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Abstract

Neglect of imperfect capture efficiency leads to biased inferences on population

abundance, and correspondingly, seriously affects ecological research, bio-

assessment, conservation, and fisheries management. To date, many research

studies have studied capture efficiency of salmonid fishes, but the catchability

of fishes living in non-salmonid streams has received much less attention. This

paper estimates capture probability for seven fish species in densely vegetated

lowland streams by using double-pass electrofishing data and an N-mixture

removal model. Results show that capture probability can vary among species,

and between-stream differences have a stronger influence on the abundance

and the catchability than within-stream variability. Estimation uncertainty

decreases with observed abundance, and the mean catchability tends to be the

highest for the medium abundant species. These findings suggest that relative

abundances from single-pass data are biased to a species- and habitat-specific

degree. Therefore, plausible estimation of capture probability from double-pass

electrofishing requires data collected from numerous sites that cover a wide

range of the environmental gradient in lowland streams.
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1 | INTRODUCTION

Effective protection of wild populations and their sustain-
able exploitation require reliable information on distribu-
tion and population size. However, even the assessment
of these basic ecological variables can be loaded with bias
from the imperfect detection of organisms (Kellner &
Swihart, 2014). This could be especially the case for such
elusive target animals as fish.

In wadeable streams, back-pack electrofishing is a
common sampling method to survey fish assemblages.
Researchers typically take one (single-pass), or repeated
removal (multiple-pass) samples, with or without block
nets. Because removal sampling is much more labor-
intensive and time-consuming than single-pass electro-
fishing, surveys covering wide study areas with a large
number of sites generally use single-pass electrofishing
without blocking (e.g., S�aly et al., 2011; Terra et
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al., 2016). Sampling effort for these surveys is usually
standardized by the length of the sampled stream reach,
and the catchability is assumed to be perfect for all spe-
cies. However, several studies show that catchability and
species detection can be imperfect (Bayley & Peter-
son, 2001; Deacon et al., 2017; Glover et al., 2019).

Previous studies on capture efficiency of fishes have
commonly investigated salmonid species, and focused
mainly for the estimation of population size (Glover et
al., 2019; Mäntyniemi et al., 2005; Riley et al., 1993; Riley
& Fausch, 1992; Ruiz & Laplanche, 2010; Wyatt, 2002).
Trouts and juvenile salmons typically live in clear cool
water streams with no or little aquatic vegetation in the
channel, which are different from the often densely vege-
tated, small (wetted width < ca. 7m) lowland streams.
Therefore, the transferability of the salmonid-centric
results to lowland streams can be problematic, because
environmental factors (e.g., water depth, turbidity, sub-
stratum, emergent vegetation) have commonly been
found to influence capture efficiency of fish
(Zalewski, 1983) and detection probability of other ani-
mals as well (Conway & Gibbs, 2011; Hamer, 2018; Kéry
et al., 2009), and evidence also suggests that catchability
differs among the species (Mollenhauer et al., 2018; Price
& Peterson, 2010; Reid et al., 2009). This indicates a need
to investigate capture probability in various stream types
and for multiple species.

Neglect of imperfect detection can lead to improper
inferences on populations, which may seriously influence
bioassessment, conservation, and fisheries management
outcomes (Williams et al., 2002). Increased noise-to-signal
ratio in population estimates may hinder our ability to per-
ceive subtle changes and trends in spatial and temporal
population dynamics, which can be an issue in case of both
imperiled species and spreading of non-native ones. More-
over, species can even remain completely undetected in
severe cases (Deacon et al., 2017). Biased population esti-
mates may involve erroneous knowledge on fish–habitat
associations too. As a consequence, data with under-
estimated abundances or many false zeros for rare species
can result in inadequate habitat restorations or improperly
selected habitats for reintroductions. Biased catchability
estimates may risk overexploitation of wild fish stocks,
which makes uncertain the long-term survival of the eco-
nomically important species. Capture probability is there-
fore an issue that needs to be addressed (Kellner &
Swihart, 2014; Radinger et al., 2019).

1.1 | Aims

This study is a complement to the former investigation
of S�aly et al. (S�aly et al., 2009), who compared the sam-
pling efficiency of single-pass and double-pass

electrofishing. The primary aim of the present paper is
to estimate capture probability for common fish species
in wadeable lowland streams of the Pannonian Basin
(Hungary). To do so, an N-mixture model is applied on
the data of seven fish species caught by double-pass elec-
trofishing. In addition to the estimation of capture prob-
ability, within-site and between-site stochastic variability
in capture probability are also compared to indirectly
assess the importance of environmental conditions at
two spatial scales on catchability. Our model presented
in this paper can easily be applied to any double-pass
removal data to infer about abundance and imperfect
detection. This estimation framework extends the appli-
cation of former models (e.g., Dorazio et al., 2005;
Wyatt, 2002) by adding random effects terms to account
for unmeasured heterogeneity.

2 | METHODS

2.1 | Sampling design

Field data were gathered from seven wadeable lowland
streams belonging to the catchment of Lake Balaton,
Hungary, in spring of 2008. Detailed description of the
streams and sampling procedure, and the raw fishing
data can be found in the study by S�aly et al. (S�aly et
al., 2009), but the design and the sampling method are
briefly reiterated here. A total of eight sampling sites
were selected on seven streams. At each site, a 200-m
long stream reach was divided into ten 20-m long stream
units, which were the basic sampling units of this study.
Sampling units were block-netted (mesh size 2 mm) at
both the downstream and the upstream end before fish
sampling. Then, a double-pass removal (or depletion)
sampling procedure with a back-pack gear (Hans-Grassl
IG200/2B, PDC, 75–100 Hz) was conducted to catch fish.
During the first pass, the gear operator caught the fish
with a netted hand-held anode by wading, and another
crew member helped to collect the stunned fishes with a
hand dip net. Caught fish were temporarily collected in
water filled plastic container boxes until identification
and counting. After that, they were released back into
their habitat a little downstream from the sampled unit.
Having waited for at least 15 min, the second-pass elec-
trofishing was carried out in the same way as the first
one had been.

This sampling procedure yielded two data matrices
accordingly to the first and second electrofishing passes.
Both matrices had sampling units grouped by a site vari-
able in its rows, and species in its columns. Entries con-
tained the raw counts of the fish caught during the first
or the second pass, respectively. Hence, the number of
individuals of a species observed via the field sampling in
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a given sample unit of a given site was the sum of the
counterpart cell entries of the two matrices.

2.2 | Studied fish species

Out of the total 27 fish species caught during the field sam-
pling, seven were assessed here. Prior to species selection,
data of one sampling site were excluded because release of
fish from a nearby fishery pond caused extreme and atypi-
cal variability in the composition of fish assemblages of this
stream site. A species was selected to be assessed if it
occurred in at least four sites and it was caught from a
minimum of three sampling units at each of those sites.
This criterion of selection screened out the species occur-
ring commonly in small lowland Pannonian streams. Of
the selected species, the rudd (Scardinius erythrophthalmus
[Linnaeus, 1758]), the roach (Rutilus rutilus [Linnaeus,
1758]), and the European bitterling (Rhodeus amarus
[Bloch, 1782]) are native water-column cyprinids; the Prus-
sian carp (Carassius gibelio [Bloch, 1782]) is a non-native
benthopelagic cyprinid; the Danubian spined loach (Cobitis
elongatoides complex) is a native benthic fish; the Euro-
pean perch (Perca fluviatilis Linnaeus, 1758) is a native
percid; and the pumpkinseed (Lepomis gibbosus [Linnaeus,
1758]) is a centrarchid non-native to Hungary (Table 1).

2.3 | Data analysis

To estimate catchability, a hierarchical multinominal N-
mixture model was constructed and fitted on the double-
pass removal data. N-mixture (or binomial mixture)
models have a hierarchical structure that corresponds to
the mechanism generating the ecological data (Dorazio et
al., 2005; Joseph et al., 2009; Kéry & Royle, 2016; Kéry &

Schaub, 2012; Royle, 2004; Royle et al., 2005;
Wyatt, 2002). The first level of our depletion model com-
poses the distribution of individuals across sites. The
unknown number of individuals in a sampling unit of a
site (N) is supposed to follow a Poisson distribution. The
expected value of the Poisson distribution, λ, has extra
random variability across the sites (σ2λSI , sub-subscript SI
stands for “site”) and sampling units within a site (σ2λSU ,
sub-subscript SU stands for “sampling unit”). The second
level of the model incorporates the observation process,
which is a double-pass sampling procedure. During the
first pass, known number of individuals are captured (y1)
and removed from the sampling unit. As a result, an
unknown of n individuals remain in the sampling unit.
Subsequently, known number of additional individuals
are caught (y2) from the same unit during the second
pass. Both y1 and y2 are modeled as binomially distrib-
uted random variables and have a common probability
parameter, q that actually represents the individual cap-
ture probability (or catchability). Similarly to the abun-
dance, capture probability also has extra random
variability originating from the sites (σ2qSI ) and the sam-
pling units (σ2qSU ). Extra random variations (i.e., random
effects) account for the between-site and the within-site
spatial differences in the distribution of the individuals,
and in the capture probability, which differences can be
termed as extrinsic (i.e., independent of the morphologi-
cal and behavioral characteristics of the fish specimens)
heterogeneity (Veech et al., 2016). A common ability of
this type of N-mixture models is that they can estimate
simultaneously both the unknown abundance (popula-
tion size, N) and the capture probability (q) from the
data, nonetheless, catchability is in the focus of this
study. The formal description and a graphical representa-
tion of the model can be found in supporting
information (S1).

TABLE 1 Fish species assessed for

catchability
Common name Scientific name k Freq Mean SD

Prussian carp Carassius gibelio 5 37 5.28 8.72

Danubian spined loach Cobitis elongatoides complex 4 31 4.23 4.61

Pumpkinseed Lepomis gibbosus 4 24 2.80 4.28

European perch Perca fluviatilis 5 36 2.84 4.41

European bitterling Rhodeus amarus 5 43 17.58 21.22

Roach Rutilus rutilus 6 46 15.73 15.53

Rudd Scardinius erythrophthalmus 4 29 13.08 26.53

Note: Note that the total number of the sampling units in each species data was k�10. See section 2.1 and
2.2 for more details. k, the number of sites where the species was observed in at least three 20-m sampling
units; Freq, the number of sampling units from which the species was caught (i.e., observed occurrence
frequency); Mean and SD, the average and the standard deviation of the number of individuals per

sampling unit.
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The model makes the assumptions that the species is
present at the sampled site, but can be undetected from
one or more sampling units of the site (incidence at site);
the taxonomic identification of the caught individuals is
without error (perfect identification); sampling units are
closed (no emigration and immigration) during the dou-
ble-pass sampling (closure); capture events among the
individuals are independent from each other, that is all
individuals have equal chance to be caught (indepen-
dence between individuals); catchability is the same for
both the first and the second electrofishing (equal capture
probability for both passes); differences between the sites,
and between the sampling units of a specific site cause
random variation in real abundance and catchability (ran-
dom space effects).

The model was applied in a Bayesian framework using
JAGS v4.3.0 (Plummer, 2003) sfor Markov chain Monte
Carlo (MCMC) algorithm via R (R Core Team, 2020) and
the package “rjags” (Plummer, 2019). For each species
data, the model was run with three chains, uninformative
priors, a burn-in length of 100,000 steps, 200,000 iterations,
and a thinning rate of 100, after 5,000 adaptation steps.
This setting led to a sample size of 3�2,000 (from the
three chains) from the posterior distribution, for there is
no MCMC simulation during the adaptation phase, and
the burn-in period is dropped away. Convergence of the
chains was evaluated by Gelman and Rubin's diagnostic
convergence statistic (Gelman & Rubin, 1992). Goodness-
of-fit was assessed with a posterior predictive checking
procedure (Gelman et al., 1996; Kéry & Schaub, 2012)
providing a lack-of-fit ratio. The closer this value is to
one, the better the model fits on the data, whereas devia-
tion from one in either directions suggests poor fit.

Capture probability was monitored after averaging
the q parameters across the sites and sampling units
(hereafter q) to get the estimation supposed to be typical

for the streams of the study region. In contrast, estimated
abundances were monitored after averaging the latent
ecological variables N across only the sampling units of
each site, which yielded a mean abundance estimate for a
20-m stream reach separately for the sites. Finally, we
were interested in comparison of between-site and
within-site variances of the capture probability and the
abundance, so the corresponding model parameters (σ2qSI ,
σ2qSU , σ

2
λSI
, σ2λSU ) were monitored as well. These variances

of the random terms (sites, sampling units) can handle
the overdispersion of the data, and make the model esti-
mation robust (Harrison, 2014; Kéry & Royle, 2016),
although many other options can be applied to model
ecological count data (e.g., (Joseph et al., 2009; Wenger &
Freeman, 2008)). Model source code in BUGS language
can be found in supporting information S2.

3 | RESULTS

3.1 | Capture probability

Posterior predictive checking procedure showed the
model fitted well on the observed data: lack-of-fit ratios
spread closely around one (Table 2), with deviation not
more than 0.048 (in case of the European perch).

The lowest expected individual capture probability
uninfluenced by random effects was estimated for the
pumpkinseed (α̂q ¼�1:337 [logit], 0:208 [probability]),
and the highest one for the Prussian carp (α̂q ¼ 0:850
[logit], 0:701 [probability]). The ratios of the between-site
variance estimates to the within-site variance estimates
in the logit-scaled capture probability (σ̂2qSI : σ̂

2
qSU

) ranged
between 0.768 and 12.50 (mean and SD: 4.480 � 3.827),
and were greater than one for six but one species, the
bitterling (Table 3).

TABLE 2 Estimates for the average capture probabilities of the observation process (double-pass removal sampling)

q

Common name Scientific name Mean Std err 95%lwr 95%upr Lack-of-fit ratio

Prussian carp Carassius gibelio 0.630 0.092 0.425 0.778 0.998

Danubian spined loach Cobitis elongatoides complex 0.409 0.108 0.201 0.614 1.010

Pumpkinseed Lepomis gibbosus 0.325 0.120 0.123 0.585 0.976

European perch Perca fluviatilis 0.313 0.106 0.109 0.533 0.952

European bitterling Rhodeus amarus 0.410 0.054 0.316 0.528 1.014

Roach Rutilus rutilus 0.501 0.073 0.332 0.618 1.008

Rudd Scardinius erythrophthalmus 0.653 0.090 0.440 0.803 0.997

Note: Arithmetic-scaled values (probabilities), except “Lack-of-fit ratio.” q, average capture probability; 95%lwr and 95%upr, the 2.5th and 97.5th percentile of
the posterior distribution (i.e., limits of a 95% credible interval); Lack-of-fit ratio, a goodness-of-fit statistics, the closer it is to one, the better the fit of the model
is on the data.

4 S�ALY ET AL.



Average capture probability encompassing the ran-
dom site and sampling unit effects (q̂) was moderate and
similar to each other for the European perch and the
pumpkinseed, relatively high and similar also for the
rudd and the Prussian carp, and medium for the other
three species (Table 2). Despite the remarkable contrasts
in the means of the posterior distributions of capture
probability, the pairwise overlaps of the 95% credible
intervals suggested no statistically significant differences
in catchability between the species (Figure 1).

Estimation uncertainty expressed as the width of the
95% credible interval of bq showed a negative linear rela-
tionship with the mean of the observed abundance
(i.e., number of individuals captured in the sampling
units via the two electrofishing passes). Catchability

estimation was less precise for the species with low aver-
age density (Figure 2).

The mean of the observed abundance, that is the
mean density of the species, was associated with the aver-
age catchability (bq) too. The quadratic relationship
suggested lower average capture probability for the spe-
cies with both low (e.g., Danubian spined loach) and high
average density (e.g., roach), and relatively high capture
probability for species with medium density (e.g., rudd)
(Figure 3).

3.2 | Abundance

Ignoring random effects, the mean of the estimates
for the overall log-scaled abundance varied from
bαλ ¼ 0:665 (log), 1:94 (arithmetic) (rudd) to bαλ ¼ 2:926
(log), 18:56 (arithmetic) (bitterling). Similarly to capture
probability, the variance in the log-scaled abundance
across the sites (bσ2λSI ) was definitely greater than the vari-
ance across the sampling units within the sites (bσ2λSU )
(Table 4).

Taking into consideration the random effects, esti-
mates for the mean abundance of one sampling unit
(bN) were larger than the mean observed abundances
(i.e., number of the captured individuals during two elec-
trofishing passes: Nobs ¼ y1þ y2) for each species, but the
degree of the difference varied by species. The two
highest relative differences between the predicted and
the observed mean abundance were found for the
pumpkinseed (d¼ 2:06) and the European perch
(d¼ 2:04), and lowest one for the rudd (d¼ 0:20). In con-
trast to the means, the standard errors of the predicted
abundances were quite similar to observed ones
(Table 5).

TABLE 3 Estimates for the model parameters of the observation process (double-pass removal sampling)

bαq bσ2qSI bσ2qSU

Common name Scientific name Mean Std err Mean Std err Mean Std err

Prussian carp Carassius gibelio 0.850 1.149 4.492 5.448 1.218 1.359

Danubian spined loach Cobitis elongatoides complex �0.527 1.012 2.529 4.134 1.157 1.052

Pumpkinseed Lepomis gibbosus �1.337 1.652 6.338 6.137 1.373 1.500

European perch Perca fluviatilis �1.129 1.157 4.266 5.018 0.341 0.391

European bitterling Rhodeus amarus �0.650 0.758 2.099 3.584 2.732 1.022

Roach Rutilus rutilus �0.080 0.727 1.830 3.084 0.706 0.709

Rudd Scardinius erythrophthalmus 0.715 0.910 2.092 3.906 0.417 0.694

Note: Logit-scaled values. bαq, overall expected individual capture probability (i.e., without random effects); bσ2qSI , between-site variance in capture probability;

bσ2qSU , within-site variance in capture probability.
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FIGURE 1 Estimated average capture probabilities (bq).

Horizontal ranges delineate 95% credible intervals; “X”s indicate
the mean of the posterior distribution
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4 | DISCUSSION

4.1 | Relationship between estimation
uncertainty and density

Using a hierarchical multinomial N-mixture model on
double-pass electrofishing data, the study estimated the
magnitude and uncertainty of capture probability and
abundance for seven common fish species in wadeable
Pannonian lowland streams. Similarly to many other
studies (Benejam et al., 2012; Harris et al., 2016; Hedger
et al., 2018; Peterson & Cederholm, 1984; Riley et
al., 1993; Riley & Fausch, 1992), data showed that effi-
cacy of electrofishing is not perfect, single-pass sampling
resulted in a catch less than the true population size, and
capture probability varied across the species
(Mollenhauer et al., 2018; Price & Peterson, 2010; Reid et
al., 2009; Stewart et al., 2019), although its stochastic fluc-
tuations were too wide to identify sharp differences
between the species. Stochastic fluctuation of capture
probability is likely enhanced when stream reaches with
very different environmental characteristics are sampled.
In general, discharge, channel width, depth, width–depth
ratio, boulders, emergent vegetation, and turbidity are
among the most common environmental variables that
affect capture probability, mostly in a negative way
(Mollenhauer et al., 2018). On the other hand, environ-
mental circumstances can influence efficiency with effect
sizes varying from site to site (or region to region), and
interactions between the abiotic variables also can hap-
pen (Mollenhauer & Brewer, 2017). This kind of hetero-
geneity of the influential environmental variables
involves that some stream reaches can be sampled more
efficiently than others. Moreover, influence of the envi-
ronmental factors on catchability can depend on the spe-
cies sampled, that is species–environment interactions
exist (Mollenhauer et al., 2018; Price & Peterson, 2010;
Reid et al., 2009), which makes the sample taken from a
particular site more representative for one species and
less representative for others. Our model did not contain
abiotic covariates in an explicit way, instead random
terms were charged to surrogate the environmental dif-
ferences among the study sites. Because the precision of
the capture probability was significantly affected by the
random variances originated from between-site and
within-site heterogeneity, we believe that the linear rela-
tionship shown in Figure 2 suggests that the influential
role of the environmental variables are related to the
density of the species as well. Accordingly, the cat-
chability of low density species can be estimated with
greater uncertainty than that of the more abundant
species, which is highly likely due to latent abiotic
covariates.
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4.2 | Issue of equal catchability

A possible weakness of the double-pass removal models
including the one which was used in this study is that the
assumption of equal catchability during the first- and the
second-pass electrofishing is often violated. A decrease in
catchability during the second and subsequent passes is
possible in densely vegetated lowland streams. Aquatic
vegetation impedes wading and becomes trampled after
completing the first pass. In the subsequent passes the
trampled vegetation might increase the chance of the fish
getting stuck and remain undetected. On the other hand,
decline of capture probability across the subsequent pas-
ses of a removal sampling is not always justified. Con-
stant catchability across the passes also occurs (Benejam
et al., 2012; Peoples & Frimpong, 2011; Reid et al., 2008;
Riley et al., 1993; Riley & Fausch, 1992), which suggests
that variation in catchability during removal sampling

can be context dependent. The model used in this study
can be extended for allowing separate estimations of cap-
ture probability for the passes of a data set with three or
more passes, and then testing of the decline in cat-
chability becomes possible. In that case, even if the cat-
chability proved to be constant, the increased number of
passes would likely improve the estimations of the model
(Riley & Fausch, 1992; Stewart et al., 2019).

4.3 | Benefits of random effects

Incorporation of extra variances via random effects into
ecological models provides several benefits. Observation-
level random effects can remedy the lack of statistical
independence (Millar & Anderson, 2004; Price & Peter-
son, 2010) arising from spatial autocorrelation or
pseudoreplication between study objects, mitigate the

TABLE 4 Estimates for the model parameters of the ecological process (latent abundances)

bαλ bσ2λSI bσ2λSU

Common name Scientific name Mean Std err Mean Std err Mean Std err

Prussian carp Carassius gibelio 1.053 1.009 4.244 4.350 0.800 0.338

Danubian spined loach Cobitis elongatoides complex 1.631 0.945 2.922 4.011 0.461 0.294

Pumpkinseed Lepomis gibbosus 1.234 1.132 3.256 4.455 1.000 0.669

European perch Perca fluviatilis 1.394 0.886 2.771 3.486 0.387 0.223

European bitterling Rhodeus amarus 2.926 0.736 2.542 3.352 0.258 0.170

Roach Rutilus rutilus 2.230 0.936 4.481 4.166 0.690 0.292

Rudd Scardinius erythrophthalmus 0.665 1.312 7.903 5.672 0.781 0.357

Note: Log-scaled values (base e). bαλ, overall expected abundance (i.e., without random effects); bσ2λSI , between-site variance in abundance; bσ2λSU , within-site
variance in abundance.

TABLE 5 Observed and estimated mean abundances for a 20-m long stream unit

Nobs bN

Common name Scientific name k Freq Mean Std err Mean Std err d

Prussian carp Carassius gibelio 5 37 5.28 5.31 7.08 5.76 0.34

Danubian spined loach Cobitis elongatoides complex 4 31 4.23 3.34 8.36 5.86 0.98

Pumpkinseed Lepomis gibbosus 4 24 2.80 2.89 8.57 3.37 2.06

European perch Perca fluviatilis 5 36 2.84 3.08 8.62 5.10 2.04

European bitterling Rhodeus amarus 5 43 17.58 16.82 30.16 18.79 0.72

Roach Rutilus rutilus 6 46 15.73 12.71 23.80 18.15 0.51

Rudd Scardinius erythrophthalmus 4 29 13.08 24.15 15.74 28.20 0.20

Note: Arithmetic-scaled values (# of individuals). Note that the total number of the sampling units in each species data was k�10. Nobs, observed mean
abundance (i.e., total number of individuals caught during the double-pass sampling); bN , estimated mean abundance; k the number of sites whose data were
used for analysis, and abundance predictions were made for; Freq, the number of sampling units that the species was caught from (i.e., observed occurrence
frequency); Std Err, standard error (i.e., standard deviation) of the observed and predicted mean abundances for the k sites which the species was caught from

and predicted; d, difference between the predicted and the observed mean abundance relative to the observed:
bN�Nobs
Nobs

.
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overdispersion (Harrison, 2014) originating from spatial
aggregation of individuals in count data, and represent
the effects of variables unmeasured in the field (Kéry &
Schaub, 2012). In our study design, sampling units within
the sites were spatially adjacent to each other along the
stream. Thus, neighboring sampling units usually had
somewhat more similar habitat characteristics than non-
neighboring ones, which could cause spatial autocorrela-
tion. On the other hand, sampling units, even the neigh-
boring ones, differed from one another in their
environmental features affecting the catchability of fishes
to a certain extent. That kind of environmental differ-
ences (e.g., in vegetation cover, mean depth) leads to
extrinsic heterogeneity in individual capture probability,
which can be modeled by appropriate covariates ((Veech
et al., 2016), p. 1020). Because the main goal of this study
was to estimate the extent of capture probability and not
the investigation of the factors influencing that, random
effects were used as surrogates for the environmental
covariates. Nonetheless, our model can easily be devel-
oped by merging covariate terms into the log-linear and
the logit-linear regression equations to assess the influen-
tial role of habitat features or sampling circumstances on
capture probability and abundance (Joseph et al., 2009;
Kéry & Schaub, 2012; Mollenhauer & Brewer, 2017;
Smith et al., 2012; Som et al., 2018; Stewart et al., 2019).
In such cases, one might expect more precise (i.e.,
narrower credible intervals) estimates, all else being
equal.

4.4 | Between-site vs. within-site
variance

Between-site differences appear to have larger influence
on both abundance and catchability of the species than
differences between the sampling units of a particular
site. Other studies also found the sampling site being a
relevant factor in the variation of capture probability
(Benejam et al., 2012; Glover et al., 2019; Hedger et
al., 2018; Stewart et al., 2019). The smaller within-site
variance compared with the between-site variance might
be explained by the modified status of the streams. Small
lowland streams in Hungary are channelized and con-
strained between dykes, so they are quite homogeneous
in comparison with highland or submountain streams.
The most prominent agent that can cause some environ-
mental variability within the mostly straight running
lowland streams is the aquatic vegetation, whereas the
hydrogeomorphological variety is practically absent.
Therefore, the variability between the sampling sites of
this study actually emphasizes, at least in part, a stream
effect because our sites were located on different water

courses with the exception of one water course on which
two sites were located. Maintenance of a kind of unique-
ness of the modified lowland streams, via, for example,
vegetation control and flow regulation, might promote
the preservation of fish assemblage variability at regional
scale.

4.5 | Relationship between capture
probability and density

Results showed that observed abundance of the species
can affect the expected value of catchability as well, or in
other words, density differences between the species can
lead to species-specific catchability. The quadratic rela-
tionship between the average capture probability and the
observed abundance found in this study predicts that cat-
chability can be expected to be the highest for the
medium abundant species of a local assemblage, and
somewhat lower for the low abundant and the most dom-
inant ones. In a study on the Atlantic salmon parr (Salmo
salar, Linnaeus, 1758), Riley et al. (1993) reported a
nonlinear relationship between capture probability and
density, which was similar to the relationship in Figure 3,
and showed that capture probability was low when den-
sity of parr was low too. Experience of Harris et
al. (2016), who sampled known number of size-classed
larval lampreys in enclosures, partially supports our cat-
chability–abundance relationship. Albeit the proportion
of larval lampreys caught during the first pass was the
lowest at high larval density, the highest proportion was
caught at low larval density, and in between at medium
density.

Inefficient sampling of low abundant species can arise
mainly from the lack of detection by the sampling crew.
For instance, as a reaction to the pulsating direct current,
loaches such as the Danubian spined loach usually wrig-
gle, and dash themselves into the fine sediment as soon
as the current ceases; the perch and the pumpkinseed
tend to hide, become immobilized, and get stuck in the
underwater vegetation. In contrast, the individuals of
high abundant species are usually well seen, but simply
the large number of fish present makes difficult to catch
each stunned specimen (gear saturation). In the studied
lowland streams, the dominant species of the fish assem-
blages are usually small-bodied cyprinids like the roach,
the rudd, and the bitterling. These species generally
shoal, which lead to more or less aggregated distribution
within the stream reach. When the sampling crew
encounter a shoal and try to catch the numerous fish the
nets used to collect the stunned specimens get full soon,
and netting new specimens becomes practically impossi-
ble without losing some already captured individuals.
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As a consequence of the capture probability varying
by species, abundance estimates obtained from the model
appear to depict somewhat different density relationships
than can be inferred from the observed data for the stud-
ied streams. More specifically, observed data indicated
that mean density of the Danubian spined loach (4.23
individuals per a 20-m long stream unit) is slightly higher
than that of the pumpkinseed (2.80 individuals) and the
perch (2.84 individuals), but predicted mean abundances
suggested quite similar densities for these three species.

4.6 | Conclusions

This study provides estimates for the capture probability
of fishes in densely vegetated lowland streams, and high-
lights the possibility that the relative abundances in the
CPUE samples of single-pass electrofishing are biased to
varying degrees due to differences in catchability of the
fish species. Applicability of CPUE single-pass electro-
fishing therefore should be considered with regard to the
aim of data collection. Many papers have emphasized the
need for gear calibration or adjustment of catch data
(Bayley & Peterson, 2001; Glover et al., 2019;
Mollenhauer et al., 2018; Price & Peterson, 2010) in order
to obtain more realistic data to monitor population sizes,
for example, of endangered species. Nevertheless, if
researchers aim to compare data sampled from the same
multiple sites and repeated in time to investigate changes
within the time extent of the survey period, for example,
for bioassessment purposes, single-pass electrofishing
with reasonable effort can be an acceptable cost-effective
method. Similarly, single-pass electrofishing can be
proper sampling method in small streams as well when
the aim of the survey is the estimation of species richness
(i.e., presence of species), because detection probability of
a species can be high even in cases if individual capture
probability is low (Peoples & Frimpong, 2011).

On the other hand, bias in abundance estimates can
also vary within a species, depending on survey time and
sites selected to be sampled (Benejam et al., 2012; Dau-
phin et al., 2019; Glover et al., 2019; Hedger et al., 2018;
Stewart et al., 2019). Hence, monitoring protocols oper-
ated to record trends in true population sizes should
involve gear calibration of single-pass electrofishing regu-
larly and regionally (or in a water body type-specific
way), and also an effort–result survey (e.g., rarefaction
curves). Alternatively, monitoring systems may also con-
sider the so-called robust design (Williams et al., 2002)
and appropriate models to estimate capture probability
and abundance (Kéry & Schaub, 2012).

As a rule, the estimation procedure requires such
models that fit to the ecological and observational

processes generating the observed data (Joseph et
al., 2009). Nevertheless, it clearly stands out from the pre-
vious studies that no single best model exists to estimate
capture probability (Benejam et al., 2012; Veech et
al., 2016), and even models supposed to be well struc-
tured can underperform with poor observed data. So, esti-
mation of capture probability from double-pass
electrofishing should be conducted with data collected
from numerous sites covering the environmental hetero-
geneity of the water courses to be studied.
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