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ABSTRACT

A number of approaches are proposed and assessed to reduce the frozen natural
orbital (FNO) truncation error of coupled-cluster singles and doubles with pertur-
bative triples [CCSD(T)] energies. The diagrammatic energy decomposition method
of Irmler and Grüneis [J. Chem. Phys. 151, 104107 (2019)] is extended to the FNO
truncation correction of the particle-particle ladder (PPL) term in the case of closed-
and open-shell molecular systems. The approach is tested for reaction and interaction
energies, as well as atomization processes, and it is found the most robust for a wider
range of FNO truncation thresholds outperforming the commonly employed additive
MP2 correction. We also show that the linear extrapolation (LE) of FNO-CCSD(T)
energies as a function of second-order Møller–Plesset (MP2) energies provides the
best correlation energies and most balanced energy differences with tighter FNO
thresholds, but it lacks systematic error compensation that would be required for
the better performance with looser FNO thresholds. Further insight is gained from
a diagrammatic and spin-component decomposition based analysis. Moreover, or-
bital (pair) specific energy decompositions are utilized to introduce size-consistent
variants of the promising PPL and LE FNO corrections and their analogues for (T),
which are also readily applicable in the context of popular local correlation methods.

KEYWORDS
frozen natural orbitals, corrections for basis set truncation, coupled-cluster theory,
CCSD(T)

1. Introduction

If accurate and reliable results are desired in computational chemistry, high-level elec-
tron correlation methods should be deployed. In particular, the coupled-cluster (CC)
hierarchy of methods [1–3] has the potential to provide results with chemical accuracy
(∼ 1 kcal/mol). However, these approaches are only affordable for relatively small
systems because of the steep scaling of their computational expenses with the size of
the system. Even the simple CC singles and doubles (CCSD) method [4] scale as N 6,
where N is a measure of the system size, while the expenses of the more advanced
CCSD with perturbative triples [CCSD(T)] approach [5], which is usually required for
the 1 kcal/mol accuracy goal, scale as N 7. The situation is also aggravated by the
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slow basis set convergence of these methods. For a quantitative accuracy, rather large
one-electron basis sets are needed. Considering that the rate-determining operations,
for a given number of electrons, scale as the fourth power of the basis set size for both
CCSD and the perturbative triples correction, the size of the basis also puts a limit
on the applicability of the methods.

Over the years, several approaches have been developed to tackle these problems.
Noteworthy are the CC implementations exploiting the density fitting (DF) approx-
imation [6] or various parallelized CC algorithms [7–10], which do not change the
scaling of the methods but decrease its prefactor. Nevertheless, the scaling can also be
reduced to a lower power of N , for example, by data compressing techniques [11] or
even to linear using local correlation approximations [12–16]. The acceleration of the
slow basis set convergence of the CC methods has also been the subject of numerous
studies. It has been proven that the complete basis set (CBS) limit of conventional CC
energies can be well approximated by basis set extrapolation techniques [17]. Finite
basis CC energies can also be improved using basis set corrections obtained at a lower
level of theory [18] or at different points of the potential energy surface. [19] An alter-
native solution to this problem is available at the CCSD level in the form of explicitly
correlated approaches [20–22], which explicitly contain the interelectronic distances in
the wave functions.

An alternative strategy to mitigate the basis set issue is offered by the various
methods based on the transformation and subsequent truncation of the one-electron
basis set. In these approaches, the virtual molecular orbital (MO) space is divided
into an active and an inactive subspace, and the orbitals of the latter are neglected
in the more demanding parts of the correlation calculation. To minimize the corre-
lation energy loss, a transformation of the MOs is carried out in the virtual space
before its truncation. In particular approaches, the extremum of a functional depend-
ing on the orbital rotation parameters of the virtual space is sought. The resulting
modified virtual MOs are usually referred to as the optimized virtual orbitals (OVOs)
[23–26]. Several functional forms have been proposed including modified second-order
Hylleraas-functionals [23–25] and other ones that utilize the overlap of the CC wave
functions expanded in the full and the active virtual spaces [26, 27]. The benefits
of using CCSD amplitudes instead of MP1 amplitudes to define the retained virtual
subspace have also been explored[28].

A simpler but similarly efficient approach to compress the virtual space is the frozen
natural orbital (FNO) approximation. In this scheme, the orbital transformation ma-
trix is obtained by diagonalizing a one-particle density matrix constructed from a
lower-level wave function. The resulting MOs are referred to as the natural orbitals
(NOs), whereas the corresponding eigenvalues are interpreted as their populations
[29–34]. The NO basis is usually favored over other bases because it generally gives
the fastest convergence of the configuration interaction expansion [29]. In the FNO
approach, the active space is assembled by neglecting the weakly populated NOs, that
is, the orbitals with small eigenvalues. If we intend to reduce the costs of CCSD or
CCSD(T), probably the best choice is to employ the NOs obtained with the first-
order Møller–Plesset (MP) wave function [25, 35–37]. Though the OVO and FNO
approaches exhibited similar performance in benchmark studies [38, 39], thanks to
its simplicity, the latter gained wider acceptance. It was extended to larger systems
relying on reduced-scaling density matrix construction techniques [40–43], FNO-CC
analytic gradients were implemented [36], and various excited-state extensions are also
available [37, 44–47]. Besides the cost-reduction of conventional CC methods, various
types of NOs are widely used to speed up local CC approaches. These include the pair
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natural orbitals (PNOs) [13–15, 28] and local natural orbitals (LNOs) [48], which are
pair- and orbital-specific NOs, respectively, evaluated from density matrix fragments.

The error of the FNO approach introduced by the basis set compression can be sig-
nificantly reduced via simple corrections. The most straightforward approach utilizes
the second-order MP (MP2) energies calculated with the full virtual space and with
the FNO basis. Both of these quantities are readily available, and allow the estima-
tion of the truncation error at the MP2 level [23, 35]. This scheme will be denoted
by ∆MP2. It was demonstrated in several studies that this correction remarkably im-
proves the performance of the FNO method due to error compensation [36, 49]. The
∆MP2 correction also turned out to be very efficient in our LNO-CC methods [12, 48]
to reduce the LNO truncation error in the orbital-specific domains of localized MOs.
The FNO approximation can also be corrected by extrapolation of the correlation
energy. Several techniques have been proposed along this line [37, 50] including also
our recent study [51]. In the PNO framework, the asymptotic convergence of PNO
expansions was studied by Petersson and co-workers in a series of papers, and they
constructed extrapolation formulas to estimate the CBS limit of pair correlation ener-
gies [52–55]. This strategy was also employed by Klopper and co-workers to lower the
basis-set incompleteness error (BSIE) of CCSD(T) using corrections evaluated with
explicitly correlated MP2 methods [56, 57].

Concerning recent applications of FNOs to CC methods in the past decade, Krylov
and co-workers extended the FNO method to the equation-of-motion CCSD treat-
ment of open-shell systems [37, 45], DePrince and Sherrill combined FNOs with their
DF-CCSD(T) implementation [58], and Aquilante and co-workers explored ideas to
extrapolate toward the complete virtual basis result using FNOs [50]. Sorathia and
Tew [59], motivated by Helgaker’s two-point extrapolation formula [17], proposed an
extrapolation approach to reduce the PNO truncation error in PNO-based local cor-
relation methods. Their formula approximates the limit of the pair correlation energy
utilizing the number of retained PNOs for a given pair of orbitals.

Very recently[51], we combined the FNO approach with the natural auxiliary func-
tion (NAF) approximation [60] and our efficient, parallel, integral-direct DF-CCSD(T)
algorithm [10]. We also tested MP2 correction and extrapolation based techniques and
demonstrated that the combined approaches considerably extend the reach of FNO-
CCSD(T). Even with relatively tight thresholds, reaction and interaction energies were
obtained for molecules of 50–75 atoms with triple- and quadruple-ζ bases. However,
for the largest system of 2124 AOs, 65% of the FNOs were still retained with the most
conservative threshold [10], while an additional order of magnitude speedup could be
gained with more reliable FNO truncation corrections in combination with looser FNO
thresholds.

Toward this direction, among other ideas, we build on the previous studies of Irmler
and Grüneis [61, 62]. These authors utilized that the basis set convergence of the
contribution of the second-order and the particle-particle ladder (PPL) terms to the
CCSD correlation energy is similar [61], which is an observation going back to work of
Petersson and co-workers [52–55] and was also identified in the context of CCSD’s AO
basis set convergence by Valeev[63]. Relying on this observation, Irmler and Grüneis
proposed a multiplicative basis-set correction technique for CCSD. In their scheme,
a ∆MP2 correction is computed taking the difference of the MP2 correlation energy
evaluated with a larger basis set and with the basis in which the CCSD energy is
calculated. This ∆MP2 correction is supplemented with the energy contribution of
the PPL term. The latter is computed with the small basis set, but, to diminish its
BSIE, is scaled by the ratio of the large- and small-basis MP2 correlation energies.
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This approach, dubbed CCSD-PPL, was found to be efficient in accelerating the basis
set convergence of CCSD. However, one drawback of CCSD-PPL is that it is not
size-consistent.

Another relevant development in CC theory is our perturbative triples correction,
termed (T+), to explicitly correlated CCSD methods [64]. This approach is closely
related to the (T*) correction of Knizia et al. [65], where the (T) contribution is scaled
up in a similar way as the PPL term in the CCSD-PPL method. Just as the (T*)
correction, our (T+) scheme is a heuristic approach to alleviate the BSIE of (T), but
in contrast to (T*), it is size-consistent, which is attained by scaling the contributions
of individual MOs separately.

In this study, as an extension of our previous work [51], we inspect further possi-
bilities to reduce the NO truncation error in the FNO-CCSD(T) method. We propose
a size-consistent version of the approach of Irmler and Grüneis and apply it in the
NO context for molecular systems. Moreover, we also adapt our (T+) correction [64]
to the FNO approximation to speed up the convergence of the perturbative triple
excitation correction with the number of NOs. We combine these approaches with
various extrapolation techniques and assess their performance in extensive benchmark
calculations.

2. Theory

The CCSD(T) model [5] is considered assuming a single-reference determinant. Indices
i, j, . . . (a, b, . . . ) will refer to canonical occupied (virtual) orbitals, p, q, . . . will denote
general orbital indices, and barred indices ā, b̄, . . . will label natural orbitals of the
virtual subspace.

2.1. Frozen natural orbitals

The NOs and the corresponding natural occupation numbers ({na}) are computed as
the eigenvectors and eigenvalues of the MP2 one-particle density matrix (OPDM):

DMP2
ab =

∑
ijc

(ci|aj)(ci|bj)− (ci|aj)(bi|cj)
(εi + εj − εa − εc)(εi + εj − εb − εc)

. (1)

Here, the summation runs over spin-orbital indices, (pq|rs) is a two-electron integral
in the Mulliken notation, and εp denotes the canonical orbital energy of orbital p.

In the FNO approach, only n̄v virtual NOs with the largest occupation numbers are
retained for the CCSD(T) part of the calculation, i.e., the CCSD(T) amplitudes with
any frozen NO index are considered to be zero. The FNO selection process assumes
that the NOs with the largest occupation numbers are the most effective to span the
virtual space required for the subsequent CCSD(T) calculation. For that reason, the
FNO selection is governed by an occupation number threshold (ε). For the effective
evaluation of the (T) correction, the active virtual NOs are transformed into a semi-
canonical representation by diagonalizing the virtual-virtual block of the Fock matrix.

The truncation of the FNO basis set offers extensive cost-reduction over the con-
ventional CCSD(T) approach because the operation counts required for the rate-
determining steps of both the CCSD and (T) components scale with the fourth-power
of the number of virtual orbitals. Compared to the cost of an FNO-CCSD(T) compu-
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tation, the fifth-power scaling evaluation of the MP2 OPDM is usually fast and can
be performed with effective DF-MP2 implementations with up to 5000 or more AOs.
However, the restriction of excitations at the CCSD(T) level introduces a basis set
error, for which a number of correction schemes are collected in Sect. 2.3.

2.2. Correlation energy and its decompositions

Let us briefly recollect the MP2, CCSD, and (T) correlation energy expressions relevant
for the present discussion and refer to the literature for further details [3, 5, 10, 66–69].
The MP2 correlation energy is obtained in a spin-orbital basis as follows:

EMP2 =
∑
ai

f2
ai

εi − εa
+

1

4

∑
ijab

[(ai|bj)− (aj|bi)]2

εi + εj − εa − εb
, (2)

where fai denotes the elements of the Fock matrix. Using this notation, the CCSD
correlation energy in a spin-orbital basis reads as

ECCSD =
∑
ia

fai t
a
i +

1

4

∑
ijab

[(ai|bj)− (aj|bi)] τabij , (3)

where τabij = tabij + tai t
b
j− tbi taj is introduced with tai and tabij being the singles and doubles

cluster amplitudes, respectively. Finally, the (T) correction can be written as

E(T) =
1

36

∑
ijkabc

W abc
ijk t

abc
ijk , (4)

where the tabcijk triple excitation amplitude and the W abc
ijk intermediate are expressed

with converged CCSD doubles amplitudes and two-electron integrals [5, 70, 71].
Based on previous experience in the literature, it is reasonable to expect that not

all components of the CCSD and (T) correlation energy converge to the complete NO
basis limit at the same rate [62, 72, 73]. This motivates the introduction of different
NO basis truncation corrections for terms with different convergence behavior. In the
following, we explore various term specific correction ideas for three different kinds of
decompositions of the CCSD(T) correlation energies.

Decomposition into spin-components

First, following Sherrill and co-workers [73], and Hobza et al. [74], the CCSD energy
is rewritten as a sum of same-spin (SS) and opposite-spin (OS) contributions:

ECCSD =
∑
ia

fai t
a
i + ESS−CCSD + EOS−CCSD . (5)

The corresponding spin-orbital expressions read after spin-summation as

ESS−CCSD =
1

4

∑
ĩj̃ãb̃

[
(ãĩ|b̃j̃)− (ãj̃|b̃̃i)

]
τ ãb̃
ĩj̃

+
1

4

∑
IJAB

[(AI|BJ)− (AJ |BI)] τABIJ , (6)
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and

EOS−CCSD =
∑
ĩJãB

(ãĩ|BJ)τ ãB
ĩJ

, (7)

where tilded lowercase (plain uppercase) indices label spin-up (spin-down) orbitals.
The well-known spin components of the MP2 correlation energy are defined analo-
gously by separating the OS and SS terms of Eq. (2) [75, 76]. The corresponding
closed-shell expressions for the spin-components of both MP2 and CCSD can be found,
e.g., in Ref. 73.

For clarity, empirical scaling factors characteristic of spin-component scaled methods
are not employed here, as the universal or even system-specific determination of such
parameters is rather problematic [73–77]. Instead, the possibilities of separate FNO
corrections are explored for the OS and SS terms.

Diagrammatic correlation energy decomposition

In a separate line of thought, Irmler and Grüneis [61, 62] proposed a diagrammatic
decomposition of the CCSD correlation energy:

ECCSD = EMP2 + EPPL + Erest , (8)

where EMP2 is the MP2 correlation energy of Eq. (2). The second term, EPPL is the
correlation energy contribution assigned to the PPL diagram:

EPPL =
1

8

∑
ijab

(ai|bj)− (aj|bi)
εi + εj − εa − εb

∑
cd

[(ac|bd)− (ad|bc)] τ cdij =
1

4

∑
ijab

T abij A
ab
ij , (9)

where the MP1 amplitudes (T abij ) are contracted with the PPL term of the CCSD

amplitude equations, denoted as Aabij . Finally, for the present purposes, the remaining

terms of the CCSD correlation energy are collected into Erest = ECCSD−EMP2−EPPL.

Orbital and orbital pair specific energy contributions

Ultimately, the correlation energy can be decomposed into individual orbital or even
orbital pair contributions, similarly to the formulation of local correlation methods
[12–15]. One common feature of recent local correlation methods is the compression
of the MO basis using orbital or orbital pair specific NOs. For instance, in our LNO
family of methods [12, 48, 69, 78–82], all of the above correlation energy expressions
can be decomposed into electron (or orbital) specific contributions:

EM =
∑
i

δEM
i (10)

where method M can refer to MP2 [80–82], CCSD [48, 79], (T) [12, 48, 69], or even
higher orders of CC theory [48, 78]. For instance, for M=MP2, the correlation energy
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of Eq. (2) can be recast as

EMP2 =
∑
i

∑
a

f2
ai

εi − εa
+

1

4

∑
jab

[(ai|bj)− (aj|bi)]2

εi + εj − εa − εb

 =
∑
i

δEMP2
i (11)

in order to define the δEMP2
i contribution of orbital i. Similarly, the δECCSD

i and

δE
(T)
i correlation energy contributions are obtained by pulling out the summation

over orbital index i in Eqs. (3) and (4), respectively. Similarly, pair correlation energy
contributions are obtained by separating two occupied summation indices in Eqs. (2)–
(4). For instance, for M=MP2, the corresponding pair correlation energy is defined
as

δEMP2
ij =

1

2

∑
ab

[(ai|bj)− (aj|bi)]2

εi + εj − εa − εb
, (12)

and δECCSD
ij and δE

(T)
ij are obtained analogously.

Naturally, the above energy decomposition schemes can also be combined. For in-
stance, in Sect. 3, we analyze separately the spin-components of the MP2, PPL, and
remaining CCSD terms. Additionally, the separation of the SS and OS terms is com-
bined with the orbital specific correlation energy decomposition. In principle, the sep-
arate spin-components of all diagrammatic terms can be studied for each orbital or
orbital pair, but this excessive decomposition is not motivated by our results collected
below.

2.3. Correction schemes for the FNO truncation error

For discussing the relation between the FNO truncation error and the corresponding
FNO occupation number threshold, ε, let us (formally) parametrize the correlation
energy as a function of the FNO threshold:

EM
ε = EM

ε=0 + CMfM(ε), (13)

where EM
ε denotes the correlation energy obtained with method M in the FNO basis

defined by ε. In general, constant CM and function fM(ε) depend on the M method,
and their exact form is unknown for either MP2 or CC methods. The common idea
behind the following FNO truncation correction schemes is to make assumptions on
CM and fM(ε) leading to a low-cost estimate of the missing EM

ε=0−EM
ε portion of the

M=CCSD, (T), etc. correlation energy.

MP2-based additive or focal-point correction (∆MP2)

Assuming that fM(ε) = fMP2(ε) for M=CCSD, CCSD(T), etc. leads to the following
formula for the MP2-based additively corrected correlation energy, EM∆:

EM
ε=0 ≈ EM∆ = EM

ε +
CM

CMP2
(EMP2

ε=0 − EMP2
ε ) = EM

ε + F∆MP2
ε ∆EMP2

ε , (14)
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where usually F∆MP2
ε = CM

CMP2 = 1 is employed for the unknown F∆MP2
ε . However,

trivial algebra results in a different form for the optimal scaling factor, F opt
ε , of the

∆EMP2
ε energy correction:

EM
ε=0 = EM

ε +
EM
ε=0 − EM

ε

EMP2
ε=0 − EMP2

ε

∆EMP2
ε = EM

ε + F opt
ε ∆EMP2

ε . (15)

While this form of F opt
ε is not practical because of its EM

ε=0 dependence, it will provide
useful insight below. Obviously, in case of F∆MP2

ε = 1, the decomposition of EM
ε does

not bring any advantages, but it appears to be beneficial to search for better F opt
ε

approximations for separate energy components.

MP2-based multiplicative corrections

An approximation to F opt
ε as

F opt
ε =

EM
ε=0 − EM

ε

EMP2
ε=0 − EMP2

ε

≈ F *
ε =

EM
ε

EMP2
ε

(16)

leads to the commonly employed multiplicative correction of correlation energies:

EM* = EM
ε + F *

ε ∆EMP2
ε = EM

ε +
EM
ε

EMP2
ε

∆EMP2
ε =

EMP2
ε=0

EMP2
ε

EM
ε , (17)

where the truncated EM
ε is simply scaled by the ratio of the MP2 correlation energies

in the complete and truncated NO bases, EMP2
ε=0

EMP2
ε

.

Two scaling techniques of this kind are known in the context of AO BSIE correction
[62, 65]. First, in the (T*) method, introduced by Knizia, Adler, and Werner (KAW)
[65], the (T) correlation energy component is scaled by the ratio of the MP2-F12 and
MP2 correlation energies to correct for the BSIE of (T). A related alternative, sug-
gested by Peterson et al., scales the (T) energies by the ratio of CCSD-F12 and CCSD
correlation energies[83]. Recently, we proposed a similar approach utilizing orbital or
orbital pair energy decomposition ideas in order to eliminate the size-inconsistency of
(T*) [64]. The resulting (T+) scheme successfully retains the BSIE reduction prop-
erties of (T*) also for systems that are sensitive to size-consistency errors [64]. Note
that scaling of the (T) energies using the same scaling factor for all species, e.g., by
the factor determined for the largest species [13] or via empirical methods [83], is also
size-consistent, but not employed here.

Motivated by these results, here, we investigate analogous ideas to our (T+) BSIE
correction in order to reduce the FNO error of the (T) correction, because, to our
knowledge, the direct correction of (T) was not yet explored in the FNO context. The
corresponding (T*) correlation energy is defined as

E(T*) =
EMP2
ε=0

EMP2
ε

E(T)
ε , (18)

while orbital specific scaling factors of qi =
δEMP2

i,ε=0

δEMP2
i,ε

are introduced for the size-consistent

(T+) variant. Considering the (T) correlation energy expression of Eq. (4), as it was
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demonstrated in Ref. 64, it is more beneficial to introduce the (T+) method in the
following form:

E(T+) =
1

3

∑
i

qiE
(T)
i,ε +

∑
j

qj E
(T)
j,ε +

∑
k

qk E
(T)
k,ε

 =
1

36

∑
ijkāb̄c̄

qi + qj + qk
3

W āb̄c̄
ijk t

āb̄c̄
ijk .

(19)
Since the orbital contributions are scaled separately with an orbital specific factor,
the (T+) correction is clearly size-consistent. Moreover, a more balanced performance
can be expected because the FNO truncation correction is decomposed into orbital
specific contributions. Finally, a pair contribution based form, more suitable for pair-
correlation theories, can also be defined via the pair correlation energy scaling quotient,

qij =
δEMP2

ij,ε=0

δEMP2
ij,ε

:

E(T+)′ =
1

36

∑
ijkāb̄c̄

qij + qik + qjk
3

W āb̄c̄
ijk t

āb̄c̄
ijk . (20)

The second multiplicative correction considered here is connected to the diagram-
matic decomposition of the CCSD correlation energy. Recently, Irmler and Grüneis
[61, 62] recognized that the convergence of the PPL term, defined by Eq. (9), with the
AO basis completeness is similar to that of the MP2 term but of opposite sign. This
observation was exploited to correct for the BSIE of the PPL term. More precisely, the
same scaling factor employed in the (T*) method, namely the ratio of the MP2/CBS
and the MP2 correlation energy of the given AO basis was utilized [62]. Here, we em-
ploy this formula for the correction of the FNO error within the PPL term. Due to
the similarities to the (T*) method as well as to the AO BSIE correction of PPL in
Ref. 62, this scheme is labeled here as the ∆PPL* correction:

ECCSD−PPL* = ECCSD
ε +∆EMP2

ε +

(
EMP2
ε=0

EMP2
ε

− 1

)
EPPL
ε = ECCSD

ε +∆EMP2
ε +∆EPPL*

ε .

(21)
Here, the ∆EMP2

ε additive correction of Eq. (14) eliminates the FNO truncation error
of the MP2 term, while the ∆EPPL*

ε term corrects for the truncation error of the PPL
contribution. As in the original proposition of Ref. 62, the ∆PPL* correction does not
improve on the FNO error of the Erest term of Eq. (8) since the basis set truncation
error of Erest is often much smaller than that of the MP2 and PPL terms.

Analogously to the case of the (T*) method, the ∆PPL* correction is not size-
consistent either. The size-consistency error of (T*) is usually small, but it may
reach up to 1 kcal/mol under unfortunate circumstances [64]. Moreover, the size-
inconsistency of ∆PPL* could be even more pronounced, because the PPL correlation
energy contribution is about an order of magnitude larger than the (T) correction.
Therefore, we also propose a size-consistent PPL correction, denoted as ∆PPL+:

∆EPPL+
ε =

1

2

∑
i

(qi − 1)EPPL
i,ε +

∑
j

(qj − 1)EPPL
j,ε

 =
∑
ijāb̄

qi + qj − 2

8
T āb̄ij A

āb̄
ij ,

(22)
which can replace ∆EPPL*

ε in Eq. (21) above to define ECCSD−PPL+. The analogous
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expression, more suitable for electron-pair theories is defined as

∆EPPL+′

ε =
∑
ijāb̄

qij − 1

4
T āb̄ij A

āb̄
ij . (23)

Extrapolation schemes

A closer inspection of the F opt
ε ≈ F *

ε approximation in Eq. (16) leads to an alterna-

tive line of FNO corrections. The EM
ε=0−EM

ε

EMP2
ε=0 −EMP2

ε
quotient can be interpreted as the ratio

of the correlation energies missing from the FNO-M and FNO-MP2 computations,
respectively. Compared to that, the practical F *

ε holds the ratio of the correlation
energies retained in the FNO-M and FNO-MP2 calculations, and thus appears to be
suboptimal.

From an other perspective, EM
ε=0−EM

ε

EMP2
ε=0 −EMP2

ε
is a difference quotient for the EM

ε (EMP2
ε )

function evaluated at the ε = 0 and ε points. While F *
ε = EM

ε −EM
ε=∞

EMP2
ε −EMP2

ε=∞
formally has the

same difference quotient form, it is evaluated at the ε and ε =∞ points, where ε =∞
denotes the case of zero retained FNOs. Consequently, F *

ε can only be ideal if the slope
of the EM

ε (EMP2
ε ) function is the same at the [ε = ∞, ε] and the [ε, ε = 0] intervals.

This, however, cannot be expected since fMP2(ε) = fM(ε) is not a good assumption
in the case of M=CCSD, CCSD(T), etc. for all ε values. In other words, EM

ε (EMP2
ε )

is generally non-linear in ε, especially for ε values far from ε = 0.
The above analysis suggests a better approximation to F opt

ε . To that end, an esti-
mator of the ideal difference quotient should be evaluated close to the ε = 0 point,
i.e., at a region where the linearity of EM

ε (EMP2
ε ) is a reasonable assumption. Hence

we suggest to perform a second FNO-M computation at a somewhat looser threshold
than ε, denoted as ε′, and to obtain an F opt

ε estimate as

F opt
ε ≈ FLE

ε,ε′ =
EM
ε − EM

ε′

EMP2
ε − EMP2

ε′
. (24)

Because of the above assumptions this approach is equivalent to the linear extrapola-
tion (LE) of EM

ε (EMP2
ε ) with respect to EMP2, denoted as LEMP2:

EM/LEMP2 = EM
ε + FLE

ε,ε′ ∆EMP2
ε = EM

ε +
EM
ε − EM

ε′

EMP2
ε − EMP2

ε′
(EMP2

ε=0 − EMP2
ε ) , (25)

where we extrapolate to the known EMP2
ε=0 point using the values of EM

ε (EMP2
ε ) eval-

uated at the ε and ε′ points. Note that adding more data points (ε′′, ...) could help
to take into account the non-linearity of EM

ε (EMP2
ε ) around ε. For that purpose, se-

quence transformations, such as the Shanks or the Richardson extrapolations, have
been assessed [50, 51], but they did not lead to substantial improvements over the
performance of the linear extrapolation for practical ε values.

Again, the energy decomposition schemes considered here allow for the introduction
of termwise linear extrapolation based corrections. For instance, we find particularly
interesting and investigate the separate extrapolation of the OS-CCSD and SS-CCSD
terms, as well as the spin components of the PPL and the remaining CCSD terms
as a function of OS-MP2 and SS-MP2. Additionally, the separate extrapolation of
CCSD and (T) allows for the combination of linear extrapolation for one and, for
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instance, additive or multiplicative corrections for the other term. Furthermore, the
introduction of orbital specific energy decomposition ideas lead to a size-consistent
linear extrapolation based correction:

EM/SC-LEMP2 = EM
ε +

∑
i

FLE
i;ε,ε′ ∆EMP2

i,ε = EM
ε +

∑
i

EM
i,ε − EM

i,ε′

EMP2
i,ε − EMP2

i,ε′
∆EMP2

i,ε . (26)

Finally, let us note that correlation energy extrapolations have been performed
previously in the FNO context using different independent variables. For instance, the
occupation number threshold (ONT) itself was employed [37] in this role, and later,
an occupation number based variable was also suggested [50]. The latter, cumulative
occupation number threshold (COT) [50], ζ is defined as:

ζ =

na>ε∑
a
na

Tr(DMP2)
. (27)

There is a one-to-one correspondence between ONT and COT, e.g., the complete
FNO basis limit is defined by ζ = 1 or ε = 0. Recently, we demonstrated the excellent
correlation of the ONT and COT variables [51], thus here, we focus on extrapolations
as a function of only one of them, namely COT. While previous COT approaches
extrapolated the total correlation energy, here, we also explore the possibilities to
extrapolate, e.g., the PPL, remaining CCSD, or (T) separately as a function of COT.

We note in passing that the correlation energy decomposition and NO basis set
correction ideas considered here could also be employed to correct for AO basis set in-
completeness. While explicitly correlated schemes and basis set extrapolation formulae
are both effective to accelerate the convergence with the AO basis set, the analogues
of neither the F12 approaches nor the CBS extrapolations are available to correct
for FNO truncations. For that reason, here, we focus on the correction for discarded
FNOs, while the application of the presented ideas for the improvement on AO basis
set incompleteness will be explored elsewhere.

3. Results and discussion

3.1. Computational details

The present approaches have been implemented in the Mrcc suite of quantum chemi-
cal programs [84, 85], which is also used in all the calculations. While, for brevity, Sect.
2 collects the spin-orbital expressions, the corresponding spatial-orbital based equa-
tions have also been derived and implemented in our closed-shell DF-MP2 [80] and DF-
CCSD(T) [10] programs. For both open- and closed-shell cases, the complete virtual
orbital as well as the FNO computations were performed with the hand-optimized,
parallel and (partially) integral-direct DF-CCSD(T) implementations of the Mrcc
suite [10, 51, 85].

As the AO basis set, the correlation consistent X-tuple-ζ (aug-)cc-pVXZ sets [86,
87] as well as its cc-pV(X+d)Z extensions [88] were employed with the corresponding
DF auxiliary bases, (aug-)cc-pVXZ-RI-JK [89] and (aug-)cc-pVXZ-RI [90]. The core
electrons were frozen in all correlation calculations. Unlike to our previous study [51],
the NAF approximation was not employed here for simplicity.
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For benchmarking, the closed-shell reaction energy test set developed by Adler and
Werner (AW) [91], as well as the closed- and open-shell reaction energy and atomiza-
tion energy test sets of KAW [65] were taken. The AW test set contains 58 molecules
with up to 18 atoms forming 51 reactions. The KAW compilation incorporates 66
atoms and molecules built of first- and second-row elements, which form 48 open-shell
reactions, 28 closed-shell reactions, and 49 atomization processes. Only the species and
structures were taken from Refs. 91 and 65. Non-covalent interactions are assessed on
the 24 interaction energies of the A24 test set[92]. The conventional CCSD(T) refer-
ence energies for the AW set was recomputed in our previous work [51], and references
for the species in the KAW and A24 sets were recomputed for the present study in
order to avoid inconsistencies. To characterize the performance of the methods, the
mean absolute error (MAE), mean signed error (MSE), the standard deviation (STD),
and the maximum error (MAX) of the computed results will be applied. Throughout
this work, LEMP2 as well as ONT/COT extrapolated results reported for ε = 10−x

are obtained using ε = 10−x and ε′ = 10−x+0.5 data points.

3.2. Correlation energies of closed-shell molecules

Since there are a large number of methods collected in Sect. 2, especially for CCSD, our
first goal is to compare their performance on the correlation energies of the somewhat
larger species in the AW compilation. Then the promising approaches for CCSD, as
well as the somewhat smaller number of (T) correction ideas will be analyzed further
in Sect. 3.3. As it will be important to keep track of the error compensations of the
various terms, the average of the signed relative correlation energy errors are collected
in Table 1 with the cc-pVQZ basis set using the exact CCSD correlation energies as
reference. As noted in our previous report, the FNO thresholds suitable for quadruple-
ζ basis sets lead to negligible truncation errors with triple-ζ bases [51], thus here, we
focus our investigation on the former.

The uncorrected relative errors of −0.4% to −4% for the total CCSD energies are
quite large with the selected ε = 10−5 − 10−4 thresholds (first row of Table 1). The
comparison of the PPL and rest of CCSD errors of Table 1 to these total CCSD
deviation shows that the MP2 component is indeed dominant, followed by the 2–3
times smaller PPL errors with opposite sign. The errors for the rest of the CCSD
components exhibit an additional drop of a factor of 3-5 compared to those of PPL.
Considering the correlation energy composition of about 98±3%,−25±2%, and 27±4%
(in the form of average±STD) for the MP2, PPL, and rest of CCSD terms of these
closed-shell systems, respectively, the convergence of the MP2 and PPL terms exhibit
a similar pattern which is slower than that of the remaining CCSD terms.

Further decomposition of these uncorrected error components to OS and SS terms
are gathered in rows 2 and 3 of Table 1. For all three CCSD terms (MP2, PPL, and
rest) the SS component converges significantly faster, thus about 90% of the truncation
errors can be attributed to the OS contributions. Compared to the quite representative
80% to 20% ratio of the OS and SS correlation energy components, the smaller SS
errors are not completely the results of the smaller size of the SS contributions. An
additional factor is that the problematic electron-electron cusps cause slower basis set
convergence in the OS component of the wave function than in the SS component.

The simplest ∆MP2 correction (row 4) eliminates the largest source of error orig-
inating from the MP2 term. Its relatively good performance can thus be attributed
to the systematic compensation of the negative PPL and the positive Erest errors.
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Table 1. Mean (signed) relative correlation energy errors (in %) compared to the untruncated CCSD total

correlation energy as a function of the ε FNO threshold. See Sect. 2 and the discussion of the table for the
definition of various method types.

Total CCSD PPL Rest of CCSD
FNO threshold, ε: 10−4 10−4.5 10−5 10−4 10−4.5 10−5 10−4 10−4.5 10−5

Uncorrected −4.0 −1.3 −0.39 2.1 0.85 0.28 −0.71 −0.18 −0.04
OS uncorrected −3.5 −1.2 −0.36 1.9 0.79 0.27 −0.61 −0.16 −0.03
SS uncorrected −0.48 −0.14 −0.03 0.17 0.06 0.01 −0.10 −0.03 −0.01
∆MP2 1.4 0.66 0.24 2.1 0.87 0.28 −0.71 −0.18 −0.04

F *
ε =

EM
ε

EMP2
ε

scaled 1.6 0.75 0.27 0.74 0.33 0.11 0.85 0.42 0.16

∆PPL (incl. ∆MP2) 0.03 0.14 0.08 0.74 0.33 0.11 −0.71 −0.18 −0.04
LEMP2 − 0.20 0.044 − 0.08 0.017 − 0.12 0.027
OS LEMP2 − 0.19 0.040 − 0.07 0.015 − 0.12 0.020
SS LEMP2 − 0.006 0.001 − 0.01 0.001 − −0.003 0.000
ONT extrapolation − −0.11 0.05 − 0.28 0.02 − 0.06 0.031
COT extrapolation − −0.10 0.09 − 0.26 0.001 − 0.06 0.036

According to Eq. (17), multiplying the CCSD energy by F *
ε = EM

ε

EMP2
ε

(row 5) is also

exact for the MP2 term and was also suggested to reduce the error in the PPL term
[62]. Indeed, compared to the uncorrected PPL results, the scaled PPL errors improve
by a factor of 2.5–3 and retain their positive sign. Interestingly, upon scaling with F ∗,
the errors in Erest increase compared to the uncorrected ones, and more importantly,
their sign is flipped. This explains the observation that the multiplicatively corrected
total CCSD energies are worse than the ∆MP2 corrected ones even if the former are
theoretically more promising to improve on both dominant sources of error (MP2 and
PPL). From this perspective the excellent performance of ∆PPL can also be under-
stood (row 6): it eliminates the MP2 error and shrinks the PPL error to the size of
the uncorrected errors of Erest, which two then cancel each other almost completely.
This fortunate behavior of the ∆PPL correction was also documented by Irmler and
Grüneis in the context of AO BSIE reduction [61, 62].

Since the cancellation of the multiplicatively corrected PPL and uncorrected Erest

error might not be universal, there is still room for improvement in these error com-
ponents. Thus, rows 7-9 of Table 1 also collect the results of linear extrapolation of
the total CCSD, OS-CCSD, and SS-CCSD energies as a function of the MP2, OS-
MP2, and SS-MP2 correlation energies, respectively. Similar to the ∆MP2 and ∆PPL
approaches, linear extrapolation with respect to EMP2 also completely eliminates the
error of the MP2 term. More importantly, in accord with the expectation that the
LEMP2 scaling factor in Eq. (24) is closer to the optimal one, the PPL errors of
LEMP2 drop by an order of magnitude (factor of 4-5) compared to the uncorrected
(∆PPL corrected) PPL errors. Some improvement is also observed for the LEMP2 cor-
rected Erest term, but its errors change sign, and thus the beneficial error cancellation
with the remaining PPL error is lost also for LEMP2. The spin-component decompo-
sition for LEMP2 shows that the FNO errors of all three types of SS components can
be practically eliminated using LEMP2. Again, the LEMP2 errors are dominated by
the OS components, and only marginal benefits arose from the separate extrapolation
of the spin components. For the tested systems, the difference of LEMP2 and its size-
consistent variant is negligible, thus the above statements hold for both, and we will
not discuss them separately for the rest of this work.

Finally, the last two rows of Table 1 show the similar performance of the ONT
and COT extrapolations. They perform comparably to ∆PPL for the PPL term, at
least in terms of the MSE, and bring the most notable improvement for Erest. The
signed average errors of ONT and COT also appear to be competitive for CCSD.
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However, their corresponding STD and maximum error measures (e.g., 0.34% and
2.4%, respectively, for COT with ε = 10-4.5) show that the good MSE values result from
balanced positive and negative correlation energy errors. For that reason, ONT/COT
extrapolations appear to be most promising for the improvement of the Erest term.

In order to simplify the remaining numerical analysis, the discussion of the spin-
component as well as the orbital pair decomposition alternatives is limited to the
AW set. Although an improvement can be achieved by separating the OS and SS
components, it is mostly small due to the faster convergence of the SS errors and
the smaller SS components of the remaining errors. This also holds when the spin
components of ∆PPL are separated. For instance, scaling with the corresponding OS
and SS MP2 energy ratios, the OS ∆PPL and SS ∆PPL errors are 0.58% and 0.08%,
respectively, with ε = 10-4. The sum of these is, on the one hand, a bit smaller than
the corresponding 0.74% value of ∆PPL, but the OS/SS separation worsens the error
compensation with the Erest error. The decomposition of the PPL components (either
total PPL or OS and SS) into orbital or orbital pair terms for the size-consistent
scaling does not have a notable effect, at least for this test set. For instance, the
deviation between the relative error in the total and OS PPL terms with the ∆PPL*,
∆PPL+, or ∆PPL+′ variants is below 0.02% with ε = 10-4.5 and even smaller for the
SS component or with ε = 10-5.

To gain a better understanding of the OS error components, we also looked at its
diagonal (

∑
i
δEOS-M

ii ) and off-diagonal (
∑
i 6=j

δEOS-M
ij ) components motivated by cost-

effective correction possibilities for the former. To cut the long story short, the rela-
tive error contribution of the diagonal components is indeed higher than the relative
number of terms in the above sums, but the errors of the off-diagonal terms are still
about 6 (3) times larger for the PPL (rest of CCSD) contributions than those of the
diagonal terms.

3.3. Correlation energies of closed- and open-shell species

Since some of the above methods benefit from compensation of errors, it is also in-
teresting to explore their behavior on a wider range of molecules including also more
challenging open-shell species. For that end, the correlation energy errors are also con-
sidered for the KAW compilation using cc-pV(Q+d)Z basis set. A notable difference
with the previous closed-shell AW test set is the much less consistent correlation en-
ergy composition in the KAW set. Since 94±7%, −25±16%, and 34±13% of the CCSD
correlation energy is assigned to the MP2, PPL, and rest of CCSD terms, respectively,
the above error compensation trends could be less systematic.

The three panels of Fig. 1 collect relative signed error averages with respect to
the exact reference separately for the PPL, Erest, and (T) terms. To avoid misinter-
pretations due to potential cancellation of positive and negative errors in the signed
averages, the corresponding STD values are also represented by the error bars of
Fig. 1. The ∆PPL* and ∆PPL+, the (T*) and (T+), the LEMP2 and its separate
spin-component variant, as well as the COT and ONT methods would be practically
indistinguishable in these plots, so only one of each type is shown.

The uncorrected PPL errors are again decreased by a factor of about 3 by both the
∆PPL+ and the COT extrapolation, although the smaller STD of ∆PPL+ and its
lower cost make it more preferable. Compared to that, the application of LEMP2 to
PPL brings an additional factor of 3 error reduction with an also improved STD. All
approaches preserve the positive sign of the PPL relative error. Compared to PPL, the
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uncorrected error of Erest is again found to be smaller and very close in magnitude to
the ∆PPL+ errors, but with opposite sign. Except for the loosest threshold, ε = 10−4,
all studied approaches (multiplicative F ∗ scaling, LEMP2, and COT) decrease the
MSE. However, the considerable STD values of Fig. 1 indicate that neither the MP2
correlation energy nor the COT measure correlate as well with the FNO truncation
error of Erest as with the PPL error.

Turning our attention to the (T) correction, its uncorrected relative FNO error,
compared to the total CCSD(T) correlation energy, is about half of the error of Erest

but still considerable. About a factor of 2 and 3 error reduction is brought by the (T+)
and COT extrapolation schemes, respectively, both preserving the negative error sign.
Again, the orbital component scaled (T+) and the orbital pair component scaled (T+)′

variants are indistinguishable being within 0.03%, 0.02%, and 0.01% of each other for
ε = 10−4, ε = 10−4.5, and ε = 10−5, respectively. Except for the overcorrection at the
ε = 10−4 point, the LEMP2 method is again the best performer due to the similarities
of the basis set convergence of the two perturbative schemes: MP2 and (T).

Let us now turn our attention to the accuracy of total CCSD and CCSD(T) cor-
relation energies collected in Fig. 2 for the most promising schemes. MAEs and a
logarithmic scale are employed to improve the transparency of the figures. As the (T)
correction and its FNO error are relatively small, CCSD and CCSD(T) results share
a number of similarities with a few important differences.

First, the error reduction brought by the ∆MP2 approach is the smallest and, com-
pared to the case of the closed-shell AW set, its performance is worse for the KAW
test set including also open-shell species. The more pronounced role of the PPL and
the rest of CCSD terms was also noted in Ref. 62 in the context of AO BSIE reduc-
tion of open-shell systems. Comparing the two panels of Fig. 2, ∆MP2 apparently
benefits from the compensation of the uncorrected positive PPL and negative Erest

and (T) errors. The COT extrapolation improves on ∆MP2, but it is not the best
for the separate MP2, PPL, or (T) terms, and consequently, it is not the best overall
performer. Adding the ∆PPL+ correction to ∆MP2 leads to one of the smallest er-
rors, especially for the two looser ε values, but this is partly due to good cancellation
of the imperfectly corrected PPL and uncorrected Erest terms. This is also apparent
from two other observations. First, if a COT extrapolated Erest correction is added to
∆PPL+ (“∆PPL+ & COT-rest” curve in the top panel), the Erest error decreases, but
the overall performance is considerably worse where Erest is still notable (ε > 10−5).
Second, LEMP2 performs best when the Erest errors become negligible (ε ≤ 10−5) due
to its better performance on the dominating PPL source of error. However, LEMP2
does not benefit from cancellation with negative Erest errors as, in a considerable
amount of cases, LEMP2 overcorrects the Erest term. This explains its worse perfor-
mance compared to ∆PPL+ for the more severe truncations (ε > 10−5). Finally, the
combination of the theoretically most promising approaches for each term [“∆MP2 &
LE-PPL & COT-rest & LE-(T)” curve in the bottom panel] indeed leads to the overall
best performance, at least for correlation energies.

3.4. Reaction and atomization energies

The accuracy of the correction schemes on commonly evaluated energy differences,
such as reaction or atomization energies, is also an important performance metric.
Thus the closed-shell (CS) and open-shell (OS) reaction energies and atomization
energies (AE) collected in the KAW compilation are also evaluated.
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Figure 1. Relative signed error averages for the PPL (top), Erest (middle), and (T) (bottom) correlation

energy contributions (in %) as a function of the FNO threshold. The error bars represent the STD of the signed

relative errors.

Table 2 gathers the separate error components of the MP2, PPL, rest of CCSD,
and (T) terms with and without corrections. Here, the reference is the untruncated
contribution of the given term to the energy difference, and the MSEs are inspected
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Figure 2. MAEs for CCSD (top) and CCSD(T) (bottom) correlation energies relative to the respective CCSD

and CCSD(T) references (in %) as a function of the FNO threshold.

allowing for the discussion of potential error compensations. The MP2 error compo-
nent, which is perfectly corrected by most schemes, is again the largest but only about
3-4 times larger than the uncorrected PPL and Erest errors.

The signs of the PPL and Erest errors remain opposite, similar to the case of correla-
tion energies. The sings of the Erest and (T) errors also correlate well. This, combined
with the observation that the sum of the Erest and (T) errors is close to the negative
of the PPL error explains the good performance of the popular ∆MP2 scheme. Inter-
estingly, a large portion of the sizable improvement brought to the PPL correlation
contributions by both the ∆PPL+ and LEMP2 schemes cancels for the CS and OS
reaction energies. On the one hand, the AEs and the most loosely truncated (ε = 10−4)
reaction energies benefit from both corrections with a noticeably better performance
for LEMP2. On the other hand, ∆PPL+ retains the sign of the PPL error more sys-
tematically, hence it is expected to benefit more from cancellation with the Erest and
(T) errors. Considering the PPL term, both ∆PPL+ and LEMP2 outperforms the
COT extrapolation, in accord with the expectation formed on the basis of the PPL
correlation contributions.

Markedly different trends are observed for the errors in the rest of CCSD terms.
Not surprisingly, the plain F * scaling does more harm than good, while the unsatisfac-
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Table 2. Mean (signed) errors (in kJ/mol) for closed-shell and open-shell reaction energies and atomization

energies of the KAW test set as a function of the ε FNO threshold. The MP2, PPL, rest of CCSD, and (T)
errors are calculated with respect to the analogous terms of the untruncated reference.

Closed-shell reactions Open-shell reactions Atomization energies
FNO threshold, ε: 10−4 10−4.5 10−5 10−4 10−4.5 10−5 10−4 10−4.5 10−5

MP2 term 5.0 1.0 0.6 6.2 −1.2 0.3 −15.2 −3.9 −2.6
PPL term
Uncorrected −1.7 −0.3 −0.2 −1.9 0.6 −0.1 5.0 1.3 1.1
∆PPL+ −1.6 −0.6 −0.3 −1.2 −0.1 −0.2 1.6 0.4 0.4
LEMP2 0.3 −0.5 −0.2 0.7 −0.3 −0.1 −0.7 −0.03 0.1
COT extrap. −0.9 0.5 0.02 −0.4 0.8 0.1 1.5 −0.02 0.2
rest of CCSD
Uncorrected 1.4 0.4 0.1 1.2 −0.5 −0.1 −0.6 1.0 0.3
F ∗ scaled 1.8 1.2 0.4 1.7 0.9 0.3 1.3 1.3 1.1
LEMP2 −1.7 −0.02 −0.1 −2.0 −0.6 −0.02 3.2 1.5 0.4
COT extrap. −0.1 −0.2 −0.1 −0.6 −1.0 −0.1 1.7 1.6 0.4
(T) correction
Uncorrected 0.4 0.2 0.09 0.7 −0.03 0.04 −1.1 −0.13 −0.11
(T+) 0.4 0.1 0.03 0.3 −0.06 0.02 −0.05 0.17 0.01
LEMP2 0.2 −0.2 −0.03 0.3 −0.01 0.01 0.14 0.24 0.04
COT extrap. 0.5 −0.1 −0.01 0.5 −0.21 −0.02 −0.32 0.22 0.02

tory performance of LEMP2 and COT is unexpected considering their corresponding
correlation energy errors. Except for the ε = 10−4 cases, where COT appears to be
better, the LEMP2 and COT values are quite close or sometimes are inferior to the
uncorrected errors. Considering this point and that the sign of the Erest error is not
retained by these approaches, the best error compensation with ∆PPL+ is expected
in combination with uncorrected Erest. The picture is less clear for LEMP2 as the PPL
errors do not appear to correlate well with either the LEMP2 or the COT Erest errors.
For that reason, we further explore both options below.

Finally, regarding the smallest (T) error contributions, the correlation energy im-
provements provided by the (T+) and LEMP2 schemes are again largely canceled
for most of the reaction and atomization energies. The improvements are significant
only with the loosest, ε = 10−4 threshold in this test set. Considering also the im-
proved correlation energies and the computational cost requirements, the combination
of ∆PPL+ and (T+) as well as the use of LEMP2 for PPL and (T) appear to be
competitive.

Next, let us analyze the accuracy for all terms combined. Since the error contribution
of (T) is relatively small, similar conclusions can be drawn for CCSD and CCSD(T),
thus only the latter is discussed in detail. Table 3 collects the MAEs of FNO-CCSD(T)
compared to the exact reference for the most promising correction schemes. The aim is
to bring down the MAE of several kJ/mol of the uncorrected FNO-CCSD(T) results
within the explored threshold range to an acceptable level of cca. 1-2 kJ/mol. In
accord with numerical experience from the literature [36, 58], we also showed that
the ∆MP2 method is capable of such significant FNO error reduction for a range of
different properties [51], such as CS and OS reaction energies of small to medium
sized reactants, atomization and ionization processes, or non-covalent interactions.
The performance of ∆MP2 is also good for the CS and OS reactions of the KAW set
(see MAE=0.2–1.1 kJ/mol in Table 3), however, the compensation of errors is not as
fortunate for the more challenging AEs (MAE=1.4-3.6 kJ/mol).

Compared to FNO-CCSD(T)+∆MP2, the good performance of FNO-CCSD-
PPL(T+) [row “∆PPL+ & (T+)”] is more balanced as the AE errors of 0.7-1.6 kJ/mol
are not significantly worse than those obtained for the CS and OS reaction energies.
Except for the AEs, the COT extrapolation of the complete CCSD(T) energy is not
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Table 3. MAEs (in kJ/mol) for CCSD(T) closed-shell and open-shell reaction energies and atomization

energies of the KAW test set as a function of the ε FNO threshold compared to the untruncated reference.

Closed-shell reactions Open-shell reactions Atomization energies
FNO threshold, ε: 10−4 10−4.5 10−5 10−4 10−4.5 10−5 10−4 10−4.5 10−5

Uncorrected 7.1 2.6 1.1 7.4 2.3 0.8 12.0 3.8 1.8
∆MP2 1.0 0.6 0.2 1.1 0.8 0.3 3.6 2.4 1.4
∆PPL+ & (T+) 0.9 0.5 0.3 1.3 0.7 0.3 1.4 1.6 0.7
LEMP2 2.6 1.3 0.4 1.8 1.2 0.2 3.2 1.8 0.6
LEMP2 & COT-rest 2.4 1.6 0.4 1.5 1.6 0.3 2.1 1.8 0.6
COT extrap. 4.3 3.0 0.8 3.4 3.9 0.7 3.1 2.4 0.5

consistently better, even compared to the uncorrected results, thus the COT extrap-
olation is not competitive with the above two methods. The performance of LEMP2
for the complete CCSD(T) energy (“LEMP2” row) as well as of LEMP2 combined
with COT extrapolation of only the rest of CCSD terms (“LEMP2 & COT-rest” row)
is also less satisfactory than that of ∆MP2 or ∆PPL+ & (T+). First, the difference
between LEMP2 and LEMP2 & COT-rest is quite small, except for the AEs with
ε = 10−4, due to the smaller size and good compensation of the Erest errors shown
above. Second, while the two LE variants match the accuracy of ∆PPL+ & (T+) for
ε = 10−5, they are at least 50% worse for the two looser, ε < 10−5 values, where
∆PPL+ can benefit more from error cancellation with the non-negligible Erest error.

To avoid potential drawbacks characteristic to the MAE measure, in Table 4, we also
look at other statistical measures, such as STD and MAX, for the three best methods
[∆MP2, “∆PPL+ & (T+)” labeled by ∆PPL, and “LEMP2 & COT-rest” labeled by
LEMP2’]. Table 4 is arranged somewhat differently allowing for a more transparent
comparison of the methods across the three different subsets (CS, OS, and AE) for a
given FNO threshold value.

Table 4. Statistical measures (MAE, STD, and MAX) for the CCSD(T) errors (in kJ/mol) of closed-shell
(CS), and open-shell (OS) reaction energies, and atomization energies (AE) of the KAW test set compared to

the untruncated reference. The shorthand labels ∆PPL and LEMP2’ refer to the above “∆PPL+ & (T+)”

and “LEMP2 with COT extrapolation for the rest of CCSD terms”, respectively.

FNO ε: 10−4 10−4.5 10−5

Method: ∆MP2 ∆PPL LEMP2’ ∆MP2 ∆PPL LEMP2’ ∆MP2 ∆PPL LEMP2’
CS 1.0 0.9 2.4 0.6 0.5 1.6 0.2 0.3 0.4

MAE OS 1.1 1.3 1.5 0.8 0.7 1.6 0.2 0.3 0.3
AE 3.6 1.4 2.1 2.4 1.6 1.8 1.4 0.7 0.6
CS 1.4 1.3 4.6 0.7 0.6 2.1 0.3 0.3 0.4

STD OS 1.4 2.0 2.3 1.1 0.8 1.9 0.3 0.3 0.3
AE 3.2 1.6 2.3 2.3 1.4 1.6 1.3 0.6 0.4
CS 4.1 4.4 19.2 1.6 1.5 5.9 0.8 0.9 1.3

MAX OS 3.1 9.3 7.8 2.6 3.6 7.3 0.9 1.3 1.1
AE 11.7 5.4 6.9 8.9 5.6 5.7 5.3 2.6 1.7

Comparing the ∆MP2 and ∆PPL methods first, the close similarity observed for
the MAEs of CS and OS reaction energies remain for the STD and MAX values as
well. One exception is the 9.3 kJ/mol MAX ∆PPL error for the OS reaction energy
of “4 NH3 + 5 O2 → 4 NO + 6 H2O”, which is a clear outlier because of the large
error amplification effect of its sizable stoichiometric coefficients. Indeed, the ∆PPL
correlation energies are better than with ∆MP2 for these four molecules (the respective
MAEs are 0.3% and 0.7%), but the corresponding ∆MP2 reaction energy of 2.8 kJ/mol
benefits from better compensation of the reactant and product errors. On the other
hand, the AEs obtained with ∆PPL are consistently better, by about a factor of 2, in
most cases for all three error measures.

Regarding the LEMP2’ results with ε = 10−5 it is, though by only a small margin,
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the most consistent approach across all subsets of KAW, especially its 1.7 kJ/mol
MAX error is promising for the most complicated AEs. As the relative importance of
the Erest error grows for larger FNO truncations, the overall performance of LEMP2’
deteriorates, especially compared to ∆PPL. The 5.9 and 19 kJ/mol MAX errors ob-
tained for the CS subset with ε = 10−4.5 and ε = 10−4, respectively, are particularly
high. Upon closer inspection, these MAX errors correspond to the “2 NH3 + 3 F2 →
N2 + 6 HF” reaction, which is also the most problematic for ∆MP2 and ∆PPL, again
because of the large stoichiometric coefficients. Considering the MAE of the relative
correlation energy errors of the four participating molecules, LEMP2’ is clearly better
than ∆MP2 and ∆PPL (0.3% vs 0.6% and 0.4%). However, the sign of the error for
the HF molecule differs from that of the other three species only for LEMP2’, which
is amplified by a stoichiometric coefficient of 6. It is also worthy noting that the lin-
ear extrapolation assigned to the ε = 10−4 point requires the use of the quite crude
ε = 10−3.5 values as well, for which even the ∆PPL corrected error of this reaction is
26 kJ/mol. Thus, in its present form, LEMP2’ and also LEMP2 are most reliable for
relatively safe FNO truncations. However, they are beneficial for the most challenging
cases requiring accurate correlation energies, such as atomization energies.

3.5. Non-covalent interactions

The most promising methods are also assessed on non-covalent interactions as these
quantities often converge slowly with the employed basis set size and can also pose
challenges to second-order perturbation theory [93].

Looking at the FNO-CCSD(T) correlation energies of the species in the A24 compi-
lation [92] (Table 5), the error trends for the uncorrected and various corrected results
are very close to those observed for the AW and KAW sets above. It is important to
note that the relative correlation energy errors of the monomers and dimers are almost
identical in accord with the size-extensive property of the employed corrections.

Table 5. Mean (signed) relative correlation energy errors [in %] compared to the untruncated CCSD(T) total

correlation energy as a function of the ε FNO threshold for the A24 test set.

Dimer [%] Monomer [%]
FNO threshold, ε: 10−4 10−4.5 10−5 10−4 10−4.5 10−5

uncorrected −4.50 −1.81 −0.61 −4.43 −1.82 −0.59
∆MP2 1.29 0.76 0.35 1.31 0.79 0.34
∆PPL+ 0.01 0.18 0.12 0.06 0.19 0.12
LEMP2’ 0.49 0.15 0.51 0.15

The corresponding A24 interaction energy errors are collected in Table 6. Here,
we find small deviations compared, e.g., to the closed-shell reaction energies of Table
4. While the convergence of both the ∆PPL and LEMP2’ interaction energy errors
remain monotonic with decreasing truncation thresholds, the ∆MP2 error measures
with ε = 10−4 are found smaller than the corresponding ε = 10−4.5 values and appear
comparable to the tightest, ε = 10−5 results. This non-monotonic behavior also devi-
ates from the numerical experience of Ref. 58, where DePrince and Sherrill explored
the performance of FNO-CCSD(T) for the interaction energies in the S22 test set. One
possible explanation is that the aug-cc-pVDZ basis set was employed in Ref. 58, for
which the same ε = 10−4 threshold leads to a much more conservative decrease in the
number of FNOs than in the case of the aug-cc-pVQZ basis employed here [51]. Con-
sequently, the role of the additive MP2 correction is expected to be more pronounced
in our aug-cc-pVQZ data, which, in combination with the limitation of MP2 for non-
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covalent interactions, could explain the fortunately small ∆MP2 errors. Nonetheless,
because of their reliable monotonic improvements, LEMP2’ and especially ∆PPL out-
perform ∆MP2 for the two tighter thresholds. Additionally, all three methods decrease
the FNO truncation error by a factor of 5-11 for all explored threshold values, while
∆PPL reaches sub-chemical (0.1 kcal/mol) accuracy already with ε = 10−4.

Table 6. Statistical measures (MAE, STD, and MAX) for the CCSD(T)/aug-cc-pVQZ errors [in kJ/mol] of

noncovalent interaction energies of the A24 test set compared to the untruncated reference. The shorthand labels

∆PPL and LEMP2’ refer, respectively, to the above “∆PPL+ & (T+)” and LEMP2 with COT extrapolation
for the rest of CCSD terms.

FNO ε: 10−4 10−4.5 10−5

Method: ∆MP2 ∆PPL LEMP2’ ∆MP2 ∆PPL LEMP2’ ∆MP2 ∆PPL LEMP2’
MAE 0.15 0.18 0.46 0.35 0.11 0.28 0.14 0.04 0.11
STD 0.21 0.19 0.63 0.38 0.09 0.37 0.15 0.05 0.15
MAX 0.45 0.42 2.39 0.75 0.32 1.33 0.41 0.14 0.45

While the results in Table 6 are assessed against the CCSD(T)/aug-cc-pVQZ refer-
ence, the corresponding counterpoise corrected [94] reference energies and error mea-
sures are also evaluated. We found that the accuracy of all three correction schemes is
almost identical with and without counterpoise correction, thus the counterpoise cor-
rected set of numbers is not shown for brevity. It is also interesting to point out that
the ∆PPL corrected FNO-CCSD(T) errors, even with the loosest thresholds, closely
approach the intrinsic accuracy of (frozen-core) CCSD(T) itself, at least based on the
core electron correlation and CCSDT(Q) corrections reported in Ref. 92.

3.6. Computational requirements

In our previous report, we explored the computational requirements of the additive
MP2 corrected FNO-CCSD(T) method in detail [51] and we recommend the interested
reader to consult that extensive analysis. We note one difference here compared to Ref.
51, namely that the NAF approximation [60] was also turned on in Ref. 51 in order to
compress the auxiliary basis space, which is unnecessarily large for the density fitting
of integrals in the FNO basis. The benefit of this NAF approximation is substantial
for our integral-direct CCSD(T) algorithm since the four-center integral storage can
only be avoided via repeated integral assembly, scaling linearly with the number of
auxiliary functions. We recommend to take advantage of the highly accurate NAF
approximation in the FNO-CCSD(T) context, and it is the default setting in our
implementation in the Mrcc suite [84, 85], but the NAF approach was not employed
here in order to explore the pure FNO errors.

As the additive MP2 correction does not require any additional time or storage re-
source compared to FNO-CCSD(T), the present brief analysis focuses on the speedups
obtainable with the ∆PPL and LEMP2 corrections. The operation count based the-
oretical and the corresponding measured speedup values are collected in Table 7 for
the cyclohexane entry of the AW collection.

Table 7. Operation count based theoretical and measured speedup values as a function of the retained FNO
ratio for cyclohexane in the cc-pVQZ basis set.

FNO ε % FNO (nMO/nFNO)4 theoretical ∆MP2 ∆PPL LEMP2
10−5 63.2 6.3 6.1 5.7 5.7 4.4
10−4.5 44.9 24.6 23.3 20.1 19.7 15.6
10−4 29.7 128.0 114.9 77.4 75.4 60.8

The column labeled “theoretical” in Table 7 collects the operation count ratio of
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the rate determining steps with the FNO and the complete virtual basis set taking
into account all sixth- and seventh-power scaling, as well as the fifth-power scaling
integral assembly operations. This theoretical speedup limit is more informative than

the naive
(
nMO

nFNO

)4
speedup estimate, but it is not reached in practice due to the

different algorithmic efficiency of the many terms of CCSD(T) as well as due to the
lower-scaling cost reduction of the less operation intensive terms.

As expected, the cost of the ∆PPL correction is measured to be about 1–2% of the
total FNO-CCSD(T) computation, thus this little overhead compared to the cost of
the ∆MP2 approach is amply compensated by the reliability of the ∆PPL corrected
results. The case of LEMP2 is less clear, although it also provides improved energetics,
the extrapolation requires two separate FNO-CCSD(T) calculations. With the 100.5

threshold ratio employed here, the cost of the second FNO-CCSD(T) run leads to an
overhead of about 20%. Nonetheless, compared to the speedups obtained with ε = 10−5

recommended in our recent paper [51] in combination with ∆MP2 corrections, the
additional 3–4 and 15 times cost reduction with 10−4.5 and 10−4 FNO thresholds,
respectively, represent a strong motivation for the application of the more reliable
correction schemes.

Finally, the FNO space truncation brings a quadratic- or, in combination with the
NAF scheme, cubic-scaling decrease in the memory requirement of our integral-direct
CCSD(T) algorithm, which could also be highly advantageous at the practical limit
(1500–2100 orbitals) of our current implementation [51].

4. Conclusions and outlook

The reformulation of various FNO corrections in a unified form of scaled MP2-based
corrections combined with various energy decomposition ideas led us to a number of
novel schemes aiming at reducing the basis set truncation error of FNO-CCSD(T).
Similar to the case of the AO basis set incompleteness error (BSIE), the diagrammatic
decomposition of Ref. 62 revealed MP2 as the largest, but perfectly correctable FNO
error component. The multiplicative PPL correction of Ref. 62 can also reduce the
FNO errors of the PPL term by about a factor of 3, leading to an effective cancellation
with the error of opposite sign of the remaining, uncorrected CCSD terms in the
corresponding ∆PPL* correction scheme.

The linear extrapolation (LE) of the FNO-CCSD(T) energies as a function of MP2
energies proposed by us [51] has received an additional theoretical motivation here,
and it is found to be a factor of 2–3 more accurate for the correction of both the
PPL and (T) correlation energies than any other methods. Utilizing orbital and or-
bital pair contribution based energy decompositions, we also propose size-consistent
variants for the promising LE and multiplicative schemes, denoted, e.g, as ∆PPL+
and (T+). These orbital contribution decomposed variants are also readily applicable
in the context of all presently employed local correlation methods [12–14].

Regarding the rest of the CCSD terms, their FNO error is not improved comparably
to the improvement in the PPL term with any of the techniques explored here. Thus,
the current LE based variants cannot benefit from the compensation of PPL, rest of
CCSD, and (T) errors, unlike the popular ∆MP2 and the recent ∆PPL approaches.
Consequently, with somewhat looser FNO thresholds, ∆MP2 and ∆PPL+ perform
better for the studied closed- and open-shell reaction energies, while ∆PPL+ and
(T+) corrected as well as the LE based atomization energies are considerably better
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than the ∆MP2 corrected ones. The benefits of the superior LE correlation energies
are most apparent with relatively tight FNO thresholds, where the diminishing FNO
errors of the rest of CCSD terms cannot cancel the remaining PPL errors.

The error compensation with the ∆MP2 and ∆PPL approaches is, however, less
systematic for more challenging processes involving open-shell species. Thus future
studies should focus on the correction of the remaining CCSD terms in order to fully
unlock the potential of the LE schemes offered for PPL and (T). One step toward this
direction is offered by spin-component decomposition within CCSD. We found that all
same-spin terms (MP2, PPL, and rest of CCSD) converge much faster with the FNO
threshold than their opposite-spin counterparts, and thus only the FNO error of the
opposite-spin component of the rest of CCSD terms remains unsatisfactory.

For now, the ∆PPL+, (T+), and also the LE approaches could contribute to re-
liable FNO-CCSD(T) results for chemically interesting systems. The implementation
of all new schemes is relatively straightforward into existing FNO-CCSD(T) codes.
Moreover, the computational overhead of (T+) is negligible, and the additional cost
associated with ∆PPL+ or LE is about 1–2% and 20–30%, respectively, of the en-
tire FNO-CCSD(T) computation. In combination, e.g., with the effective and well-
parallelized DF-CCSD(T) implementation of the Mrcc suite [10], tightly converged
∆PPL+, (T+), or LE corrected FNO-CCSD(T) calculations are feasible up to about
50 atoms even with quadruple-ζ basis sets [51].

Because of the similarities of the FNO truncation and AO BSIE, the proposed
approaches can also be employed in the AO BSIE context. Indeed, the (T+) method
is found to be rather promising [64], and the size-consistent ∆PPL+ correction can
also be useful considering the performance of the original ∆PPL approach [61, 62].
However, the size-consistent implementation of the LE scheme appears to be somewhat
more involved in the AO BSIE context. Additional avenues of future studies include
the extension of both the FNO truncation and AO BSIE correction schemes to similar
many-body methods. Most notably, diagrammatic decomposition based corrections of
iterative higher-order CC methods [95] and multiplicative corrections of higher-order
perturbative CC approaches, such as the (Q) contribution [96, 97], are envisaged.
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[12] P.R. Nagy and M. Kállay, J. Chem. Theory Comput. 15, 5275 (2019).
[13] Q. Ma and H.J. Werner, Wiley Interdiscip. Rev.: Comput. Mol. Sci. 8, e1371 (2018).
[14] Y. Guo, C. Riplinger, U. Becker, D.G. Liakos, Y. Minenkov, L. Cavallo and F. Neese, J.

Chem. Phys. 148, 011101 (2018).
[15] G. Schmitz, C. Hättig and D.P. Tew, Phys. Chem. Chem. Phys. 16, 22167 (2014).
[16] W. Li, P. Piecuch, J.R. Gour and S. Li, J. Chem. Phys. 131, 114109 (2009).
[17] T. Helgaker, W. Klopper, H. Koch and J. Noga, J. Chem. Phys. 106, 9639 (1997).
[18] M.S. Marshall, L.A. Burns and C.D. Sherrill, J. Chem. Phys. 135, 194102 (2011).
[19] A. Varandas and P. Piecuch, Chem. Phys. Lett. 430, 448 (2006).
[20] W. Kutzelnigg and W. Klopper, J. Chem. Phys. 94, 1985 (1991).
[21] W. Klopper, F.R. Manby, S.Ten-no and E.F. Valeev, Int. Rev. Phys. Chem. 25, 427

(2006).
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[85] M. Kállay, P.R. Nagy, D. Mester, Z. Rolik, G. Samu, J. Csontos, J. Csóka, P.B. Szabó,
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[95] M. Kállay and P.R. Surján, J. Chem. Phys. 115, 2945 (2001).
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