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Abstract

Let k and l be positive integers satisfying k ≥ 2, l ≥ 1. We say a set
A of positive integers is an asymptotic basis of order k if every large
enough positive integer can be represented as the sum of k terms from
A. About 35 years ago, P. Erdős suggested a well-known question:
Does there exist an asymptotic basis of order k where all the subset
sums with at most l terms are pairwise distinct with the exception of
finitely number of cases as long as l ≤ k − 1? In this paper, we prove
the existence of an asymptotic basis of order 2k + 1 and all the sums
of at most k elements of this asymptotic basis are pairwise different
except for "small" numbers by using probabilistic tools.
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1 Introduction
Let h, k ≥ 2 be integers. Let A ⊂ N be an infinite set, where N denotes the
set of all nonnegative integers. Now, for each n ∈ N, we denote r∗k(A, n) as
∗Institute of Mathematics, Budapest University of Technology and Economics, H-1529

B.O. Box, Hungary; kisspest@cs.elte.hu; This author was supported by the National Re-
search, Development and Innovation Office NKFIH Grant No. K115288 and K129335.
This paper was supported by the János Bolyai Research Scholarship of the Hungarian
Academy of Sciences. Supported by the ÚNKP-19-4 New National Excellence Program of
the Ministry for Innovation and Technology. Supported by the ÚNKP-20-5 New National
Excellence Program of the Ministry for Innovation and Technology from the source of the
National Research, Development and Innovation Fund.
†Institute of Mathematics, Budapest University of Technology and Economics, H-1529

B.O. Box, Hungary; nguyenvinhhung108@gmail.com.

1



the number of solutions of the equation

a1 + a2 + . . . + ak = n, a1 ∈ A, . . . , ak ∈ A, a1 ≤ a2 ≤ . . . ≤ ak.

We also define rk(A, n) as the number of solutions of the equation

a1 + a2 + . . . + ak = n, a1 ∈ A, . . . , ak ∈ A, a1 < a2 < . . . < ak.

For a positive integer g, let Bh[g] = {A ⊂ N | r∗h(A, n) ≤ g for every n ∈ N}.
If A ∈ Bh[g], we say A is a Bh[g] set and if A ∈ B2[1], A is a Sidon set.
Moreover, we say a set A ⊂ N is an asymptotic basis of order k if there exists
a positive number n0 such that r∗k(A, n) > 0 for every n > n0.

Over many years, the Bh[g] sets which are asymptotic bases of some
order were investigated by many authors. According to a famous conjecture
of Erdős and Turán [8], an asymptotic basis of order 2 cannot be a B2[g]
set. In [4] and [5], P. Erdős, A. Sárközy and V. T. Sós asked if there exists a
Sidon set which is an asymptotic basis of order 3. J. M. Deshouillers and A.
Plagne in [2] introduced a construction for a Sidon set which is an asymptotic
basis of order at most 7. The existence of Sidon sets which are asymptotic
bases of order 5 was also proved with the help of probabilistic tools in [10].
In addition, there is an improvement: in [1] and [12], it was showed that
there exists Sidon sets that are asymptotic bases of order 4. Also in [1],
it was proved the existence of B2[2] sets which are an asymptotic bases of
order 3. In [6], Erdős asked for the largest possible value of the positive
integer m such that all the possible 2m subsums of ai’s are different, where
0 < a1 < a2 < ... < am ≤ n. Furthermore, in [3], P. Erdős raised a question
which asks if there exists for every k an asymptotic basis of order k for which
all the sums of the form

∑l
i=1 εiai, where εi ∈ {0, 1} are all distinct except

for a finite number of cases as long as l ≤ k − 1.
In this paper, we will prove the existence of an asymptotic basis of order

2k + 1 which satisfies the property that all
∑k

i=1 εiai with εi ∈ {0, 1} are
pairwise distinct.

Namely, we prove the following theorem.

Theorem 1 For every k ≥ 2 integer, there exists a set which is an asymp-
totic basis of order 2k + 1 and all the sums of the form

∑k
i=1 εiai with

εi ∈ {0, 1} are all pairwise distinct.

To prove Theorem 1, we apply the probabilistic method. In the next part,
we give a short survey about it.
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2 Probabilistic and combinatorial tools
To prove Theorem 1, we use the material of [13], which is based on the
probabilistic method due to Erdős and Rényi. There is an excellent summary
of this method in the book of Halberstam and Roth [9]. In this paper, we
denote the probability of an event A by P (A), and the expected value of
a random variable X by E(X). Let Ω denote the set of strictly increasing
sequences of positive integers.

Lemma 1 Let α1, α2, α3, . . . be real numbers which satisfies

0 ≤ αn ≤ 1 (n = 1, 2, 3, . . . ).

Then there exists a probability space (Ω, X, P ) with the following properties:

(i) For every natural number n, the event E (n) = {A: A ∈ Ω, n ∈ A} is
measurable, and P (E (n)) = αn.

(ii) The events E (1), E (2), . . . are independent.

See Theorem 13. in [9], p. 142. We denote the indicator function of the
event E (n) by %(A, n) i.e.,

%(A, n) =

{
1, if n ∈ A
0, if n /∈ A.

We can easily see that for some A = {a1, a2, ...} ∈ Ω, we can calculate
rh(A, n), i.e., the number of solutions of ai1 +ai2 + ...+aih = n with ai1 ∈ A,
ai2 ∈ A, ..., aih ∈ A and 1 < ai1 < . . . < aih < n by

rh(A, n) =
∑

(ai1
,ai2

,...,aih
)∈Nh

1≤ai1<...<aih<n
ai1

+ai2
+...+aih

=n

%(A, ai1)%(A, ai2) . . . %(A, aih).

We also need the following lemma for the proof of the theorem:

Lemma 2 (Borel-Cantelli) Let X1, X2, ... be a sequence of events in a prob-
ability space. If

+∞∑
j=1

P (Xj) <∞,

then with probability 1, at most a finite number of the events Xj can occur.
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See [9], p. 135.
Another lemma due to Erdős and Tetali is needed for our proof:

Lemma 3 Let Y1, Y2, ... be a sequence of events in a probability space. If∑
i P (Yi) ≤ µ, and κ is a positive integer then∑

(Y1,...,Yκ)
independent

P (Y1 ∩ . . . ∩ Yκ) ≤
µκ

κ!
.

The proof of this lemma is provided in [7]. (We say the events Y1, Y2, ..., Yω
are independent if for all subsets I ⊂ {1, 2, . . . , ω}, P (∩i∈IYi =

∏
i∈I P (Yi)).

3 Proof of the theorem
Let k ≥ 2 be fixed and α = 2

4k+1
. Define the sequence αn in Lemma 1 by

αn =
1

n1−α ,

so that P ({A ∈ Ω, n ∈ A}) = 1
n1−α . It was already proved in [13] that

A is an asymptotic basis of order 2k + 1, with probability 1. Therefore, to
complete the proof, we need to show that, starting out from such an A, we
can construct an asymptotic basis of order 2k + 1, where all the sums

k∑
i=1

εiai

with εi = 0 or εi = 1 for every i ≥ 1 are all distinct. To do that, we will prove
that after deleting finitely many elements from A, we will get a new set C
such that r1(C, n) + r2(C, n) + r3(C, n) + . . . + rk(C, n) ≤ 1 with probability
1 for every n ≥ 1, where r1(C, n) = %(C, n). Furthermore, we will show that
the above deletion does not destroy the asymptotic basis property.
Applying the following lemma with w = 2k+1 we get thatA is an asymptotic
basis of order 2k + 1, with probability 1.

Lemma 4 Let w ≥ 2 be a fixed integer and let P ({A : A ∈ Ω, n ∈ A}) =
1

n1−α where α > 1
w
. Then with probability 1, rw(A, n) > cnwα−1 for every

sufficiently large n, where c = c(α,w) is a positive constant.

This is Lemma 3 in [13] and the proof can be found in [11]. It was also
proved in [13] that deleting finitely many elements from A we get a set B
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which is a Bk[1] set with probability 1. Now we show that removing finitely
many elements from such a B, we obtain a set C such that r1(C, n)+r2(C, n)+
r3(C, n)+. . .+rk(C, n) ≤ 1 with probability 1. Since almost surely B ∈ Bk[1],
then clearly r∗i (B, n) ≤ 1 for every 2 ≤ i ≤ k and n ≥ 1, with probability
1, which obviously implies that ri(B, n) ≤ 1 for every 2 ≤ i ≤ k and n ≥ 1,
with probability 1.
In next step, we define the sets βj(n) = {(a1, a2, . . . , aj)| a1 < a2 < . . . <
aj, a1 + a2 + . . . + aj = n} for j = 1, 2, 3, . . . , k. Clearly, β1(n) = {n}. With
these notations, we define the set β(n) = ∪kj=1βj(n). For every 2 ≤ i ≤ j ≤ k,
we say any two representations (a1, . . . , ai) ∈ β(n) and (b1, . . . , bj) ∈ β(n)
are disjoint if am 6= bp for any 1 ≤ m ≤ i and 1 ≤ p ≤ j. We can define
H(β(n)) = {T ⊆ β(n) | every two representations in T are disjoint}. Let
fA(n) and fB(n) denote the size of the maximal collection of pairwise disjoint
representations of n in A and B as the sum of at most k terms, respectively.
In the next step, we prove that almost always there exists an n1 such that

fB(n) ≤ 1

for every n ≥ n1. To do this we need the following estimation for the expec-
tation of rl(A, n).

Lemma 5 For every 1 ≤ l ≤ k, E(rl(A, n)) ≤ n−1+lα+o(1) for every n

The proof of Lemma 6 is similar to (5) in [10]. For the sake of completeness
we present it. By n

l
< al, we have:

E(rl(A, n)) =
∑

a1+...+al=n

1≤a1<...<al<n

P (a1 ∈ A) . . . P (al ∈ A)

=
∑

a1+...+al=n

1≤a1<...<al<n

1

(a1 . . . al)1−α
≤ n−1+α+o(1)

∑
a1+...+al=n

1≤a1<...<al<n

1

(a1 . . . al−1)1−α

≤ n−1+α+o(1)
∑

1≤ai≤n
i=1,2,...,l−1

1≤a1<...<al−1≤n

1

(a1 . . . al−1)1−α
≤ n−1+α+o(1)

∑
1≤a1≤n

(
1

a1−α1

)l−1

= n−1+α+o(1)(nα+o(1))l−1 = n−1+lα+o(1).

It is clear that if we have two disjoint representations of n as the sum of at
most k distinct terms S1 and S2, it implies the fact that two events S1 ⊂
A and S2 ⊂ A are independent. Using the fact that B is a subset of A,
E(r1(A, n)) = P (n ∈ A), Lemma 3 and Lemma 6, we have:

P (fB(n) ≥ 2) ≤ P (fA(n) ≥ 2) ≤ P (∪T∈H(β(n))

|T |=2
∩S∈T S ⊂ A)
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≤
∑

(S1,S2)

disjoint

P ((S1 ⊂ A) ∩ (S2 ⊂ A)) ≤ E(fA(n))2

2!

≤ 1

2
(E(r1(A, n)) + E(r2(A, n) + . . . + rk(A, n)))2

≤ 1

2
(E(r1(A, n)) + E(r2(A, n)) + . . . + E(rk(A, n)))2

≤ 1

2
(n−1+α+o(1) + . . . + n−1+kα+o(1))2 ≤ k2

2
n−2+2kα+o(1).

We can see that for every k ≥ 2 we have

−2 + 2kα = −2 +
4k

4k + 1
= −1− 1

4k + 1
< −1.

By the Borel-Cantelli lemma, we can conclude: there almost surely exists
n1 ≥ 1 such that fB(n) ≤ 1 for every n ≥ n1.

Starting out from such a B we define a new set C = B \ D where D =
{a ∈ B| a ≤ n1}. Thus we have fC(n) ≤ 1 for every n ≥ 1, where fC(n)
denotes the size of the maximal collection of pairwise disjoint representations
of n as the sum of at most k terms from C. Now we denote F (C, n) =
r1(C, n) + r2(C, n) + r3(C, n) + . . . + rk(C, n). In the next step, we will prove
that F (C, n) ≤ 1 for every n. If F (C, n) ≥ 2 then there must be at least two
indices 1 ≤ i ≤ k and 1 ≤ j ≤ k where i 6= j such that ri(C, n) = rj(C, n) = 1
because of the definition of the set B and the fact that C ⊂ B. Then there
exists two representations (a1, . . . , ai) ⊂ C and (b1, . . . , bj) ⊂ C satisfying

a1 + a2 + . . . + ai = b1 + b2 + . . . + bj.

It cannot happen that for every 1 ≤ m ≤ i, 1 ≤ q ≤ j, am 6= bq, otherwise
it would violate fC(n) ≤ 1.

Based on this observation, it is obvious that there exists some am1 =
bq1 , . . . , aml = bqp where 1 ≤ m1 < m2 < . . . < ml ≤ i and 1 ≤ q1 <
q2 < . . . < qp ≤ j . After cancelling the equal elements of both sides of the
equation, it results in another equation

am′1
+ am′2

+ . . . + am′
l′

= bq′1
+ bq′2

+ . . . + bq′
p′
, (1)

where 1 ≤ m
′
1 < m

′
2 < . . . < m

′

l′ ≤ i, 1 ≤ q
′
1 < q

′
2 < . . . < q

′

p′ ≤ j
and every element of the left-hand side and right-hand side of (1) is pairwise
distinct, which is a contradiction again.

In the final step, we will show that C is an asymptotic basis of order 2k+1.
In other words, the removals of finitely many elements don’t demolish the
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asymptotic basis property of an asymptotic basis of the same order. We
are now proving this statement by contradiction. Assume that there exists
infinitely many positive integers N which cannot be expressed as the sum of
2k+1 elements of C. By our assumption, it follows that every representation
of N as the sum of 2k + 1 terms from A must contain at least one term
which comes from the finite set A\ C. Simultaneously, we have: there exists
a positive number G such that A is a B2k[G] set; the proof of this statement
can be found in [13], on page 6. According to Lemma 5, we can choose a
large enough positive integer N such that r2k+1(A, N) > cN

1
4k+1 . By the

pigeon-hole principle, there must exist one number x ∈ A \ C belonging to
at least r2k+1(A,N)

|A\C| representations of N as the sum of 2k + 1 terms from A.
Since A ∈ B2k[G] as we stated above, it follows that

cN
1

4k+1

|A \ C|
<
r2k+1(A, N)

|A \ C|
≤ r2k(A, N − x) ≤ G,

which contradicts the large enough property of N . This completes the proof
of Theorem 1.
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