SUPPORTING INFORMATION

ORIGIN OF THE URUCUM IRON FORMATIONS (NEOPROTEROZOIC, BRAZIL): TEXTURAL AND MINERALOGICAL EVIDENCE (Mato Grosso do Sul – Brazil)

Running title: Fe-rich rocks from Urucum

Márta Polgári^{1,2*}, João Carlos Biondi³, Ildikó Gyollai¹, Krisztián Fintor⁴, Máté Szabó¹

¹Institute for Geological and Geochemical Research, RCAES, Eötvös Loránd Research Network, 1112 Budapest, Budaörsi u. 45, Hungary, e-mail: rodokrozit@gmail.com, gyildi@gmail.com, szmatez@gmail.com

²Eszterházy Károly University, Dept. of Natural Geography and Geoinformatics, 3300 Eger, Leányka u. 6, Hungary

³Federal University of Paraná State, Polytechnic Center, Geology Department, 81531-980 Curitiba, Brazil, e-mail: biondiufpr@gmail.comS

⁴Szeged University, Dept. of Mineralogy, Geochemistry and Petrology, 6722 Szeged, Egyetem u. 2-6, Hungary, e-mail: efkrisz@gmail.com

*corresponding author: rodokrozit@gmail.com

Content

- SI 1. Iron deposits similar to Urucum
- SI-2. Panorama and high resolution optical rock microscopic photos of thin sections
- SI 3. FTIR measurement of Urucum iron ore deposit
- SI 4. FTIR dataset of samples
- SI 5. Raman spectroscopy dataset of samples
- SI 6. Mineral composition of nodules and sections based on Raman spectroscopy
- SI 7. Raman profiles of nodules
- SI 8. Raman profiles of sections
- SI 9. Back scattered electron images of samples with mineral composition
- SI 10. Element map images in a complex system with OM, CL, FTIR, Raman and stable isotope datasets
- SI 11. Carbonate composition of samples based on EPMA analyses
- SI 12. Carbonate composition of samples based on EPMA analyses
- SI 13. Temperature calculation on $\delta^{18}O_{SMOWcarb}$ (based on Kim et al., 2009; Hodel et al., 2018)
- Table S1. Samples and methods used
- Table S2. Mineral and organic matter composition and frequency
- Table S3. Raman profiles, point dataset and FTIR mineralogy both for nodules and sections according to Fe and Mn cycles and syn-and diagenetic formation
- Table S4. Mineral assemblage in Urucum Fe ore, Brazil. and typical minerals indicative of Eh-pH ranges based on environmental mineralogy (low T)
- Table S5. Carbonate types and $\delta^{13}C_{PDBcarb}$ and $\delta^{18}O_{PDBcarb}$ values of sedimentary carbonates in BIFs and Mn ore from Urucum and Vetorial mines, Urucum region (MS, Brazil)

SI 1. Iron deposits similar to Urucum

Ever since Young (1976) described the iron formations of the Rapitan Group (Canada), and genetically related them to Neoproterozoic glaciations, authors who work with iron formations across the planet have adopted the term "Rapitan-type iron formation" to designate all BIFs formed at the end of the Neoproterozoic. Klein and Beukes (1993a, 1993b) showed that the Rapitan Group is aged between 755 and 730 Ma and that it is coeval with several other extensive iron-formations worldwide, all of which are associated with glaciogenic sequences. These sequences would have be related in origin to the enrichment in Fe²⁺ of seawater, isolated from the atmosphere by ice crusts generated by regional glaciations from the end of the Neoproterozoic (according to the Snowball Earth Theory of Kirschvink, 1992). With the end of the glaciation and the disappearance of glaciers, in some restricted places on the continental shelves there would have been the oxidation of Fe²⁺ to Fe³⁺ which, being insoluble in sea water, would sediment together with a large amount of jasper, forming BIFs.

Included in the Rapitan Group type are the following iron-manganesiferous units: (1) Urucum district of Brazil (Urban et al., 1992; Trompette et al., 1998; Klein and Ladeira, 2004), (2) Mutum in Bolivia (Trompette et al., 1998), (3) MacKenzie and Ogilvie Mountains of North America (Young, 1976; Klein and Beukes, 1993a, b), (4) southeastern Uruguay (Pecoits et al., 2008), (5) Damara orogen of Namibia (Breitkopf, 1988; Bühn et al., 1992), (6) Adelaide geosyncline of South Australia (Lottermoser and Ashley, 1999), (7) Erzin basin in Tuva, Russia, and in adjacent Mongolia (Ilyin, 2009), (8) Malyi Khingan in the southern part of the Russian Far East (Ilyin, 2009), and (9) middle Tien-Shan in Kazakhstan, Kyrgyzstan.

Urucum, located in Brazil, and Mutum, located in Bolivia, are different names given to the same geological unit. The eastern part of the Jacadigo Hill (Fig. 1A), located in Brazil, belongs to the Santa Cruz Formation of the Jacadigo Group, which contains several iron-manganese units, including those from the Urucum mine, the name that was historically adopted to designate around 10 other iron and manganese deposits and mines of the Santa Cruz Formation. Crossing the border to the west and entering Bolivia, the western part of Jacadigo Hill is called Mutum (Trompette et al., 1998). The geology and genesis of banded iron formations (BIFs) of the Urucum-Mutum and of the manganese deposits interstratified in these iron formations have been discussed in many publications, among which the most recent and comprehensive are Klein and Ladeira (2004), Angerer et al. (2016), Biondi and Lopez (2017), and Biondi et al. (2020).

Urban et al. (1992) considered the iron formations of the Urucum region similar to the iron formations of the Rapitan Group. By similarity, Urban et al. (1992) considered that the Urucum BIFs would be Cryogenian (720-635 Ma), and their genesis, like the Rapitan Group, would be related to the great glaciations of the late Neoproterozoic, especially to the Marinoan glaciation (650 to 635 Ma).

After Urban et al. (1992), and Klein and Beukes (1993) several authors adopted the same ideas about the Urucum, even though Biondi and Lopez (2017) and Biondi et al. (2020) describe several geological features that indicate that the BIFs of Urucum (and Mutum) are Ediacarans, aged 560-550 Ma (Piacentini et al., 2013; Biondi and Lopez, 2017; Biondi et al., 2020). Indeed, the iron formations of the Rapitan Iron Formation Group, especially at Cranswick River, Mackenzie Mountains, of the Canada Northwestern Territories, are very similar to those of the Urucum. Layers with nodular and banded jasper interlayered with hematite bands and overprinted by anastomosing hematite are similar to the arkosean iron formations located at the base of the Santa Cruz Formation (Biondi and Lopez, 2017), and the BIFs with jasper nodules in massive hematite (Bekker et al., 2010) are very similar to the BIF types 4 and 4A (Fig. 3), one of the most common BIF-type in the Urucum. On the other hand, besides their ages, Urucum and Rapitan have some other important differences. The total thickness of the Rapitan Group's BIFs rarely exceeds 70 m, but it is more than 400 m in Urucum. In Rapitan there are diagnostic evidences of sedimentation in a glacial environment, with frequent diamictites, dropstones, striated pebbles, etc., while in Urucum no diagnostic evidence was found for regional glacial environments, and the coarse grained rocks are conglomerates formed by avalanches. There are no manganese layers interspersed in the Rapitan Group's BIFs, while in Urucum there are three layers of manganese that are economically very important, with thicknesses between 0.5 and 6.0 m, of biogenic origin (Biondi and Lopez, 2017; Biondi et al. 2020), interspersed in the BIFs of the basal portion of the Santa Cruz Formation. Another important difference between the two units is indicated by multi-element REE diagrams. Urucum BIFs have negative Ce anomalies ranging from discrete to large (Angerer et al., 2016; Biondi and Lopez, 2017) indicating a marine sedimentary environment with hot water (Angerer et al., 2016; Biondi and Lopez, 2017), which contrasts with the sedimentation in the glacial environment of Rapitan BIFs.

According to Klein and Beukes (1993a, b), the Rapitan Group is well exposed in the Mackenzie Mountains and in the eastern Wernecke Mountains of the northeastern Cordillera of North America, with correlatives in the upper Tindir Group (Young, 1982) in the Ogilvie Mountains on the Alaska-Yukon border. It unconformably overlies a thick platform assemblage of carbonates and relatively mature siliciclastics of the Mackenzie Mountains Supergroup (Young et al., 1979) and is paraconformably overlain by shale of the Twitya Formation, forming the base of the Hay Creek Group (Young et al., 1979). Young (1992) suggests that the glaciogenic Rapitan sequence correlates with the Mackenzie Mountains Supergroup in the northern Cordillera. The Mackenzie Mountains Supergroup and the Ogilvie Mountains differ from the Rapitan Group only because the lower mixtite unit of the Rapitan is not developed in Mackenzie and Ogilvie Mountains. The BIFs, the stratigraphic sequence and the genetic process appear to be the same as those of the Rapitan Group.

The Arroyo del Soldado Group, in Uruguay, is a mixed siliciclastic-carbonate succession, mainly represented by an intercalation of basal pink dolostones, banded siltstones, rhythmites of dolostone-limestone, iron formations, cherts and conglomerates. According to Pecoits et al. (2008), these stratigraphic and chemostratigraphic features are suggestive of a Gaskier age (ca 580 Ma) for the basal glacial-related units. Gaucher et al. (1998) identified two different facies associations, shallow-water and deep-water. The shallow-water facies association is the most widely distributed and consists of basal conglomerates, followed by intercalations of sandstones and pelites in the middle of the succession, grading to banded siltstones at the top. The deep-water facies association comprises an alternation of finely laminated dark shales and arkoses; which are turbidites. More recently Gaucher et al. (2004) reported the presence of oxide-facies, a 50 m thick BIF with up to 24% magnetite/hematite. These rocks display centimeter alternation of chert and iron-rich layers that do not show the characteristic microbanding of Archean-Palaeoproterozoic (Pecoits et al., 2008), but which is similar to the BIF type 2 (Fig. 3) that occurs in Urucum. Gaucher et al. (1996) suggested that the succession was deposited on a stable continental shelf undergoing tectonic quiescence. Gaucher et al. (2004) suggested that deposition of the BIF took place on a shelf, due to enhanced upwelling of nutrient-rich waters and consequent production of phytoplankton blooms during greenhouse conditions. However, the depositional geological setting of the group does not correspond to an Atlantic-type continental shelf, in which the model was developed, and the age of the whole Arroyo del Soldado Group is younger than the Gaskiers glacial event, which is problematic for that model. Thus, in the absence of more evidence, the mechanism that triggered the iron precipitation remains unresolved (Pecoits et al., 2008).

Otjosondu, Namibia, is a region known mainly for its mines with ferruginous manganese ore, but which also contain some iron deposits derived from intensely metamorphosed BIFs, formed and deformed during the Neoproterozoic Damara orogenesis (Breitkopf, 1988; Bühn et al., 1992). Iron formations occur within the metasedimentary/metavolcanic sequence of the Chuos Formation, with age estimated between 750 and 650 Ma (Miller 1983). Hematite-feldspar-quartzites are considered impure and finely banded hematite-quartzites are recognized as pure iron-formations (Bühn et al., 1992). According to Breitkopf (1988), the iron-rich lithologies comprise magnetite-quartz, hematite-quartz and magnetite-quartz-silicate±carbonate rocks. Iron formation in amphibolite was developed both as a chemical sediment and as a composite rock consisting of chemical iron-rich sediment with admixture of varying amounts of volcanic detritus, while iron formation in diamictite represents a pure chemical sediment. Both of the iron-rich rocks contain abundant apatite and their manganese contents are low. The iron-rich horizons are reported to have a thickness of 20-30 m. The proposed depositional model involves chemical precipitation of dissolved iron (+ manganese) in high-energy, estuarine-deltaic environments. Lack of impurities of the iron-rich layers and their sharp upper and lower contacts indicate chemical precipitation in restricted basins during intervals of interrupted clastic deposition. For interpretation of sharp contacts, Polgári et al. (2016) and Biondi et al (2020) proposed changes of oxygen supply on a fine level between suboxic and obligatory oxic conditions, which determine microbial Fe(II) as suboxic and microbial Mn(II) oxidation as obligatory oxic, and enrichment of Fe- and Mn-ores. Breitkopf (1988) suggests an exhalative origin for the iron formations related to mafic volcanism and ensialic rifting. Because the banded ferriferous formations of Chuos Formation were destroyed by metamorphism and the associated deformation, it is not possible to compare them with those of Urucum.

The eastern part of the Adelaide Geosyncline (South Australia) contains well preserved glaciomarine sequences of the Sturtian glaciation ($\approx 750-700$ Ma) including calcareous or dolomitic siltstone, manganiferous siltstone, dolostone and diamictite units and the associated Braemar ironstone facies (Lottermoser and Ashley, 1999). The ironstone facies occurs as matrix to diamictites and as massive to laminated ironstones and comprises abundant Fe oxides (hematite, magnetite) and quartz, minor silicates (muscovite, chlorite, biotite, plagioclase, tourmaline), carbonate and apatite, and detrital mineral grains and lithic clasts. Laminated ironstones looking like BIF have magnetite and hematite-rich darker laminae and lighter laminae in siliciclastic and carbonate components. Interbedded lighter coloured siltstone displaying cross-laminations and soft-sediment deformation are common features. Micro-textures indicate that magnetite and hematite are of metamorphic origin. Chemical compositions of ironstones vary greatly and reflect changes from silica-, alumina-poor ironstones, formed by predominantly chemical precipitation processes, to silica-, alumina-rich examples with a significant detrital component. The intimate association of dolostones, manganiferous siltstones, ironstones and diamictites was explained by a transgressive event during a postglacial period. Hydrothermal exhalations added significant amounts of Fe and other metals to Neoproterozoic seawater. Release of CO₂ to the atmosphere from the oxygenated waters resulted in the precipitation of carbonate as dolostones, and oxygenation of ferriferous (± manganiferous) waters led to the precipitation of Fe³⁺ oxides as laminated ironstones and as matrix of diamictic ironstones (Lottermoser and Ashley, 1999). If the iron-rich rocks of the Adelaide Geosyncline are jaspilites, the abundance of cross-laminations and soft-sediment deformation would characterize them as unusual banded iron formations,

devoid of jasper nodules and small jasper lens, and very different from those existing in Urucum and the Rapitan Group.

The Erzin basin is likely to extend over several hundreds of kilometers southwestward, beneath the sand cover of the Borig Del Basin from Tuva to Mongolia, where BIFs are also found on the northern slopes of Khangai. Quite recently rocks hosting BIFs of the basin have been dated by the 206 Pb/ 238 U zircon method at 767 ± 15 Ma based on garnet–biotite plagio-gneiss underlying the quartzites (Ilyin, 2009).

The Erzin BIF, similar to those of the Rapitan Group (Ilyin, 2009), is localized in a tectonically active zone of conjunction of the Precambrian Tuva–Mongolia Massif and Caledonian structures. They differ from the BIFs in other regions mainly by a higher grade of metamorphism (amphibolite facies). They exhibit a clear banded structure related to the alternation of interbeds of magnetite and fine quartz grains. The Erzin BIF are divided into coarse- and thin-banded varieties. In some places, the thin-banded varieties comprise cummingtonite and pass into amphibole–magnetite rocks. Laminae are up to 2 cm thick in the coarse banded varieties and less than 0.7 mm thick in the thin banded varieties. The average ratio of magnetite and quartz laminae is 1:1 (Ilyin, 2009). Apparently the BIFs in the Erzin region were laminated and banded jaspilites (BIFs types 1 and 2, from Fig.3), which were metamorphosed and acquired a different mineral composition from that of the Urucum. No mention is made of the presence of nodular jaspilites (BIFs type 4 and 4A, Fig. 3).

The Erzin iron ore basin has the following specific features: (1) Stratigraphy section is composed of the lower meta-terrigenous and upper carbonate (conformably overlying) complexes. A small stratigraphic hiatus is likely to separate the complexes. Terrigenous rocks of the lower complex are metamorphosed up to the amphibolite-granulite facies. In the Mugur area, 200-300 m above glacial deposits, dolomites and black graphite marbles include several horizons of organic-rich phosphorites with a small amount of phosphoric anhydrite (10-15%). The 87 Sr/ 86 Sr absolute age of the phosphorite was estimated at ≈ 600 Ma. Therefore, BIFs belong to the Cryogenic interval of the Neoproterozoic, whereas phosphorites belong to the Ediacaran (Ilyin, 2009). (2) BIFs of the Mugur deposit occur 100-200 m below glacial deposits. The Mugur deposit has proven BIF reserves of approximately 300 Mt with bulk Fe content of 39–40%. The deposit encloses two contiguous, ≈10 m thick BIF beds extending over 60 km. The ore component is mainly represented by hematite or magnetite. The REE distribution and Co + Ni + Cu index suggest an influence of hydrothermal sources of Fe, although it was subordinate to the continental washout. According to Ilyin (2009) iron accumulated in seawater during glaciations, whereas iron mineralization took place at the earliest stages of postglacial transgressions. (3) BIFs are associated with graphitic shales and "red" muscovite schists with powdery pyrite dissemination. Similar occurrence of phosphorites and Neoproterozoic BIFs and their closeness in the stratigraphic section are also characteristic of the Malyi Khingan Ridge, Khankai region, Buryatia (Ilyin, 2009). Bekker (2010) mentions the existence of Neoproterozoic BIFs also in the Tien-Shan in Kazakhstan, Kyrgyzstan region, but no publications were found on these occurrences.

Only Urucum-Mutum has BIFs with mineral composition and structures similar to those of the Rapitan Group region, although apparently formed in a different time and geological environment. Among the diverse geological characteristics of the BIFs described above, the only characteristic common to all is that they are Neopoterozoic, with ages estimated between 767 ± 15 (Erzin region) and 550 Ma (Urucum). The second common feature, though not valid for all, is the origin in a glacial environment following the "Terra Bola de Neve" iron deposits model. Apparently an ice cap separating ocean water from the atmosphere was not necessary to accumulate large concentrations of iron after the GOE (Great Oxidation Event). This model probably does not apply to the Urucum, and also does not apply to BIFs in the Erzin region, where BIFs are 100–200 m stratigraphically below glacial deposits, to the magnetite or siderite iron formation of the Aok Formation, in Canada, with 840 Ma (Rainbird et al., 1994), or to the 1,400 Ma iron formation (IF) from the Xiamaling Formation of the North China Craton (Canfield et al., 2018). Therefore, substantial IFs formed without relation with glacial periods, in the time window between 1,800 and 800 Ma, where they are generally believed to have been absent, and during the transition between Neoproterozoic and Cambrian, at 660-650 Ma (Biondi et al., 2020).

REFERENCES

- Bekker, A., Slack, J.F., Planavsky, N., Krapež, B., Hofmann, A., Konhauser, K.O., Rouxel, O.J., 2010, Iron Formation: The Sedimentary Product of a Complex Interplay among Mantle, Tectonic, Oceanic, and Biospheric Processes: Economic Geology, v. 105, pp. 467–508.
- Biondi, J.C., Polgári, M., Gyollai, I., Fintor, K., Kovács, I., Fekete, J. & Mojzsis, S.J. 2020. Biogenesis of the Neoproterozoic kremydilite manganese ores from Urucum (Brazil) – a new manganese ore type. Precambrian Research 340, 105624. <u>https://doi.org/10.1016/j.precamres.2020.105624</u>
- Biondi, J.C.; Lopez, M., 2017. Urucum Neoproterozoic–Cambrian manganese deposits (MS, Brazil): Biogenic participation in the ore genesis, geology, geochemistry, and depositional environment. Ore Geology Reviews 91:335-386.

- Breitkopf, J.H., 1988, Iron formations related to mafic volcanism and ensialic rifting in the southern margin zone of the Damara orogen, Namibia: Precambrian Research, v. 38, p. 111–130.
- Bühn, B., Stanistreet, I.G., and Okrusch, M., 1992, Late Proterozoic outer shelf manganese and iron deposits at Otjosondu (Namibia) related to the Damaran oceanic opening: Economic Geology, v. 87, p. 1393–1411.
- Gaucher, C., Sial, A.N., Blanco, G., Sprechmann, P., 2004, Chemostratigraphy of the lower Arroyo del Soldado Group (Vendian, Uruguay) and palaeoclimatic implications. Gondwana Research., v.7, p.715–730.
- Gaucher, C., Sprechmann, P. and Schipilov, A., 1996, Upper and Middle Proterozoic fossiliferous sedimentary sequences of the Nico Pérez Terrane of Uruguay: Lithostratigraphic units, paleontology, depositional environments and correlations. Neues Jb. Geol. Palaeontol. Abh., v. 199, p. 339–367.
- Ilyin, A.V., 2009, Neoproterozoic banded iron formations: Lithology and Mineral Resources, v. 44, p. 78-86.
- Kirschvink, Joseph L., 1992, Late Proterozoic Low-Latitude Global Glaciation: the Snowball Earth. Late Proterozoic Low-Latitude Global Glaciation: the Snowball Earth. In: The Proterozoic biosphere: a multidisciplinary study. Cambridge University Press, New York, pp. 51-52. ISBN 9780521366151
- Klein, C., and Beukes, N.J.,1993a, Sedimentology and geochemistry of the glaciogenic Late Proterozoic Rapitan Iron Formation in Canada: Economic Geology, v. 88, p. 542–565.
- Klein, C., and Beukes, N.J., 1993b, Proterozoic iron-formations, in Condie, K.C., ed., Proterozoic crustal evolution: Amsterdam, Elsevier, p. 383–418.
- Klein, C., and Ladeira, E.A., 2004, Geochemistry and mineralogy of Neoproterozoic banded iron-formations and some selected, siliceous manganese formations from the Urucum district, Mato Grosso do Sul, Brazil: Economic Geology, v. 99, p. 1233–1244.
- Lottermoser, B.G., and Ashley, P.M., 1999, Geochemistry, petrology and origin of Neoproterozoic ironstones in the eastern part of the Adelaide geosyncline, South Australia: Precambrian Research, v. 101, p. 49–67.
- Miller, R. McG., 1983, The Pan-African Damara Orogen of South West Africa/Namibia. In: R McG Miller (Editor), Evolution of the Damara Orogen of South West Africa/Namibia. Special Publication of the Geological Society of South Africa, v. 11, p. 431-515.
- Pecoits, E., Gingras, M.K., Aubet, N., and Konhauser, K.O., 2008, Ediacaran in Uruguay: Palaeoclimatic and palaeobiologic implications: Sedimentology, v. 55, p. 689–719.
- Pecoits, E., Ingras, M.G., Aubet, N., Konhauser, K.O., 2008, Ediacaran in Uruguay: palaeoclimatic and palaeobiological implications: Sedimentology (2008) 55, 689–719.
- Polgári, M., Hein, J.R., Bíró, L., Gyollai, I., Németh, T., Sajgó, C., Fekete, J., Schwark, L., Pál-Molnár, E., Hámor-Vidó, M., Vigh, T., 2016. Mineral and chemostratigraphy of a Toarcian black shale hosting Mn-carbonate microbialites (Úrkút, Hungary). Palaeogeography, Palaeoclimatology, Palaeoecology 459:99-120.
- Trompette, R., Alvarenga, C.J.S., and de Walde, D., 1998, Geological evolution of the Neoproterozoic Corumbá graben system (Brazil): Depositional context of the stratified Fe and Mn ores of the Jacadigo Group: Journal of South America Earth Sciences, v. 11, p. 587–597.
- Urban, H., Stribrny, B., and Lippolt, H.J., 1992, Iron and manganese deposits of the Urucum district, Mato Grosso do Sul, Brazil: Economic Geology, v. 87, p. 1375–1392.
- Young, G.M., 1976, Iron formation and glaciogenic rocks of the Rapitan Group, Northwest Territories, Canada: Precambrian Research, v. 3, p.137–158.
- Young, G.M., 1982, The Late Proterozoic Tindir Group, east-central Alaska: Evolution of a continental margin: Geological Society of America Bulletin, v. 93, p. 759-783.
- Young, G.M., 1992, Late Proterozoic stratigraphy and the Canada-Australia Connection: Geology, v. 20, p. 215-218.
- Young, G.M., Jefferson, C.W., Delaney, G.D., and Yeo, G.M., 1979, Middle and Late Proterozoic evolution of the northern Canadian Cordillera and Shield: Geology, v. 7, p. 125-128.

SI 2. Panorama and high resolution optical rock microscopic photos of thin sections

157 (reflected light)

SI-2. Panorama microscopic photos of thin sections

SI 3. FTIR measurement of Urucum iron ore deposit

Mineral phase	Referenc e*	Sample ID cor				88									93				
Nodule typ	es (numbers)	and profiles (letters)	Bl	B2	В3	2A	A1	A2	A3	A4	1	Area1	1	2	4A	4B	C	3B	3
		Total No. of spectra→	6	7	9	7	8	4	6	9	12	6	16	7	8	6	8	5	6
Mineral phase	Referenc e*	Wavelength [cm ⁻¹]																	
dolomite	1	720. 888. 1425.		2					6										
siderite	1	740. 864. 1402													8	6			
rhodochrosite	1	729. 860. 1394		1		7		1	6	3								5	
montmorillonite		696. 798. 985s. 1633. 3623											2						
ferrihydrite	2	692. 878. 3400	3	2	3	2	3	2			2		16				3		
hematite	2	600. 1019	1	2	3			1	2	1					2	2	3	2	2
apatite	3	790. 1012. 1093	3	4				1	3	5		6		7	8	6	4	5	6
albite	4	798. 950. 1000	3			3		2									1		
quartz	4	701. 776. 1059		2	6	5	5	1		2	12	6	10	6			4	5	6
Organic compounds																			
C-N. CH deformation	5	1526	6	6	9	7	8												

C-N N-H amide II	5	1540-1550								3	12	6			2		8		6
amide I C=O. C-N. N_H	5	1632-1652	6	7	9	7	8			6	12	6			2		8		6
СО	5	2343	6	7	9	7	8	4	6	9	12	6	16	7	8	6	8	5	6
СО	5	2365	6	7	9	7	8	4	6	9	12	6	16	7	8	6	8	5	6
OH	6	3230-3700	6	7		7	8				12		16		8		8		6

Mineral phase	Referen ce	Sample ID cor	141				152		152					153A		153A		153B	157	157	157	157	157	157
Nodule types (numbers) and profiles (letters)			Fl	F2	F3	IQ	D2	D3	EI	E2	E3	E4	E5	6	19	G2	C3	5	Area 1	Area 2	Area 3	2	2B	3
		Total No. of spectra→	7	9	14	8	9	6	4	9	8	10	5	14	9	7	12	12	12	7	9	8	11	10
		Wavelength [cm ⁻¹]																						
dolomite	1	720. 888. 1425.								5	5		5	9		7								
ankerite		720. 884. 1405																				4		
siderite	1	740. 864. 1402				1	1		4	5	5	4		12		7	12							
rhodocrosite	1	729. 860. 1394																12	12	7	9		6	
ferrihydrite	2	692. 878. 3400										2		6			5					8	11	7
hematite	2	600. 1019	4	4	6	5	6	3		1		2		6			4	3			3			
aegirine	1	642. 730. 967	4	2	2												3							
apatite	3	790. 1012. 1093				7	9			3								5	5					

albite	4	798. 950. 1000	3	3											9	7								
quartz	4	701. 776. 1059	1		5			6		4	6	3	5	3	9			12	12	7	9	8	11	5
mica	1	653.976										4												
Organic compounds																								
C-N. CH deformation	5	1526	7	9	14	8	9	6	4	9	8	10	5	16		7	12	12	12	7	9	8	8	10
C-N N-H amide II	5	1540-1550	7	9	14	8	9	6	4	9	8	10	5	16		7	12	12	12	7	9	8	8	10
amide I C=O. C-N. N_H	5	1632-1652	7	9	14	8	9	6	4	9	8	10	5			7	12	12	12	7	9	8	8	10
СО	5	2343	7	9	14	8	9	6	4	9	8	10	5	16		7	12	12	12	7	9	8	11	10
СО	5	2365	7	9	14	8		6	4	9	8	10	5	16		7	12	12	12	7	9	8	11	10
OH	6	3230-3700	7	9	14	8	9	6	4													8	11	10

For details see Fig. 6 (thin sections with signed nodule types and profiles)

References are marked by numbers, details in reference list. The number of spectra for minerals and organic materials in measuring area is added in columns. Total number of spectra: 330 References:

[1] RRUFF Database

[2] Glotch, T. D. & Rossman, G. R. (2009). Mid-infrared reflectance spectra and optical constants of six iron oxide/oxyhydroxide phases. Icarus, 204(2). 663-671.

[3] Beasley, M. M., Bartelink, E. J., Taylor, L. & Miller, R. M. (2014). Comparison of transmission FTIR. ATR and DRIFT spectra: implications for assessment of bone bioapatite diagenesis. *Journal of Archaeological Science*, 46. 16-22.

[4] Müller, C. M., Pejcic, B., Esteban, L., Delle Piane, C., Raven. M. & Mizaikoff, B. (2014). Infrared attenuated total reflectance spectroscopy: an innovative strategy for analyzing mineral components in energy relevant systems. *Scientific reports*, *4*. 6764.

[9] Parikh, S. J. & Chorover, J. (2006). ATR-FTIR spectroscopy reveals bond formation during bacterial adhesion to iron oxide. Langmuir, 22(20). 8492-8500.

[5] Madejova, J. & Komadel, P. (2001). Baseline studies of the clay minerals society source clays: infrared methods. Clays and clay minerals, 49(5). 410-432.

SI 4. FTIR dataset of samples

Urucum Banded Iron Formation

FTIR data

Area 1

(6 points) (q) = overlapping with apatite

Nodule 1 (16 points)

С

(q): overlapping with apatite

(ap): overlapping with albite (fp)

(8 points)

⁽fer) = near to detection limit

Cor88 B

(23 points)

Cor88 2A (7 points)

Cor88 A

(A1 fer) = overlapping with quartz A 3 (rhod) = overlapping with dolomite

Cor93 3B (5 points)

(q), (hem): near to detection limit

3

(6 points)

Cor141 F (30 points)

Cor152 D (23 points)

E (36 points)

cor153A 6 (14 points)

Cor153A G (28 points)

core153B 5

(12 points)

Cor157

Area 2 (7 points)

Nodule 2B (11 points) q, (rhod), org (3 points)

q, (rhod),(hem), org (3 points)

q, (rhod) org (3 points)

q, org (1 points) fer, org (2 points) fer (q), org (3 points) fer, org (2 points) g, org (2 points)

N3

Cor157

Area 3 (9 points)

Nodule 3 (10 points)

SI 5. Raman spectroscopy dataset of samples

Sections. Raman vibration of minerals in sections of Urucum banded iron formation samples with references and detected types of organic materials. The number of spectra detected in samples are given in columns

Minerals Sample ID	Chemical formula	Bands	References	cor86_ 01	cor88_ 01	cor88_ 02	cor141_ 01	cor152_ 01	cor152_ 02	cor153_ 01	
Section				С	Α	В	F	Е	D	G	
No. Spectra				701	566	550	701	701	601	701	
Mn mineral assemblage											
Oxides and hydroxide											
Todorokite	$\frac{Na_{0.2}Ca_{0.05}K_{0.02}Mn^{4+}_{4}Mn^{3+}_{2}O_{12}\bullet}{3(H_{2}O)}$	633s	RRUFF	0	0	0	1	0	0	0	
Manjiroite	$Na(Mn^{4+}Mn^{3+})O_{16}$	641s	RRUFF	0	0	0	2	0	0	0	
Manganite	Mn ³⁺ OOH	387. 528. 552s. 621	RRUFF	0	0	0	245	0	0	2	
Carbonates											
Rhodochrosite	MnCO ₃	181. 287. 721. 1087	RRUFF	165	0	7	0	82	0	28	
Kutnohorite	CaMn ²⁺ (CO ₃) ₂	160. 286. 712. 1093	RRUFF	228	15	25	4	395	12	8	
Mn-bearing calcite	Mn-CaCO ₃	153. 275. 712 1017w. 1085	RRUFF	16	0	19	0	95	1	28	
Sulfides											
Alabandite	MnS	(167m. 193m). (297s. 329s). 471	RRUFF	0	0	0	0	0	0	1	
Fe mineral assemblage											
Oxides and hydroxides											
Hematite	Fe ₂ O ₃	222. 290. 408. 490. 607 hem	Das and Hendry (2011)	586	565	548	417	381	600	690	
Goethite	FeOOH	162. 243. 297s. 385s. 477. 545	Das and Hendry (2011)	0	0	0	3	0	0	4	
Anatase	TiO_2 - $Fe_xTi_{(1-x)}O_{(2-x)}OH_x$	145s ®	RRUFF	0	0	0	0	0	0	204	
Carbonates											

Siderite	FeCO ₃	180. 282. 722. 1082	Das and Hendry (2011)	3	1	4	0	0	0	60
Ankerite	CaFeCO ₃	179. 299. 721. 1095	RRUFF	49	213	202	0	0	0	0
Sulfides										
Marcasite	FeS ₂	292w. 321. 386	RRUFF	0	0	0	0	0	0	2
Others										
Oxides – hyydroxides										
Quartz	SiO ₂	125.207. 353. 393 w. 464s	RRUFF	432	89	90	307	20	8	15
Carbonates										
Dolomite	CaMg(CO ₃) ₂	179. 299. 721. 1097	RRUFF	0	0	0	0	0	0	2
Silicates										
Aegirine	$\begin{array}{c} Ca_{0.75}Na_{0.25}Mg_{0.5}Fe^{2+}{}_{0.25}Fe^{3+}{}_{0.25}(\\ Si_2O_6)\end{array}$	185. 212 341. 365. 387. 541. 661. 970s. 1040	RRUFF	0	0	0	0	0	0	1
Albite	NaAlSi ₃ O ₈	478s. 507s. 287m. 330. 244w. 207sh. 182m. 161 sh	RRUFF	0	0	0	141	15	1	27
Phosphates	Ca _{0.75} Na _{0.25} Mg _{0.5} Fe ²⁺ 0.25Fe ³⁺ 0.25 (Si ₂ O ₆)									
Apatite	[(Ca ₁₀ (PO ₄) ₆ (OH. F. Cl) ₂]	427. 587. 605 w. 965s. 1040 w. 1078 w	RRUFF	6	8	28	16	2	3	15
Organic material			Orange et al. (1996); Chen et al. (2007); Jehlicka et al. (2009); Okolo et al. (2015)							
graphite		1600	C=C	0	0	0	5	15	0	0
org1		1330. 1606. 1754. 1824	CH3. fluerene. carboxyls. C=O in oils	3	1	1	55	67	3	70
org2		1245. 1330. 1600	CH2 scissors mode CH3. C=C fluerene	11	13	32	56	148	14	72
org3		1326. 1717	CH3 aliphatic. carboxyls	33	4	5	2	43	8	24
org4		1412. 1727	CH3/CH2. carboxyls	3	4	4	1	0	0	16
org5		1267. 1332. 1363. 1484. 1606. 1847	CH2 scissors mode. CH aliphatic band. CH3. CH2/CH3 vibrational mode. C=C in fuerene C=O in oils	15	13	4	34	26	10	12
org6		1387. 1522. 1607	CH3. C=C stretching of polyene chain. aromatic C=C in fluerene	0	0	0	1	2	0	0
org7		1336. 1610	CH3. aromatic C=C in fluerene	1	0	0	0	0	0	3

Minerals Sample ID	Chemical formula	Bands	References cor86				cor88			cor93		cor153 A	cor153 B	cor157			
No. Spectra				101	138	126	126	146	101	41	168	60	101	141	118	157	
Mn mineral assemblage			Nodule type	1	2	4A	4B	1	2A	3	3B	6	5	2	2B	3	
Oxides and hydroxide																	
Pyrolusite	Mn ⁴⁺ O ₂	219w. 291w. 404w. 533s. 655s. 756w	Sepulveda et al. (2015)	0	0	0	0	0	0	0	0	0	26	26	26	26	
Jacobsite	$\frac{Mn^{2+}{}_{0.6}Fe^{2+}{}_{0.3}Mg_{0.1}}{Fe^{3+}{}_{1.5}Mn^{3+}{}_{0.5}O_4}$	620s	RRUFF	0	0	0	0	0	0	0	0	30	0	9	9	9	
Manjiroite	Na(Mn ⁴⁺ 7Mn ³⁺)O ₁₆	641s	RRUFF	0	0	0	0	0	0	0	0	60	22	22	22	22	
Carbonates																	
Rhodochrosite	MnCO ₃	181. 287. 721. 1087	RRUFF	23	33	28	29	8	4	0	11	37	25	21	20	20	
Kutnohorite	CaMn ²⁺ (CO ₃) ₂	160. 286. 712. 1093	RRUFF	50	80	55	49	84	60	16	6	0	0	64	47	66	
Mn-bearing calcite	Mn-CaCO ₃	153. 275. 712 1017w. 1085	RRUFF	7	7	4	5	2	1	0	0	0	13	7	14	13	
Oxides-silcates																	
Braunite	Mn ²⁺ Mn ³⁺ ₆ SiO ₁₂	210s 331. 376w. 510m 622. 685. 970	RRUFF	0	0	0	0	0	0	0	0	0	74	0	0	0	
Fe mineral assemblage																	
Oxides and hydroxides																	
Hematite	Fe ₂ O ₃	222. 290. 408. 490. 607 hem	Das and Hendry (2011)	78	116	102	100	132	59	40	159	58	36	51	106	150	
Goethite	FeOOH	162. 243. 297s. 385s. 477. 545	Das and Hendry (2011)	2	0	0	0	0	1	0	0	0	0	0	0	0	
Carbonates																	
Siderite	FeCO ₃	180. 282. 722. 1082	Das and Hendry (2011)	0	1	2	1	0	0	0	0	0	13	17	28	29	
Ankerite	CaFeCO ₃	179. 299. 721. 1095	RRUFF	15	15	17	26	49	36	0	2	0	0	0	1	0	
Sulfides																	
Marcasite	FeS ₂	292w. 321. 386	RRUFF	0	0	0	0	0	2	2	0	0	0	0	0	0	

Nodules. Raman vibration of minerals in the nodules of Urucum banded iron formation samples with references and detected types of organic materials. The number of spectra detected in samples are described in columns.

Others																
Oxides – hyydroxides																
Quartz	SiO ₂	125.207. 353. 393 w. 464s	RRUFF	27	32	42	45	3	70	40	25	0	0	70	24	26
Carbonates																
Dolomite	CaMg(CO ₃) ₂	179. 299. 721. 1097	RRUFF	0	4	0	0	0	0	25	20	0	0	0	0	0
Silicates																
Albite	NaAlSi ₃ O ₈	478s. 507s. 287m. 330. 244w. 207sh. 182m. 161 sh	RRUFF	35	71	45	30	1	2	0	1	0	81	30	26	3
Mica (muscovite)		259s. 400. 703	RRUFF	0	2	0	0	0	0	0	0	0	0	0	0	0
Phosphates																
Apatite	[(Ca ₁₀ (PO ₄) ₆ (OH. F. Cl) ₂]	427. 587. 605 w. 965s. 1040 w. 1078 w	RRUFF	1	1	0	0	0	0	3	1	0	35	0	0	0
Organic material			Jehlicka et al. (2009); Chen et al. (2007); Okolo et al. (2015)													
org1		1330. 1606. 1754. 1824	CH3. fluerene. carboxyls. C=O in oils	8	11	5	13	4	1	2	3	0	0	0	0	1
org2		1245. 1330. 1600	CH2 scissors mode CH3. C=C fluerene	5	13	3	15	5	3	1	0	0	0	0	0	0
org3		1326. 1717	CH3 aliphatic. carboxyls	9	9	3	4	3	3	0	0	1	1	0	0	0
org4		1412. 1727	CH3/CH2. carboxyls	1	1	0	0	0	0	0	0	0	0	17	9	9
org5		1267. 1332. 1363. 1484. 1606. 1847	CH2 scissors mode. CH aliphatic band. CH3. CH2/CH3 vibrational mode. C=C in fuerene C=O in oils	3	3	3	3	3	4	4	4	0	0	11	9	1
org6		1387. 1522. 1607	CH3. C=C stretching of polyene chain. aromatic C=C in fluerene	0	0	0	0	0	0	0	0	0	0	0	0	0
org7		1336. 1610	CH3. aromatic C=C in fluerene	4	4	4	4	4	4	1	4	0	3	3	3	3

References

Chen. J.Y., Schopf. J.W., Bottjer, D.J., Zhang, C.Y., Kudryavtsev, A.B., Tripathi, A.B., Wang, X.Q., Yang, Y.H., Gao, X. and Yang, Y., 2007. Raman spectra of a Lower Cambrian ctenophore embryo from southwestern Shaanxi. China. *Proceedings of the National Academy of Sciences*. 104(15). pp.6289-6292.

Das. S. and Hendry. M.J. 2011. Application of Raman spectroscopy to identify iron minerals commonly found in mine wastes. Chemical Geology. 290(3). pp.101-108.

Jehlička. J., Edwards. H.G.M. and Vítek. P., 2009. Assessment of Raman spectroscopy as a tool for the non-destructive identification of organic minerals and biomolecules for Mars studies. *Planetary and space Science*. 57(5), pp.606-613.

Okolo GN. Neomagus HW. Everson RC. et al. (2015) Chemical-structural properties of South African bituminous coals: insights from wide angle XRD-carbon fraction analysis. ATR-FTIR. solid state 13 C NMR. and HRTEM techniques. Fuel 158: 779–792.

Orange, D., Knittle, E., Farber, D. and Williams, Q., 1996. Raman spectroscopy of crude oils and hydrocarbon fluid inclusions: A feasibility study. The Geochemical Society. Special Publication. 5. pp.65-81.

Sepúlveda. M.: Gutiérrez. S.: Vallette. M.C.: Standen. V.G.: Arriaza. B.T. and Cárcamo-Vega. J.J.: 2015. Micro-Raman spectral identification of manganese oxides black pigments in an archaeological context in Northern Chile. *Heritage Science*. 3(1). p.32.

RRUFF

SI 6. Mineral composition of nodules and sections based on Raman spectroscopy

NODULES – only Raman profiles (Fig. 10)

1. (86)

The mineralized cycles are formed by alternating Hematite \leftrightarrow ankerite \leftrightarrow quartz cycles (a few tens of μm) The nodule is carbonate-rich with

quartz spots. the matrix quartz-rich and fine disseminated carbonate halo occur.

Mn cycle The mineralized cycles are formed by alternating kutnohorite (double carb) \leftrightarrow hematite and quartz (cyclic) Fe cycle hematite Quartz also show cyclic section parts.

1. (88) (OM. CL same area. Raman and FTIR different area)

The mineralized cycles are formed by alternating Hematite \leftrightarrow ankerite \leftrightarrow quartz cycles (a few tens of μm) The nodule is carbonate-rich with

quartz spots. the matrix quartz-rich and fine disseminated carbonate occur.

Mn cycle The mineralized cycles are formed by alternating kutnohorite (double carb) \leftrightarrow hematite and quartz (cyclic) Fe cycle hematite Quartz also show cyclic section parts. Similar to 1 (86)

2. (86)

The mineralized cycles are formed by alternating Hematite \leftrightarrow ankerite \leftrightarrow calcite \leftrightarrow quartz cycles (a few tens of μm) The nodule is carbonate-

rich with quartz spots, the matrix quartz-rich and fine disseminated carbonate occur.

Around the nodule biomat zone, quartz and hematite occur, toward the nodule a carbonate zone

occurs (fine grained) and again a quartz-rich zone occur. The inner part of nodule is carbonate-

rich with quartz spots (red). The sample is fine grained.

Mn cycle The mineralized cycles are formed by alternating kutnohorite (double carb) \leftrightarrow hematite and quartz (cyclic) *Fe cycle* hematite Quartz also shows cyclic section parts.

2. (157)

Main components are hematite, quartz and ankerite. In the marginal part it shows cyclic occurrence, but the inner core is quartz rich. The marginal part contain idiomorphic coarse grained carbonate crystals, which include a mineralized (Fe-rich-brown) microbial biosignature.

The mineralized cycles are formed by alternating Hematite \leftrightarrow ankerite \leftrightarrow calcite \leftrightarrow quartz cycles (a few tens of μm)

Mn cycle The mineralized cycles are formed by alternating kutnohorite (double carb) \leftrightarrow hematite and quartz (cyclic) Fe cycle hematite Quartz also shows cyclic section parts.

2B (157)

Main components are hematite, quartz and ankerite. The mineralized cycles are formed by alternating Hematite \leftrightarrow ankerite \leftrightarrow calcite \leftrightarrow quartz cycles (a few tens of μ m)

Mn cycle The mineralized cycles are formed by alternating kutnohorite (double carb) \leftrightarrow hematite and quartz (cyclic) Fe cycle hematite \leftrightarrow Quartz also show cyclic section parts.

2A (88)

Main components are hematite, quartz and ankerite. The mineralized cycles are formed by alternating Hematite \leftrightarrow ankerite \leftrightarrow quartz cycles (a few tens of μ m)

Mn cycle The mineralized cycles are formed by alternating kutnohorite (double carb) \leftrightarrow hematite and quartz (cyclic) Fe cycle hematite \leftrightarrow Quartz also shows cyclic section parts.

3B (93)

Main components are hematite. quartz, ankerite, calcite(rhodochrosite), feldspar (albite) and apatite.

The mineralized cycles are formed by alternating Hematite \leftrightarrow ankerite \leftrightarrow quartz cycles (a few tens of μm)

Mn cycle The mineralized cycles are formed by alternating kutnohorite (double carb) \leftrightarrow hematite and quartz (cyclic) *Fe cycle* hematite↔ Quartz also shows cyclic section parts.

3 (93)

hematite apatite dolomite quartz

4A (86)

Main components are hematite, quartz, ankerite and calcite/rhodochrosite. The mineralized cycles are formed by alternating Hematite \leftrightarrow ankerite \leftrightarrow quartz cycles (a few tens of μ m)

The core and the outer rim of the nodule contain Mn-calcite (bright CL) besides the other main minerals.

```
Mn cycle
The mineralized cycles are formed by alternating
kutnohorite (double carb) \leftrightarrow hematite and quartz (cyclic)
Fe cycle
hematite\leftrightarrow
Quartz also show cyclic section parts.
```

4B (86)

Main components are hematite, quartz, ankerite and calcite/rhodochrosite. The mineralized cycles are formed by alternating Hematite \leftrightarrow ankerite \leftrightarrow quartz cycles (a few tens of μ m)

The core of the nodule contain Mn-calcite (bright CL)

Mn cycle The mineralized cycles are formed by alternating kutnohorite (double carb) \leftrightarrow hematite and quartz (cyclic) Fe cycle hematite \leftrightarrow Quartz also show cyclic section parts.

5 (153B)

Main components are hematite, braunite, siderite.

The mineralized cycles are formed by alternating Hematite \leftrightarrow braunite \leftrightarrow siderite

Precursor Mn-oxide and segregated quartz can form Mn-oxide/silicate mineral.

Mn cycle

The mineralized cycles are formed by alternating braunite \leftrightarrow hematite *Fe cycle* hematite \leftrightarrow

6 (153A)

Main components are hematite, jacobsite, calcite.

The mineralized cycles are formed by alternating Hematite \leftrightarrow jacobsite \leftrightarrow calcite

Mn cycle The mineralized cycles are formed by alternating jacobsite \leftrightarrow hematite *Fe cycle* hematite \leftrightarrow

SECTIONS - only Raman profiles (Fig. 10)

A (88)

Biomat structure

Gray, black metalliferous parts: hematite mineralized cycles – quartz (Fe)

Red part: hematite \leftrightarrow carbonate (Fe, Mn), quartz (Fe+Mn)

Gray, black metalliferous parts: hematite – quartz (Fe)

Quartz is segregated (CL).

B (88)

Biomat structure

Red part: hematite mineralized cycles \leftrightarrow carbonate (Fe, Mn), quartz (Fe+Mn)

rhodochrosite \leftrightarrow kutnohorite (during diagenesis, rhodochrosite transform to kutnohorite by taking up more Ca and Mg)

Gray, black metalliferous parts: hematite mineralized cycles – quartz (Fe)

There are quartz-rich parts

Quartz show cyclic occurrence

Embryos of nodules (micro-nodules) occur (OM. CL) in laminae, meaning that a part of nodule formation starts in the syngenetic period, and later larger nodules also occur, which contain hematite \leftrightarrow carbonate.

C (86)

Biomat structure

Based on observation (e.g. 86, also in 157) there are red wide laminae, but also black, metalliferous laminae, too. In the black laminae there are red individual nodules in a chain, which do not contact, so they do not form a continuous lamina (layer). If we see the contemporary sediment surface these "nodules" most probably were lenses of microbial colonies, and the intensity of development of these colonies could have differed, in some cases they could not join to each other on the sediment surface, and later on a perpendicular section they occur as individual lens cuts ("micro-nodules"). If the intensity was stronger, or the time period was longer, these lenses would be able to reach each other and form a quasi continuous lamina (layer). In Úrkút, in Mn carbonate ore this observation was made with pink rhodochrosite-rich lenses ("micro-nodules"), and laminae.

The red lamina is not homogenous, black spots occcur, and nodule embryos occur. Carbonateand quartz-bearing parts alternate.

Gray, black metalliferous parts: hematite mineralized cycles - (Fe) with carbonate spots

Red part: hematite ↔ carbonate (Fe, Mn) (Fe+Mn) NICE CYCLIC PART

Gray, black metalliferous parts: hematite - (Fe) with carbonate spots

rhodochrosite \leftrightarrow kutnohorite (during diagenesis, rhodochrosite transform to kutnohorite by taking up more Ca and Mg)

Mn occurs in lamination.

D (152)

Biomat structure

Gray, black metalliferous part with lamination: hematite mineralized cycles – (Fe) with low amount of cyclic quartz and apatite spots

Elongated lenses can be seen.

E (152)

Biomat structure (metalliferous)

Gray, black metalliferous part with lamination: hematite mineralized cycles - (Fe) with low amounts of cyclic quartz in the central zone of the section.

The red parts contain larger grains, macroscopically dark spots.

The red section part: hematite mineralized cycles \leftrightarrow carbonate (Mn) (Fe+Mn) and quartz and also apatite

rhodochrosite \leftrightarrow kutnohorite (during diagenesis, rhodochrosite transforms to kutnohorite by taking up more Ca and Mg)

F (141)

Coarse-grained occurrence.

Hematite mineralized cycles \leftrightarrow quartz mineralized cycles \leftrightarrow braunite mineralized cycles (Mn oxide/silicate)(Mn +Fe)

Quartz can support feldspar (albite, K-feldspar) and pyroxene (aegirine) formation as diagenetic products.

G (153A)

Biomat structure. microbial micro-texture

Half of this sample is coarse-grained and then fine black, metalliferous and alternating red lamination develop. Nodules occur. Laminae often are not continuous.

Gray, black metalliferous parts: hematite mineralized cycles – (Fe) with quartz and scarce carbonate and feldspar spots

Red part: hematite mineralized cycles \leftrightarrow carbonate (kutnohorite)(Mn) (Fe+Mn)

Point analyses in this sample detected anatase (main component) and traces of alabandite and marcasite.

SI 7. Raman profiles of nodules

86N1

Relative intensity / arbitrary unit

Relative intensity / arbitrary unit

86N4A

Relative intensity / arbitrary unit

86N4B

Relative intensity / arbitrary unit

88N1

Relative intensity / arbitrary unit

88N2A

Relative intensity / arbitrary unit

Relative intensity / arbitrary unit

Ankerite

153AN6

Relative intensity / arbitrary unit

153BN5

157N2

157N2B

Relative intensity / arbitrary unit

157N3

Relative intensity / arbitrary unit

SI 8. Raman profiles of sections

A (88)

B (88)

C (86)

(00)

D (152)

E (152)

F (141)

G (153A)

SI 9. Back scattered electron images of samples with mineral composition

đά

a Hem Hem

Legend: Q-quartz, Hem-hematite, Ca-calcite, Dol-double structure (dolomite-structure) carbonate, Ap-apatite, Cla-clay mineral, Xen-xenotime, Kfp-K-feldspar, Mc-mica, Rho-rhodochrosite, Mon-monacite, Z-zircon, Kut-kutnohorite, Wit-withertite, Col-cölestine, Bar-barite, Pir-pyrite, Plg-plagioclase (dolomite represent mixed carbonates with variable composition)

SI 10. Element map images in a complex system with OM, CL, FTIR, Raman and stable isotope datasets

Imm

Relative intensity / arbitrary unit

High Si suggests a quartz-rich core region, which is rimmed by apatite (high Ca, P) and a thin dolomite rim (Ca, Mg). The moderate increase in Fe but lesser decrease in Ca-Mg indicates the presence of ankerite with hematite. The outer rim is rich in Ca-Mg, indicating dolomite. The matrix contains Si-Fe laminatiton, indicating dissemination (merging) of iron oxides and quartz. $\delta^{13}C_{PDBcarb}$ -3.38 ‰; $\delta^{18}O_{PDBcarb}$ -4.52 ‰ T: 45.1 °C

This area contains a nodule with iron-oxide (Fe) and kaolinite (Si-Al) rich core, with a Ca-Mn rich outer part with low Fe (kutnohorite). The matrix is inhomogeneous with quartz (Si) and K-feldspar (K, Al, Si) clasts, with kutnohorite (Ca, Mn) rich rims. Among the clasts are Fe-rich areas, indicating the presence of iron oxides.

This area contain nodules with inhomogeneous structure. The core has high Si-Al (clast minerals), the outer area has higher Fe (iron oxides), and the rim is composed of kutnohorite (high Ca, Mn). The matrix is inhomogeneous with quartz (high Si), K-feldspar (K, Al, Si) embedded in iron oxides (Fe and clays (Si, Al). $\delta^{13}C_{PDBcarb}$ -5.34 ‰; $\delta^{18}O_{PDBcarb}$ -7.98 ‰ T: 36-68 °C

This area contains a nodule with concentric structure composing mostly dolomite (high Ca, Mg) at the rim and quartz (high Si) in the center. The matrix contains mostly iron oxide. Segregated quartz on CL is bluish. $\delta^{13}C_{PDBcarb}$ -3.92 ‰; δ¹⁸O_{PDBcarb} -4.42 ‰ T: 17.9-44.5 °C

Relative intensity / arbitrary unit

FeO+MnO MgO FeO

MnO

MgO

CaO

MgO

MnO

rhod

MgO

FeO

Sample ID	Composition of carbonate (EPMA)	Note
86	$Ca(Ca_{0.3}Fe_{0.2}Mg_{0.5}) (CO_3)_2$	
	$Ca(Fe_{0.6}Mg_{0.38}Mn_{0.02})$ (CO ₃) ₂	
	$Ca(Fe_{0.6}Mg_{0.4})$ (CO ₃) ₂	
	$Ca(Ca_{0.5}Fe_{0.49}Mg_{0.01})$ (CO ₃) ₂	
	$Ca(Fe_{0.8}Ca_{0.2})$ (CO ₃) ₂	
	CaFe(CO ₃) ₂	
	$Ca(Fe_{0.6}Ca_{0.4})$ (CO ₃) ₂	
	$Ca(Fe_{0.6}Mg_{0.38}Mn_{0.02})$ (CO ₃) ₂	
	$Ca(Fe_{0.6}Mg_{0.38}Mn_{0.02}) (CO_3)_2$	
	$Ca(Ca_{0.5}Mg_{0.49}Fe_{0.01})$ (CO ₃) ₂	
	$Ca(Ca_{0.5}Mg_{0.49}Fe_{0.01})$ (CO ₃) ₂	
	$Ca(Ca_{0.5}Mg_{0.48}Fe_{0.02})$ (CO ₃) ₂	
88	$Ca(Ca_{0.24}Fe_{0.6}Mg_{0.25}Mn_{0.01})$ (CO ₃) ₂	
	$Ca(Ca_{0.18}Fe_{0.4}Mg_{0.4}Mn_{0.02})$ (CO ₃) ₂	
	$Ca(Ca_{0.2}Fe_{0.4}Mg_{0.4})$ (CO ₃) ₂	
	$Ca(Ca_{0.15}Fe_{0.45}Mg_{0.4})$ (CO ₃) ₂	
	$Ca(Ca_{0.1}Fe_{0.6}Mg_{0.3})$ (CO ₃) ₂	
	$Ca(Fe_{0.8}Mg_{0.2})$ (CO ₃) ₂	
	$Ca(Fe_{0.6}Mg_{0.4})$ (CO ₃) ₂	
	$Ca(Fe_{0.6}Mg_{0.4})$ (CO ₃) ₂	
	$Ca(Ca_{0.09}Fe_{0.6}Mg_{0.3}Mn_{0.01})$ (CO ₃) ₂	
	$Ca(Ca_{0.09}Fe_{0.6}Mg_{0.3}Mn_{0.01})$ (CO ₃) ₂	
	$Ca(Ca_{0.1}Fe_{0.5}Mg_{0.4})$ (CO ₃) ₂	
	$Ca(Ca_{0.1}Fe_{0.5}Mg_{0.4})$ (CO ₃) ₂	
	$Ca(Ca_{0.09}Fe_{0.6}Mg_{0.3}Mn_{0.01})$ (CO ₃) ₂	
	$Ca(Ca_{0.1}Fe_{0.6}Mg_{0.3})$ (CO ₃) ₂	
	$Ca(Ca_{0.1}Fe_{0.5}Mg_{0.4})$ (CO ₃) ₂	
	$Ca(Ca_{0.1}Fe_{0.5}Mg_{0.4})$ (CO ₃) ₂	
	$Ca(Ca_{0.1}Fe_{0.5}Mg_{0.4})$ (CO ₃) ₂	
	$Ca(Ca_{0.1}Fe_{0.5}Mg_{0.4})$ (CO ₃) ₂	
93	$Ca(Ca_{0.09}Mg_{0.5}Fe_{0.4}Mn_{0.01}) (CO_3)_2$	
	$Ca(Ca_{0.09}Mg_{0.5}Fe_{0.4}Mn_{0.01}) (CO_3)_2$	
	$Ca(Ca_{0.1}Mg_{0.6}Fe_{0.3}) (CO_3)_2$	
	$Ca(Ca_{0.08}Mg_{0.55}Fe_{0.35}Mn_{0.02})$ (CO ₃) ₂	
	$Ca(Ca_{0.1}Mg_{0.4}Fe_{0.5}) (CO_3)_2$	
	$Ca(Ca_{0.08}Fe_{0.55}Mg_{0.35}Mn_{0.02})$ (CO ₃) ₂	
	$Ca(Ca_{0.08}Mg_{0.55}Fe_{0.35}Mn_{0.02})$ (CO ₃) ₂	
	$Ca(Ca_{0.09}Mg_{0.55}Fe_{0.35}Mn_{0.01})$ (CO ₃) ₂	
	$Ca(Ca_{0.2}Mg_{0.45}Fe_{0.35})$ (CO ₃) ₂	
	$Ca(Ca_{0.2}Mg_{0.45}Fe_{0.35})$ (CO ₃) ₂	
152	$Ca(Fe_{0.5}Mg_{0.45}Mn_{0.05}) (CO_3)_2$	
	$Ca(Ca_{0.2} Fe_{0.1}Mg_{0.65}Mn_{0.05}) (CO_3)_2$	
	$Ca(Ca_{0.2} Fe_{0.1}Mg_{0.7}) (CO_3)_2$	
	$Ca(Ca_{0.15} Fe_{0.45}Mg_{0.35}Mn_{0.05})$ (CO ₃) ₂	

SI 12. Carbonate composition of samples based on EPMA analyses

	$Ca(Ca_{0.2} Fe_{0.3}Mg_{0.35}Mn_{0.05}) (CO_3)_2$	
	$Ca(Fe_{0.6}Mg_{0.35}Mn_{0.05})$ (CO ₃) ₂	
	$Ca(Ca_{0.12}Fe_{0.5}Mg_{0.3}Mn_{0.08})$ (CO ₃) ₂	
153A	$(Ca_{0.8}Mn_{0.2})(Mn_{0.96}Sr_{0.04})$ (CO ₃) ₂	C
	$(Ca_{0.8}Mn_{0.2})(Mn_{0.96}Sr_{0.04})$ (CO ₃) ₂	S r
	$Ca(Ca_{0.18}Mn_{0.8}Sr_{0.02})$ (CO ₃) ₂	
	$Ca(Mn_{0.89}Fe_{0.1}Sr_{0.01})$ (CO ₃) ₂	
	$Ca(Mn_{0.7}Fe_{0.2}Sr_{0.1})$ (CO ₃) ₂	
	$(Ca_{0.8}Mn_{0.2})(Mn_{0.95}Sr_{0.05})$ (CO ₃) ₂	
	(Ca _{0.6} Mn _{0.4})Mn (CO ₃) ₂	
	CaMn (CO ₃) ₂	
153B	$Ca(Mn_{0.88}Mg_{0.1}Sr_{0.02})$ (CO ₃) ₂	Cn
	$Ca(Mn_{0.8}Mg_{0.18}Sr_{0.02})$ (CO ₃) ₂	51
	$Ca(Mn_{0.88}Mg_{0.1}Sr_{0.02}) (CO_3)_2$	
	$(Ca_{0.3}Mn_{0.7})(Mn_{0.88}Sr_{0.02})$ (CO ₃) ₂	
	$(Ca_{0.3}Mn_{0.7})(Mn_{0.84}Mg_{0.04}Sr_{0.02})$ (CO ₃) ₂	
	$(Ca_{0.8}Mn_{0.2})(Mn_{0.88}Mg_{0.1}Sr_{0.02})$ (CO ₃) ₂	
	$(Ca_{0.9}Mn_{0.1})(Mn_{0.88}Mg_{0.1}Sr_{0.02})$ (CO ₃) ₂	
	$(Mn_{0.8}Ca_{0.2})(Mn_{0.98}Sr_{0.02})$ (CO ₃) ₂	
	$(Mn_{0.2}Ca_{0.8})(Mn_{0.9}Mg_{0.08}Sr_{0.02})$ (CO ₃) ₂	
	$(Mn_{0.2}Ca_{0.8})(Mn_{0.9}Mg_{0.08}Sr_{0.02})$ (CO ₃) ₂	
	$(Mn_{0.1}Ca_{0.9})(Mn_{0.9}Mg_{0.08}Sr_{0.02})$ (CO ₃) ₂	
	$(Ca_{0.3}Mn_{0.7})(Mn_{0.97}Mg_{0.3})$ (CO ₃) ₂	
	$(Ca_{0.3}Mn_{0.7})(Mn_{0.9}Mg_{0.1})$ (CO ₃) ₂	
	$Ca(Mn_{0.8}Ca_{0.2}Mg_{0.1})$ (CO ₃) ₂	
	$(Ca_{0.9}Mn_{0.1})(Mn_{0.98}Mg_{0.02})$ (CO ₃) ₂	
	$(Ca_{0.4}Mn_{0.6})(Mn_{0.98}Mg_{0.02})$ (CO ₃) ₂	
157	$Ca(Ca_{0.18}Fe_{0.45}Mg_{0.35}Mn_{0.02})$ (CO ₃) ₂	
	$Ca(Ca_{0.28}Fe_{0.35}Mg_{0.35}Mn_{0.02}) (CO_3)_2$	
	$Ca(Ca_{0.38}Fe_{0.3}Mg_{0.3}Mn_{0.02}) (CO_3)_2$	
	$Ca(Ca_{0.18}Fe_{0.45}Mg_{0.35}Mn_{0.02}) (CO_3)_2$	
	$Ca(Ca_{0.08}Fe_{0.55}Mg_{0.35}Mn_{0.02}) (CO_3)_2$	
	$Ca(Ca_{0.08}Fe_{0.55}Mg_{0.35}Mn_{0.02})$ (CO ₃) ₂	
	$Ca(Fe_{0.68}Mg_{0.3}Mn_{0.02})$ (CO ₃) ₂	
	$Ca(Fe_{0.68}Mg_{0.3}Mn_{0.02})$ (CO ₃) ₂	
	$Ca(Fe_{0.78}Mg_{0.2}Mn_{0.02})$ (CO ₃) ₂	
	$Ca(Fe_{0.78}Mg_{0.2}Mn_{0.02})$ (CO ₃) ₂	
	$Ca(Fe_{0.5}Mg_{0.5}) (CO_3)_2$	

SI 13. Tem	perature calculation	on δ ¹⁸ Os	MOWcarb (based	on Kim et al.	, 2009; Hodel	et al., 2018)
------------	----------------------	-----------------------	----------------	---------------	---------------	---------------

Kim et al., 2009; Hodel et al., 2018	Temperature	calculation, est	imation			
In Urucum rhodochrosite and	Nacanatanaatia	,	1	2	C	C time
other mixed carbonates	Neoproterozoic		1. equation	2. equation	Sample	Section
d ¹⁸ Ocarb vs SMOW	d180 water vs SMOW	a (rod-water)	Temperature ⁰C	Temperature ⁰C	Cor	(Fig. 14)
26.25	-1.33	1.02761673	37.2	37.3	86	F
23.12	-1.33	1.024482562	54.6	56.1	87	F
24.9	-1.33	1.026264932	44.5	45.0	88	F
27.41	-1.33	1.028778275	31.2	31.1	93	F
23.42	-1.33	1.024782961	52.9	54.1	97	F
21.87	-1.33	1.023230897	62.2	64.6	127	D
20.23	-1.33	1.021588713	72.6	77.0	133	D
19.53	-1.33	1.020887781	77.3	82.7	137	D
20.04	-1.33	1.02139846	73.8	78.5	141	D
28.68	-1.33	1.030049966	24.9	24.7	152	Е
22.68	-1.33	1.024041976	57.2	59.0	153A	E
21.91	-1.33	1.02327095	61.9	64.4	153B	E
26.35	-1.33	1.027716863	36.7	36.7	157	E
22.76	-1.33	1.024122082	56.8	58.5	168	D

Sample Number	Nodule	Description	ОМ	CL	FTIR	Raman	SI	EPMA
	types and sections							
COR-86	1, 2, 4A, 4B C	wavy but not uniformly laminated ore	102	54	51	1,192	1	8(30)
COR-88	1, 2A A, B	BIF, similar to other global occurrences, 5-10% zonal nodules are characteristic both in jasper and hematite, inside jasper layer nodules and further in jasper (red layers) very fine sub mm silica layers, which are thin, black layers in red jasper	132	105	68	1,363	1	6(26)
COR-93	3, 3B	rare BIF, plenty of nodules which destroy lamination very unique in Brazil, not identified elsewhere in the World "embedded nodule"	45	33	11	209	1	4(14)
COR-141	F	Fe sandstone (field classification), fragments: quartz, feldspar, jasper, matrix is hematite, Fe clastic rock, (Mn 1 carbonate)	55	54	30	701	1	. 1
COR-150A	not studied in detail	Mn-2 – Manganese ore	18					
COR-152	D, E	micro-conglomerate with carbonate fragments	39	75	59	1,302	1	5(7)
COR-153A	6 G	silty layers in several hematitic layers	63	84	42	761	1	4(10)
COR-153B	5	fractures filled with carbonate, It is massive manganese, probably Mn-1, eleven km from Santa Cruz Hill	22	63	12	101	1	4(16)
COR-157	2, 2B, 3	biomat, embedded nodules.	40	81	57	416	1	4(12)
Total			516	549	330	6,045	8	36(115)

Table S1. Samples and methods used

Abbrev.: OM: optical rock microscopy; CL: cathodoluminescence microscopy; FTIR: infrared spectroscopy; Raman: Raman spectroscopy; SI: stable C and O isotope study; EPMA: electron probe micro analyser (EDS, bse images and spectra).

Nodules			Mineral composition	
	Sample ID	Main	Moderate	Rare
1	86 (total number 101)	hematite, ankerite,	kutnohorite, quartz, feldspar	goethite, Mn-bearing calcite,
		rhodochrosite	(albite)	apatite
1	88	hematite	kutnohorite, ankerite	rhodochrosite, Mn-calcite, quartz, albite
2	86	hematite	kutnohorite, rhodochrosite, ankerite, quartz, albite	Mn-calcite, siderite, dolomite, mica, apatite
2A	88	hematite, ankerite, quartz	kutnohorite	rhodochrosite, Mn-calcite, goethite, albite, marcasite
3	93	hematite	rhodochrosite, ankerite, quartz, dolomite	kutnohorite, marcasite, albite, apatite
	157	hematite	pyrolusite, manjiroite, rhodochrosite, ankerite, Mn- calcite, siderite, quartz	jacobsite, albite
4	86	hematite	rhodochrosite, kutnohorite, ankerite, quartz, albite	Mn-calcite, siderite
5	153B		pyrolusite, braunite, manjiroite, rhodochrosite, Mn-calcite, hematite, siderite, albite, apatite	
6	153A		manjiroite, rhodochrosite, hematite, jacobsite	
Sections				
Α	88	hematite, ankerite	rhodochrosite, quartz	siderite, apatite
В	88	hematite, ankerite	kutnohorite, Mn-calcite, quartz, apatite	rhodochrosite, siderite
С	86	hematite, rhodochrosite, ankerite, quartz	Mn-calcite, kutnohorite	siderite, apatite
D	152	hematite	kutnohorite	Mn-calcite, quartz, albite, apatite
Е	152	hematite, kutnohorite	rhodochrosite, Mn-calcite, quartz, albite	apatite
F	141	hematite, manganite, quartz, albite	apatite	todorokite, manjiroite, kutnohorite, goethite, aegirine
G	153A	hematite, anatase	rhodochrosite, Mn-calcite, siderite, quartz, albite, apatite	manganite, kutnohorite, alabandite, marcasite, goethite, dolomite, aegirine

Table S2. Mineral and organic matter composition and frequency*

Organic matter in nodules is under detection limit, rare, and low moderate in some cases.

Organic matter in sections is present in higher amounts. The most frequent is type org 2, moderate frequency is types org 3 and org 5, and graphite also occurs.

*Mineral and organic matter composition - estimation - rare: below 10 spectra/mineral/sample; moderate: 10-100 spectra/mineral/sample; main: more than 100 spectra/mineral/sample

Table S3. Ram	an profiles,	point data	set and	FTIR	mineralogy	both fo	or nodules	and
sections accord	ing to Fe an	d Mn cycles	and syr	n-and d	liagenetic for	mation		

Nodules	Sections
Mn cycle is supported by: various Mn oxides: Syngenetic: not detected Diagenetic oxide: pyrolusite, jacobsite, manjiroite ox/sil: braunite carbonates: rhodochrosite, Mn-bearing calcite, kutnohorite sulfides not detected	Mn cycle is supported by: various Mn oxides: Syngenetic: todorokite Diagenetic oxide: manjiroite, manganite ox/sil: not detected carbonates: rhodochrosite, Mn-bearing calcite, kutnohorite sulfides: alabandite
Fe cycle is supported by: various Fe oxides-hydroxides: Syngenetic: ferrihydrite Diagenetic oxides: goethite, hematite carbonate: siderite: ankerite silicate: not detected sulfide: marcasite	Fe cycle is supported by: various Fe oxides-hydroxides: Syngenetic: ferrihydrite Diagenetic oxides: goethite, hematite, anatase (TiO ₂ - Fe _x Ti _{(1.} x)O _(2-x) OH _x) carbonate: siderite, ankerite silicate: aegirine sulfide: marcasite
Other minerals: <i>oxide:</i> quartz – characteristic cyclicity <i>carbonate:</i> dolomite <i>silicate:</i> albite, mica (muscovite), montmorillonite, <i>phosphate:</i> apatite	Other minerals: <i>oxide:</i> quartz – characteristic cyclicity <i>carbonate:</i> dolomite <i>silicate:</i> albite, mica (muscovite) <i>phosphate:</i> apatite

Mineral distributions are shown in Fig. 9 and Fig. 10 and SI 7, 8.

Table S4A. Sections - Mineral assemblage in Urucum Fe ore (Brazil) and typical minerals indicative of Eh-pH ranges based on environmental mineralogy (low T)

Minerals/ Processes	Chemical formula	Α	B	С	D	Е	F	G	E	h		pН		Microbi
Sample ID		8	8	8	15	15	14	153		1				any
Sample ID		8	8	6	2	2	1	A 133						
Mn mineral							-							
assemblage									×				0	p
0									oqi	XC	lic	ral- ing	line	ate
									IS-3	ano	acio	eut ligl	lka	edi
									6			u s e	a	в
Oxides and														
hydroxide														
Todorokite	$\frac{Na_{0.2}Ca_{0.05}K_{0.02}Mn^{4+}{}_{4}Mn}{{}^{3+}{}_{2}O_{12}{}^{\bullet}3(H_{2}O)}$						*		*			*		*
Manjiroite	$Na(Mn^{4+}Mn^{3+})O_{16}$						*							
Manganite	Mn ³⁺ OOH						*	*	*					*
Carbonates														
Rhodochrosite	MnCO ₃	*	*	*		*		*	*			*		*
Kutnohorite	$CaMn^{2+}(CO_3)_2$	*	*	*	*	*	*	*	*			*		*
Mn-bearing	Mn-CaCO ₃		*	*	*	*		*	*			*		
calcite														
Oxides-silicates														
Sulfides														
Alabandite	MnS							*		*				*
Fe mineral assemblage														
Oxides and														
hydroxides														
Ferrihydrite	FeOOH	*	*	*		*		*	*			*		*
Hematite	Fe ₂ O ₃	*	*	*	*	*	*	*	*					
Goethite	FeOOH						*		*					
Anatase	$TiO_2 - Fe_xTi_{(1-x)}O_{(2-x)}OH_x$							*	*			*		*
Carbonates														
Siderite	FeCO ₃	*	*	*	*	*		*						*
Ankerite	Ca(Fe ²⁺ .Mg)(CO ₃) ₂	*	*	*										
Silicates														
Aegirine	$Ca_{0.75}Na_{0.25}Mg_{0.5}Fe^{2+}_{0.25}F$						*	*					*	
C. 1C. I	$e^{-1}_{0.25}(S1_2O_6)$													
Sulfides Marcosito	EaS							*			*			
Others	TCS ₂										-			
Oridas														
hvvdrorides														
Quartz	SiO	*	*	*	*	*	*	*			*			*
Carbonates	5102													
Dolomite	CaMg(CO ₃) ₂	*	*			*		*	*			*		*
Silicates	0.00.000000													
Albite	NaAlSi ₃ O ₈	*	*	*	*	*	*	*				*		*
Mica	KAl ₃ Si ₃ O ₁₀ (OH) _{1.8} F _{0.2}					*			1					
(muscovite)														
Phosphates														
Apatite	[(Ca ₁₀ (PO ₄) ₆ (OH. F.	*	*	*	*	*	*	*	*			*	*	*
	Cl) ₂]													
Sulphates														
Organic		*	*	*	*	*	*	*						*
material														

Mineral assemblage is based on Raman and FTIR spectroscopy analyses

Table S4B. Nodules - Mineral assemblage in Urucum Fe ore, Brazil. and typical minerals indicative of Eh-pH ranges based on environmental mineralogy (low T)

Mineral assemblage is based on Raman and FTIR spectroscopy analyses

Minerals/	Chemical formula	1	2	2	3	4	5	6	Eh		nH			Microbi
Processes	Chemical Iormana	-	-	Ā	0	•	e	v	211		PII			ally
Sample ID		86	86	8	93	8	153	153						
···· •		88	15	8	15	6	В	А						
			7		7									
Mn mineral									OX-	ano	acid	neutr	alkali	mediate
assemblage									sub	х	ic	al-	ne	d
									ox			slight		
												ly		
												alkali		
												ne		
Oxides and														
hydroxide														
Pyrolusite	Mn ⁴⁺ O ₂		*		*		*		*					
Jacobsite	$Mn^{2+}_{0.6}Fe^{2+}_{0.3}Mg_{0.1}F$		*		*			*						
	$e^{3+}_{1.5}Mn^{3+}_{0.5}O_4$													
Manjiroite	$Na(Mn^{4+}Mn^{5+})O_{16}$		*		*		*	*						
Carbonates														
Rhodochrosite	MnCO ₃	*	*	*	*	*	*	*	*			*		*
Kutnohorite	$CaMn^{2+}(CO_3)_2$	*	*	*	*	*			*	<u> </u>		*		*
Mn-bearing	Mn-CaCO ₃	*	*	*	*	*	*	*	*			*		
calcite														
Oxides-silicates	2 2 2 2 2 2 2 2 2 2 2													
Braunite	$Mn^{2+}Mn^{5+}6SiO_{12}$						*		*				*	*
Sulfides														
Fe mineral														
assemblage														
Oxides and														
hydroxides	E OOU	*	*	4	*			*	*			*		*
Ferrinydrite	FeOOH	* *	*	۰ ب	* *	4	÷	*	* *			÷		т Т
Geothite	Fe ₂ O ₃	*		*	**	÷	~	**	*					
Goetinte	геооп								*					
Carbonales	EaCO		*		*	*	*							*
Anlarita	$\frac{\Gamma e C O_3}{C_2 (E_2^{2+} M_2) (CO_1)}$	*	*	*	*	*								*
Silienten	$Ca(Fe : Mg)(CO_3)_2$													
Sulfidag														
Maraasita	Eag			*	*						*			
Othong	res ₂													
Oridas														
byvdrorides														
Quartz	SiO	*	*	*	*	*	*	*			*			*
Carbonatas	5102													
Dolomite	CaMg(CO ₂) ₂	*	*		*			*	*		1	*		*
Silicates	Calvig(CO3)2													
Albite	NaAlSi2Oa	*	*	*	*	*	*		1		1	*		*
Mica (muscovite)	KAl ₂ Si ₂ O ₁₀ (OH) ₁₀ E ₂		*											-
	.2													
Montmorillonite	$(Na.Ca)(Al.Mg)_2Si_4$ $O_{10}(OH)_2xnH_2O$	*							*			*		
Phosphates														
Apatite	[(Ca ₁₀ (PO ₄) ₆ (OH. F. Cl) ₂]	*	*		*	*	*		*			*	*	*
Sulphates														
Organic material		*	*	*	*	*	*	*						*

Table S4C. Area measurements FTIR - Mineral assemblage in Urucum Fe ore, Brazil. and typical minerals indicative of Eh-pH ranges based on environmental mineralogy (low T)

Mineral assemblage is based on FTIR spectroscopy analyses

Minerals/	Chemical formula	Area 1	Area	Are	Are	E	h		pH		Microbia
Processes			1	a 2	a 3						lly
Sample ID		86	157	157	157						
Mn mineral						OX-	ano	acidi	neutra	alkali	mediated
assemblage						subo	х	с	1-	ne	
						х			slightl		
									У		
									alkali		
									ne		
Carbonates											
Rhodochrosite	MnCO ₃		*	*	*	*			*		*
Kutnohorite	$CaMn^{2+}(CO_3)_2$					*			*		*
Oxides-silicates											
Fe mineral											
assemblage											
Oxides and											
hydroxides											
Hematite	Fe ₂ O ₃				*	*					
Others											
Oxides –											
hyydroxides											
Quartz	SiO ₂	*	*	*	*			*			*
Carbonates											
Montmorillonite	(Na.Ca)(Al.Mg) ₂ Si ₄ O ₁₀ (
	OH) ₂ xnH ₂ O										
Phosphates											
Apatite	[(Ca ₁₀ (PO ₄) ₆ (OH. F. Cl) ₂]	*	*			*			*	*	*
Sulphates											
Organic		*	*	*	*						*
material											

Eh-pH ranges and microbially mediated mineralogy is based on: Listova (1961); Harder (1976. 1978); Trudinger& Swaine eds. (1979); Berner (1980); Giovanoli (1980); Sung & Morgan (1981); Cole & Shaw (1983); Ewers (1983); Maynard (1983); Coleman (1985); Skinner (1993); Ehrenreich & Widdel (1994); Wignall (1994); Mandernack et al. (1995); Straub et al. (1996); Banfield & Nealson (1997); Konhauser (1998); Herdianita et al. (2000); Ehrlich (2002); Bazylinski & Frankel (2003); Villalobos et al.(2003); Bargar et al. (2005); Dupraz & Visscher (2005); Morgan (2005); Bodeï et al. (2007); Schwertmann & Cornell (2007); Dupraz et al. (2009); Sanz-Montero et al. (2009); Chan et al. (2011); Polgári.et al. (2012a, 2012b, 2013, 2016); Biagioni et al. (2014); Johnson et al. (2016); Gyollai et al. (2017); Mloszewska et al. (2018)

Table S4D: Samples - EPMA – Further mineral assemblage in Urucum Fe ore, Brazil, and typical minerals indicative of Eh-pH ranges based on environmental mineralogy (low T)

Mineral assemblage is based on EPMA

Minerals/ Processes	Chemical formula								Ε	h		pН		Microbi ally
Sample ID		8	8	9	15	153	153	15						
		6	8	3	2	Α	В	7						
Mn mineral assemblage									ox- sub ox	ano x	acid ic	neutr al- slight ly alkali ne	alkali ne	mediate d
Carbonates														
Rhodochrosite	MnCO ₃					*	*		*			*		*
Kutnohorite	$CaMn^{2+}(CO_3)_2$					*	*		*			*		*
Calcite	Mn-CaCO ₃	*	*	*				*	*			*		
Fe mineral														
assemblage														
Oxides and hydroxides														
Hematite	Fe ₂ O ₃	*	*	*	*	*	*	*	*					
Carbonates														
Ankerite	$Ca(Fe^{2+},Mg)(CO_3)_2$	*	*	*	*			*						
Sulfides														
Pyrite	FeS ₂						*			*	*			
Others														
Oxides – hyvdroxides														
Quartz	SiO	*	*	*	*	*		*			*			*
Carbonates	2													
Witherite	BaCO ₃						*		*					
Silicates														
K-feldspar	KAlSi ₃ O ₈					*						*		*
Plagioclase	NaAlSi ₃ O ₈							*				*		*
Zircon	ZrSiO ₄					*								
Mica	KAl ₃ Si ₃ O ₁₀ (OH) _{1.8} F _{0.2}				*									
(muscovite)														
Clay mineral	(Na,Ca)(A1,Mg) ₂ Si ₄ O ₁₀ (OH) ₂ xnH ₂ O	*				*			*			*		
Phosphates														
Apatite	[(Ca ₁₀ (PO ₄) ₆ (OH, F, Cl) ₂]	*	*	*	*			*	*			*	*	*
Xenotime	YPO ₄	*												
Sulphates														
Baryte	BaSO ₄						*					*		*
Coelestite	SrSO ₄						*							*

Table S5. Carbonate types and $\delta^{13}C_{PDBcarb}$ and $\delta^{18}O_{PDBcarb}$ values of sedimentary carbonates in BIFs and Mn ore from Urucum and Vetorial mines, Urucum region (MS, Brazil). $\delta^{13}C_{PDBcarb}$ and $\delta^{18}O_{PDBcarb}$ values of sedimentary Tamengo Formation are according to Boggiani et al. (2010).

Urucum rocks and ore	Samples ID	Carbonate type**	δC ¹³ PDBcarb %0	δ ¹⁸ OPDBcarb ‰
BIF with sedimentary * biochemical carbonate (section F)	COR-86	Siderite, ankerite, rhodochrosite, kutnohorite, Mn-bearing calcite	-3.38	-4.52
BIF with sedimentary biochemical carbonate (section F)	COR-87		-4.42	-7.56
BIF with sedimentary biochemical carbonate (section F)	COR-88	Rhodochrosite, ankerite, kutnohorite, Mn-bearing calcite, siderite, dolomite	-3.85	-5.83
BIF with sedimentary biochemical carbonate (section F)	COR-93	Rhodochrosite, ankerite, kutnohorite, dolomite	-3.49	-3.40
BIF with sedimentary biochemical carbonate (section F)	COR-97		-4.21	-7.27
BIF with sedimentary biochemical carbonate (section D)	COR-127		-4.61	-8.77
BIF with sedimentary biochemical carbonate (section D)	COR-137		-5.01	-11.04
BIF with sedimentary biochemical carbonate (section D)	COR-141		-2.53	-10.55
BIF with sedimentary biochemical carbonate (section E)	COR-157	Rhodochrosite, kutnohorite, Mn- bearing calcite, siderite, ankerite	-3.92	-4.42
BIF with sedimentary biochemical carbonate (section D)	COR-168 =COR-14		-4.58	-7.90
BIF with sedimentary biochemical carbonate (section D)	COR-133		-5.79	-10.36
BIF with sedimentary clastic (section E)	COR-151		-3.49	1.06
BIF with sedimentary clastic (section E)	COR-152	Siderite, dolomite, rhodochrosite, kutnohorite, Mn-bearing calcite	-3.65	-2.16
Mn-3 layer Mn ore with biochemical carbonate (section E)	COR-153A	Siderite, dolomite, rhodochrosite, kutnohorite, Mn-bearing calcite	-5.34	-7.98
Mn-3 layer Mn ore with biochemical carbonate (section E)	COR-153B	Rhodochrosite, Mn-bearing calcite, siderite,	-7.08	-8.73
$\delta^{13}C_{PDBcarb}$ and $\delta^{18}O_{PDBcarb}$ average values of carbonate of BIFs from Urucum				
BIF average			-4.16	-7.42
BIF S.D.			0.84	2.52
BIF variation (+/-)			0.59	1.77
BIF average value (2σ)			-4.16±0.59	-7.42±1.77
$\delta^{13}C_{PDBcarb}$ of Tamengo Formation carbonate rocks				
			δC^{13} PDBcarb	$\delta^{18}O_{PDBcarb}$
Tamengo Formation – Corcal location		Average value (±2σ)	4.71 ± 0.30	-6.70 ± 0.64
Tamengo Formation – Saladeiro location	Average value (±2σ)		4.00 ± 0.66	-7.94 ± 0.90
Tamengo Formation - Eastern Laginha mine		Average value (±2σ)	2.91 ± 0.23	-6.96 ± 0.24
Tamengo Formation – Western Laginha mine		Average value (±2σ)	1.35 ± 1.23	-7.44 ± 1.94
Tamengo Formation – Western base of the Laginha mine		Average value $(\pm 2\sigma)$	-0.71 ± 0.48	-7.45 ± -2.95

*sections are according to Fig. 2 and Fig. 14

**carbonate types were determined by FTIR and Raman spectroscopy