, meaning that all three feature sets are on the
same list. We can measure precision with the following formula:

Precision =
TP

TP + FP
,

where TP means True Positive samples, while FP means False Positives. As we can see,
the SVM model (0.829) achieves the best precision values on the H feature set. Interestingly,
SVM produces an almost as high precision value (0.827) using only the S feature set as
well. Based on the S + H feature set, SVM achieves a precision value of 0.824. It shows that
hybrid invocation metrics do increase the performance of ML models in terms of precision,
but not as significantly as in the case of recall values. Nonetheless, for other algorithms
than SVM, the increase is more significant.

To visualize the difference in the various performance measures, we plotted a bar-chart
(Figures 8 and 9) with the best SVM configurations for all three feature sets. Blue marks
the results using the S + H feature set, cyan the H feature set, while yellow the S feature
set. S + H results are superior, while H results are still better than S results for all measures.
The chart shows that there is a constant 1–2% improvement in all aspects of the SVM model
results if we add the hybrid metrics to the feature sets.
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Figure 7. Top 10 precision measures.

Figure 8. Support-vector machine (SVM).

Figure 9. SVM.



Technologies 2021, 9, 3 13 of 19

Figure 10 displays a heat-mapped table of the top 10 model results based on their
F-measure values. We ranked all 108 models, meaning that all three feature sets are on the
same list. We can calculate F-measure with the following formula:

F − measure = 2 · Precision · Recall
Precision + Recall

.

As we can see, Random Forest (0.648) and KNN (0.641) models achieve the best F-
measures on the S + H feature set. The same Random Forest models produce almost as
high F-measures (0.647) using only the H feature set. The best performing model on the S
feature set is not even in the top 10. It shows that hybrid invocation metrics do increase
the performance of ML models in terms of F-measure, meaning they improve the models’
overall performance. The best values are achieved by keeping both the original NOI and
NII metrics and adding their hybrid counterparts HNOI and HNII, but using only the
latter ones as substitutes for the static metrics still improves F-measure significantly.

Figure 10. Top 10 F-measures.

To visualize the difference in the various performance measures, we plotted a bar-chart
(Figures 11 and 12) with the best Random Forest configurations for all three feature sets.
Blue marks the results using the S + H feature set, cyan the H feature set, while yellow the
S feature set. S + H and H results are better than S results for all measures except for recall,
but the difference there is only marginal. The chart shows that there is a constant 1–2%
improvement in all aspects of the Random Forest model results, but precision is higher by
approximately 10% if we add the hybrid metrics to the feature sets.
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Figure 11. Random forest.

Figure 12. Random forest.

4.2. The Most Balanced Algorithm

K-nearest neighbor models stand out in that they produce the most balanced perfor-
mance measures. As can bee sen in Figures 13 and 14, both precision and recall values are
above 0.6, therefore F-measure is above 0.6 as well. For this model, H feature set brings a
1–2% improvement over the S feature set, while S + H feature set results in a 2–5% increase
in performance.

4.3. Significance Analysis of the Performance Measures

Despite a seemingly consistent increase in every model performance measures caused
by adding hybrid source code metrics to the features, we cannot be sure that this improve-
ment is statistically significant. Therefore, we performed a Wilcoxon signed-rank test [45]
on the model F-measure values between each pair of feature sets (S vs. H, S vs. S + H, H vs.
S + H). The detailed results (T statistics and p-values) are shown in Table 2.

Figure 13. K-nearest neighbors.
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Figure 14. K-nearest neighbors.

Table 2. Wilcoxon signed-rank test results of F-measures between models using different feature sets.

Hybrid Static + Hybrid

Features T p-Value T p-Value

>Static 95.5 0.00032 74 0.00004
>Hybrid - - 116 0.0019

As can be seen, the F-measure values achieved by the models differ significantly
(p-value is less than 0.05) depending on the feature sets we used for training them. It is
interesting to observe that there is a significant difference in performances even between
the models using the hybrid and static+hybrid features and not just between models
using static features only and models using hybrid features as well. These results confirm
that even though hybrid source code metrics provide additional prediction power to
bug prediction models, they do not substitute static source code metrics but complement
them. Therefore, according to our empirical data, we could achieve the best performing
JavaScript bug prediction models by keeping static call-related metrics and adding their
hybrid counterparts to the model features. We note that the Wilcoxon signed-rank test
showed significant results in the case of precision and recall performance measures as well.

4.4. Results Overview and Discussion

In the previous sections, we analyzed the best performing algorithms with a focus
on the improvements caused by the hybrid source code metrics. However, to have a
complete picture of the results, we summarize the performances of all nine machine
learning algorithms here. Table 3 shows the best prediction performances (i.e., models
with best performing hyper-parameters and feature set) of all nine algorithms according to
their F-measures.

Table 3. The best results of the nine ML algorithms according to their F-measure.

ML Algorithm Feature Set Accuracy Precision Recall F-Measure MCC

>Random Forest Classifier S + H 0.816 0.753 0.569 0.648 0.54
>K Nearest Neighbors Classifier S + H 0.788 0.646 0.635 0.641 0.49

>Customized DNN Classifier S + H 0.784 0.649 0.601 0.624 0.47
>Decision Tree Classifier S + H 0.781 0.649 0.58 0.612 0.46

>Standard DNN Classifier H 0.774 0.634 0.569 0.6 0.44
>Logistic Regression Classifier S + H 0.787 0.682 0.533 0.598 0.46

>Support Vector Machine Classifier S + H 0.789 0.699 0.515 0.593 0.47
>Linear Regression Classifier S + H 0.769 0.67 0.443 0.533 0.4

>Naive Bayes Classifier S + H 0.772 0.713 0.394 0.508 0.4
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There are several properties to observe in the table. First, all but one ML model
achieves the best results in terms of F-measure using the S + H feature set. The only
exception is the Standard DNN Classifier, which performs best using only the hybrid
version of call metrics (i.e., H feature set). Second, the Random Forest Classifier has the
best F-measure (0.648) but also the best accuracy (0.816), precision (0.753), and MCC (0.54)
metrics, which mean it performs the best overall for predicting software bugs in the studied
JavaScript program. However, there is a trade-off between precision and recall; therefore,
the Random Forest Classifier has only the third-highest recall metric (569). Third, the K
Nearest Neighbors Classifier has the one but last lowest precision (0.646) and only the
third-highest accuracy (0.788), still its recall (0.635) is the highest among all the models and
in terms of F-measure (0.641) and MCC (0.49) it is a very close second behind the Random
Forest Classifier. It implicates that the K Nearest Neighbors Classifier achieves the most
balanced performance, not the best in every aspect but very high performance measures
with no large variance. Fourth, the deep neural networks (Standard DNN Classifier
and Customized DNN Classifier) do not outperform the simpler, classical models in this
prediction task. The most likely cause of this is the relatively small amount of training
samples, so the real strength of deep learning cannot be exploited. Fifth, the models
struggle to achieve high recall values in general, which seems to be the bottleneck of the
maximum F-measures. Even the worst-performing models (Linear Regression Classifier
and Naive Bayes Classifier) have an acceptable accuracy (0.769 and 0.772, respectively) and
precision (0.67 and 0.713, respectively), but very low recall (0.443 and 0.394, respectively),
which results in a very low F-measure (0.533 and 0.508, respectively).

To sum up our experiences, it is worthwhile to add hybrid call metrics to the set
of standard static source code metrics for training a JavaScript bug prediction model.
To achieve the highest accuracy and precision, one should choose the Random Forest
Classifier method, but if the recall is also important and one wants to have as balanced
results as possible, the K Nearest Neighbors Classifier is the best possible option.

5. Threats to Validity

There are several threats to the validity of the presented empirical study. As a training
set, we used 333 bugs only from one system. Therefore, the results might be specific to this
system and might not generalize well. However, ESLint is a large and diverse program
containing a representative set of issues. Additionally, bugs are manually filtered, thus do
not introduce noise in the prediction models. As a result, we believe that our study is
meaningful, though replication with more subject systems would be beneficial.

The threshold value chosen for calculating the hybrid call edges might affect the ML
model performances. We selected a threshold of 0 (i.e., counted every edge with a weight
greater than zero) in our case study; however, we carried out a sensitivity analysis with
different thresholds as well. Even though the calculated HNOI and HNII values changed
based on the applied threshold, the model improvements using these values proved to be
consistent with the ones presented in the study. Therefore, we believe that the essence of
the results is independent of the choice of the particular threshold value.

Finally, the provided thresholds might be inaccurate as we derived them from a
manual evaluation of a small sample of real call edge candidates. To eliminate the risk of
human error, two senior researchers evaluated all the edges who had to agree on each call
label. For sampling, we applied a stratified selection strategy, so we evaluated more call
samples from subsets of tools finding more edges in general, thus increasing the confidence
of the derived weights.

6. Conclusions

In this paper, we proposed a function level JavaScript bug prediction model based on
static source code metrics with the addition of a hybrid (static and dynamic) code analysis
based metrics for incoming and outgoing function calls. JavaScript is a highly dynamic
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scripting language for which static code analysis might be very imprecise; therefore,
combining static and dynamic analysis to extract features is a promising approach.

We created three versions of a training dataset from the functions of the ESLint project.
We used the BugsJS public dataset to find, extract, and map buggy functions in ESLint.
We ended up with a dataset containing 824 buggy and 1943 non-buggy functions with
three sets of features: static metrics only, static metrics where the invocation metrics (NOI
and NII) are replaced by their hybrid counterparts (HNOI and HNII), static metrics with
the addition of the hybrid metrics.

We trained nine different models in 108 configurations and compared their results.
We found that using invocation metrics calculated by a hybrid code analysis as bug pre-
diction features consistently improves the performance of the ML prediction models. De-
pending on the ML algorithm, applied hyper-parameters, and target measure we consider,
hybrid invocation metrics bring a 2–10% increase in model performances (i.e., precision,
recall, F-measure). Interestingly, even though replacing static NOI and NII metrics with
their hybrid counterparts HNOI and HNII in itself improves model performances, most of
the time, keeping them both yields the best results. This means that they hold somewhat
complementary information to each other. To achieve the highest accuracy and precision,
one should choose the Random Forest Classifier method, but if the recall is also important
and one wants to have as balanced results as possible, the K Nearest Neighbors Classifier
is the best possible option.
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