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Alterations in protein expression 
and site‑specific N‑glycosylation 
of prostate cancer tissues
Simon Sugár1,2, Gábor Tóth1,3, Fanni Bugyi1,4, Károly Vékey1, Katalin Karászi5, 
László Drahos1 & Lilla Turiák1,2*

Identifying molecular alterations occurring during cancer progression is essential for a deeper 
understanding of the underlying biological processes. Here we have analyzed cancerous and 
healthy prostate biopsies using nanoLC-MS(MS) to detect proteins with altered expression and 
N-glycosylation. We have identified 75 proteins with significantly changing expression during 
disease progression. The biological processes involved were assigned based on protein–protein 
interaction networks. These include cellular component organization, metabolic and localization 
processes. Multiple glycoproteins were identified with aberrant glycosylation in prostate cancer, 
where differences in glycosite-specific sialylation, fucosylation, and galactosylation were the most 
substantial. Many of the glycoproteins with altered N-glycosylation were extracellular matrix 
constituents, and are heavily involved in the establishment of the tumor microenvironment.

Prostate cancer (PCa) is the most prevalent type of cancer and the second leading cause of cancer-related deaths 
among males. The probability of developing PCa increases with age, the lifetime risk is 1 in 91. PCa screening 
is based on the Prostate-Specific Antigen (PSA) test, which measures the level of PSA in blood. In the case of 
elevated PSA levels, further diagnosis and prognosis are determined by the histological examination of pros-
tate tissue biopsies2. PSA screening, however, has relatively low specificity for PCa, which can often result in 
overdiagnosis and overtreatment3. Histology also has various limitations such as the subjective manner of the 
classification of the tissue sample4 and the inherent sampling error due to tumor heterogeneity5. There have been 
significant efforts to improve existing methods for PCa diagnosis. This includes the discovery of novel biomarkers 
to replace the PSA blood test6,7, the use of image-guided targeted biopsies8,9, digital pathology using Artificial 
Intelligence along with Machine Learning10,11, and precision oncology using Liquid Biopsies12. Tissue samples 
are often used in biomarker research as the starting point since they have the advantage to identify molecular 
alterations occurring at the site of origin of the disease.

Tumor grading is the means of classification of tissue samples based on cellular appearances. Lower grades 
resemble normal tissue more, while higher grades deviate to a greater extent due to lack of differentiation. For 
PCa, the Gleason grading system is most frequently used, which does not focus on cytological, but rather archi-
tectural patterns and considers both the least and second least differentiated patterns observed13–15. Pathological 
Grades (G) range from 1–3 while Gleason Grades (GG) range from 1 to 5. Both can be grouped into low (G1 
and GG1), intermediate (G2 and GG2-3) and high-risk groups (G3 and GG4-5).

Molecular characteristics of PCa are characterized by high complexity and heterogeneity16. In recent years, 
many promising protein biomarkers have been reported17–19, but none of them has been implemented into clini-
cal practice to complement or replace PSA screening, although several are currently in clinical development20,21. 
Besides changes in protein abundances of specific proteins, changes in the glycosylation of PCa glycoproteins 
have also been reported to be of potential diagnostic and prognostic value22–24.

Mass spectrometry (MS) based proteomics methodologies are reliable and widely used tools for the analysis 
of prostate tissues and cell lines25–28. The MS-based characterization of site-specific protein glycosylation however 
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remains a challenging task both from an analytical and data analysis standpoint29. This is partly the reason that 
protein glycosylation is still a largely untapped source of cancer biomarkers22.

We have recently performed a comparative pilot proteomics study on PCa tissue microarrays (TMAs) to dis-
criminate between healthy and cancerous tissues30. In the present study, our objective was to identify molecular 
changes in PCa, analyzing a large number (95) of TMA core biopsy samples. This allows us to detect relatively 
small differences in protein abundances with a high statistical power. We have compared protein expression 
levels and changes in N-glycosylation features among various pathological grades of PCa and healthy tissues.

Results
Protein expression levels and site-specific N-glycosylation of 95 tissue microarray (TMA) biopsy samples were 
analyzed, among which there were 9 G1, 16 G2, 24 G3, and 46 normal tissues. Digital images of a stained sample 
from each group are shown as examples in Supplementary Figs. S1–S4. In the case of cancerous samples both the 
original and an annotated image indicating cancerous and non-cancerous tissue areas are shown. The sample 
preparation consisted of on-surface tryptic digestion31 followed by C18 SPE cleanup and acetone precipitation 
for glycopeptide enrichment. After precipitation, the glycopeptide-enriched pellet fraction and the supernatant 
fraction containing non-glycosylated peptides were analyzed separately32. The workflow is summarized in Fig. 1, 
detailed information on each step is discussed in the “Methods” section.

The “Results” section is divided into three major parts: (i) the molecular differences between healthy and 
cancerous prostate tissue; (ii) the molecular changes with PCa grade progression, and differences between dis-
tinct grades and healthy tissue; (iii) and the biological processes altered in PCa. While the first two sections are 
based on data from both the proteomics (containing protein intensities) and glycoproteomics datasets (contain-
ing glycopeptide intensities and metrics calculated from them), the third one is based on proteomics data only. 
Before describing the results of the three aforementioned sections, a general characterization of the two datasets 
(proteomics and glycoproteomics) is provided.

MaxQuant quantified 653 proteins altogether in the 95 supernatant samples analyzed. From these, proteins 
that were found in less than 60% of any of the sample groups were excluded. Missing values were then imputed 
as described in the “Methods” section.

Figure 1.   Workflow of the analysis of the TMA samples.
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N-linked glycopeptides were quantified by GlycoPattern33 software using glycan and glycosite libraries con-
structed following Byonic searches32. Results were then filtered as detailed in the “Methods” section. Altogether 
145 glycopeptides were quantified in 95 samples with high confidence, corresponding to 22 glycoproteins with 
29 glycosites and 53 different glycans.

Protein glycosylation can be characterized by listing all the identified glycopeptides, but usually, multiple 
metrics are used instead22,34. Here we use sialylation, fucosylation, galactosylation, branching, and glycan type 
ratio. These simplify data interpretation and carry important biological information as well, as they are connected 
to various steps of N-glycan biosynthesis. The different metrics used in this paper are explained and summarized 
in Supplementary Table S1.

Over 75% of the identified glycopeptides carried complex-type glycans. More than half of these structures 
were biantennary, while tri- and tetra-antennary types and unmatured structures were also present. The average 
antenna sialylation was 20.1% across all samples, while 28.7% of antenna containing structures held at least one 
sialic acid. The average fucosylation was 37.8% across all samples. All 29 glycosites identified carried several 
different glycans, and also showed considerable diversity regarding glycan type, branching, galactosylation, 
fucosylation, and sialylation. To reveal changes specific to the distinct glycosites, metrics were calculated for 
them individually as well.

Differences between healthy and cancerous tissues.  To investigate differences between healthy 
(normal) and cancerous (PCa) tissues, Student’s t-test was performed on proteomics and glycoproteomics data 
separately using 0.05 false discovery rate (FDR). Between the normal and PCa groups, 123 proteins were found 
to be differentially expressed, this included 72 proteins overexpressed and 51 proteins underexpressed in PCa 
(Supplementary Table  S2). Among these, 14 showed a fold-change over 2, while 27 displayed a fold-change 
under 0.5 (Fig. 2).

In the glycoproteomics dataset, 7 glycopeptides were found with significantly different abundances between 
the normal and PCa groups (Supplementary Fig. S5), each carrying biantennary, fucosylated complex-type 
glycans with different levels of galactosylation and sialylation. In five cases, glycopeptide expression was lower 
in PCa tissues: four glycoforms of Immunoglobulin gamma-1 heavy chain (IGG1) N299, and one glycoform of 
Prothrombin (THRB) N121. The other two showed higher expression levels in PCa: one glycoform of Microfibril-
associated glycoprotein 4 (MFAP4) N137 and one glycoform of Biglycan (PGS1) N270.

Significant differences were also detected between normal and PCa tissues when comparing the levels of sia-
lylation, fucosylation, and galactosylation at distinct glycosites. The differences in glycosite-specific sialylation, 
fucosylation, and galactosylation are summarized in Fig. 3.

All but one of the eight differentially sialylated glycosites were underexpressed in PCa (Fig. 3A). The differ-
ences in sialylation were below 10% for most glycosites, except for Periostin (POSTN) N599 and Prostatic acid 
phosphatase (PPAP) N94 with a 38.6% and 15.1% decrease respectively, and CO6A2 N785 with a 10.3% increase 
in sialylation. Although only a 4.6% difference, THRB N121 showed the greatest relative change with a degree 
of sialylation almost 3.5 times lower in PCa than in normal tissues. Opposed to this, all four differentially fuco-
sylated glycosites were overexpressed in PCa with the biggest differences on N785 of collagen alpha-2(VI) chain 
(CO6A2), POSTN N599, and PPAP N94 with a 27.7%, 47.6%, and 35.9% increase in fucosylation, respectively 
(Fig. 3B). The significant differences in galactosylation levels found on five glycosites (Fig. 3C) were much smaller 
than changes in fucosylation or sialylation, the two major ones being the increase of galactosylation at MFAP4 

Figure 2.   Volcano plot displaying proteins differentially expressed (fold-change at least 2) between healthy and 
PCa tissues. Red dots represent proteins overexpressed, while blue dots represent proteins underexpressed in 
PCa.
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N137 by 10.6% and the decrease of galactosylation of Immunoglobulin heavy constant gamma 2 (IGHG2) N176 
by 8.7% in case of cancerous samples. Interestingly, while changes in fucosylation always increased in the case 
of PCa samples (Fig. 3D), in the case of sialylation and galactosylation they did not.

Differences among various grades of PCa and Normal tissue.  To uncover molecular alterations 
among pathological grades and normal tissue, Analysis of Variance (ANOVA) was performed (FDR controlled 
at 0.05) on both proteomics and glycoproteomics data separately. For exact parameters see the “Methods” sec-
tion.

In the proteomics dataset, 75 proteins were identified with significant changes (Supplementary Table S3) 
among the various PCa grades and healthy tissue. Hierarchical clustering in Perseus with Spearman’s correlation 
revealed two distinct groups among these proteins: in 40 cases the proteins were upregulated (Fig. 4A), while in 
35 cases they were downregulated (Fig. 4B) in cancer.

Afterward, a post-hoc test was performed on the 75 ANOVA significant proteins (Tukey’s Honest Significant 
Difference test). This revealed that most of the proteins were differentially expressed between the normal and the 
two high-grade groups (G2 & G3), while there were only 3 such proteins between G2 and G3, 8 proteins between 
G1 and G3 and 14 between normal and G1 groups. The list of these proteins is included in Supplementary 
Table S3 broken down into six groups corresponding to all group-wise comparison combinations. Furthermore, 
many of them (more than 85%) showed differential expression in not only one but multiple group comparisons 
(Supplementary Fig. S6).

In the glycoproteomics dataset, ANOVA and the following post-hoc test (Tukey’s HSD) revealed 4 glyco-
peptides with significantly different abundances among different grades and healthy tissue. Three of them cor-
respond to the same glycosite N299 of IGG1 and carry biantennary complex-type glycans. In all three cases, 
the significant differences were between the Normal—Grade 2 and Normal—Grade 3 groups, and the observed 
trends were similar (average correlation coefficient of 0.980). The overall amount of IGG1 glycopeptides did not 
change significantly with PCa progression. The fourth glycopeptide corresponds to glycosite N137 of MFAP4 
and also carries a biantennary complex-type glycan. In this case, the significant difference is between the Nor-
mal—Grade 1 groups (Fig. 5).

Figure 3.   Glycosite-specific alterations in sialylation (A), fucosylation (B), and galactosylation (C) between 
healthy and PCa tissues (with standard error displayed). (D) summarizes the direction and volume of the 
differences in the case of all three metrics (Normal—PCa).
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Furthermore, regarding glycosites, ANOVA identified that the degree of fucosylation on CO6A2 N785 was 
different between the three Grade groups and Normal tissue. Interestingly, fucosylation shows a monotonic 
increase until G2 then decreases in G3 (Fig. 6A). This tendency is opposite to the changes in protein expression 
levels of the 3 identified CO6 subunits A1, A2, and A3 (Fig. 6B) apart from both being nearly constant between 
the Normal and G1 groups.

In addition to pathological grades, alterations between Gleason grades and healthy tissue were investigated 
as well. The number of samples analyzed in the different GG groups was as follows: 7 in GG2, 12 in GG3, 15 in 
GG4, and 15 in GG5. The data analysis was carried out similarly to that of pathological grades.

The results of the analysis based on GG groups showed great similarity to those based on pathological grades. 
In the glycoproteomics dataset, the same glycosylated features were identified with significant changes, regard-
ing both glycopeptides and glycosites. In the proteomics dataset, 60 proteins were identified as differentially 
expressed, opposed to 75 in the analysis based on pathological grades, with 57 common ones between the two. 
The overlap between these two sets of proteins and the group classifications of the 49 PCa samples are sum-
marized in Fig. 7A,B, respectively. The correlation was also calculated for the 57 common proteins for the two 
datasets. Gleason grades were grouped based on the amount of overlap with pathological grades (Fig. 7B) in the 
following manner: GG2; GG3 and GG4; and GG5. The correlation coefficients between the GG2 – G1; GG3 and 

Figure 4.   Significantly changing proteins among different grades of PCa and healthy tissue divided into two 
sub-groups based on hierarchical clustering: upregulated (A) and downregulated (B).

Figure 5.   Glycopeptides with significant changes between different Grades of PCa and healthy tissues. 
Glycopeptides are annotated as follows: glycoprotein—glycosite—attached glycan (H hexose, N N-acetyl 
hexosamine, F fucose, S sialic acid units).
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GG4 – G2; GG5 – G3 grades were 0.997, 0.970, and 0.990, respectively. The high correlation of these groups is 
visualized in Fig. 7C in the form of a heatmap, containing the 57 common proteins and the compared groups 
(clustering is based on Pearson correlation, protein intensities are depicted as Z-scores).

Identification of altered biological processes based on proteomics.  Following the identification 
of proteins with statistically significant changes, functional enrichment analysis was performed in STRING for 
GO and KEGG terms, separately for the proteins up- and downregulated in PCa (for the STRING networks see 
Supplementary Figs. S7 and S8). The most important terms from the resulting Protein–Protein Interaction (PPI) 
Networks were identified based on the Number of Genes, Strength, and FDR values, and are summarized in 
Table 1. The complete lists are presented in Supplementary Tables S4–S7.

Most of the underexpressed proteins were associated with cellular component organization (34 out of 51), 
while the overexpressed proteins were predominantly affiliated with metabolic processes (60 out of 72).

Discussion
As the focus of this paper is on finding potential biomarkers through exploring alterations in the glycosylation 
between healthy and PCa tissues combined with proteomics data, only glycoproteins displaying significant 
changes are discussed individually. For these, the differences in protein expression and glycosylation are both 
reported, and they are compared to relevant previous studies on PCa or cancer in general. Furthermore, the most 
significant biological processes are also discussed.

The PPI network analysis provides information about biological processes, which are altered in PCa. The 
underexpressed proteins were mostly associated with cellular component organization (34 out of 51 proteins) and 
various processes connected to adhesion e.g.: the KEGG term “Focal adhesion” and the GO term “cell adhesion”, 
and muscle contraction e.g.: the KEGG term “Vascular smooth muscle contraction” and the GO term “muscle 
contraction”. Focal adhesion has been confirmed to be heavily involved in cancer progression35, while smooth 
muscle cells have been reported to be involved in PCa and BPH36. The overexpressed proteins, on the other hand, 
were primarily associated with metabolic processes (60 out of 72 proteins) with the GO terms “localization” and 
“regulation of gene expression” involving the most proteins. While altered localization of macromolecules in a 
cell (e.g. proteins37) can reportedly drive tumor development and metastasis, aberrant gene expression is known 
to be the principal cause of cancer38.

All glycoproteins with significant glycosylation changes were quantified in the proteomics part of the study 
by MaxQuant, but not all of them showed differential expression between Normal and PCa tissues. This suggests 
that altered glycosylation does not necessarily indicate glycoprotein-wise differential expression. Furthermore, 
neither of the metrics used for the characterization of glycosylation (listed in Supplementary Table S1) showed 
significant overall changes between PCa and healthy tissues. Regarding cellular localization, all the glycoproteins 
with significant glycosylation changes were primarily of extracellular origin, most of them were associated with 
the Extracellular Matrix (ECM) and consequently, the Tumor Microenvironment (TME), which is known to 
heavily influence cancer initiation, progression, and invasion39.

There are several changes in glycosylation that are known to widely occur in cancer. These include increased 
and altered sialylation, increased branched-glycan structures, and fucosylation40,41. Also, there have been many 
PCa glycome-specific changes reported before42, e.g.: the expression of oligomannosidic glycans in the tumor 
region in late-stage PCa43. These changes however reflect only overall tendencies, they are not necessarily true 
for all of the glycosylation sites, as our results clearly demonstrate.

Figure 6.   Changes in the fucosylation of CO6A2 (A) and in the protein expression of different CO6 subunits 
(B) between different Grades of PCa and healthy tissues.
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In previous studies, serum sialylation has been linked to pathological grade and elevated sialic acid levels to 
bone metastasis44. In tissues, however, overall sialylation levels have been reported to be constant across differ-
ent grades of cancer22. Our results suggest the same, the average sialylation levels were very similar throughout 
the different sample groups, but there were significant differences detected on several glycosylation sites. Most 
of them showed a decrease in sialylation except for CO6A2 N785, which showed an overall increase and signifi-
cant differences between the different pathological grade groups. Also, proteomics results revealed that CO6A1, 
CO6A2, and CO6A3 expression levels significantly changed with PCa progression in a similar manner. This 
is highlighted by the fact, that CO6A1 has been reported to have an important role in tumor growth, and the 
molecular etiology of Castration-Resistant Prostate Cancer45.

Apart from serum, PCa cell lines have also been used before to identify diagnostic markers, and site-specific 
changes in fucosylation have been reported in PC3 and LNCap cell lines46. This aligns with our findings, as we 
have also found that fucosylation increased in PCa on multiple glycosites. Also, PPAP has been demonstrated to 
have a significant effect on PCa cell growth47, and it has been hypothesized to have higher site-specific fucosyla-
tion levels in PCa patients46. This is supported by our data: the average fucosylation level of PPAP N94 increased 
from 47 to 83% in PCa.

POSTN has been reported to be upregulated in aggressive PCa48, but significant changes in glycosylation 
have not been reported yet. Our proteomics results reaffirmed, that POSTN is overexpressed in PCa, and we also 
detected significant changes in both fucosylation and sialylation on POSTN N599, an increase from 24 to 72% 
and a decrease from 83 to 44% respectively, highlighting its’ possible importance.

Prostate tissue is known to be a rich reservoir of Prothrombin49, the precursor of Thrombin, which has been 
reported to promote prostate tumor growth, increase tumor cell seeding, and stimulate angiogenesis50,51. We 

Figure 7.   Comparison of the proteomics results based on Grade groups and Gleason grades. (A) Venn diagram 
of proteins identified as significant. (B) Classification of the 49 PCa samples analyzed. The size of the boxes is 
proportional to the sample sizes (green—Gleason grades, blue—Grade groups). (C) Heatmap of the 57 common 
proteins in both proteomics datasets. Grade groups (G1, G2, G3) and groups created from Gleason grades 
(GG2; GG3 and GG4; GG5).
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have found that the sialylation of THRB N121 was downregulated significantly in PCa, moreover, with the larg-
est relative difference.

Alterations of serum IgG glycosylation has been reported in many diseases, including PCa52, and IgG1 has 
been suggested as a potential target for PCa treatment53. We found that both IGG1 N299 and IGHG2 N176 show 
decreased overall galactosylation by 6.3% and 8.7% respectively. This is in line with previous studies, where 
one of the major differences reported was the decrease of terminal galactosylation in PCa compared to either 
healthy or benign prostatic disease patients54. Our data also shows reduced sialylation on both IGG1 N299 and 
IGHG2 N176 by 2.1% (corresponding to a relative change of 21.3% and 26.8% respectively), which is also in 
agreement with literature as reduced sialylation has been described as a major alteration in PCa compared to 
healthy individuals55.

Another glycoprotein with significant site-specific glycosylation changes was MFAP4, which has been reported 
to be involved in several cancers and may function as a tumor suppressor in PCa56. MFAP4 has been documented 
to have altered glycosylation in pancreatic adenocarcinoma57, however, not in PCa. Our results revealed that both 
sites of MFAP4 showed modified glycosylation in PCa: decreased sialylation on N87 and increased expression 
of the glycan N4H5S1F1 on N137. The latter glycoform might be a useful indicator in detecting PCa at an early 
stage, as this increased expression was detected between normal and G1 samples.

Most of the glycoproteins discussed above can be found in the Human Protein Atlas58 (apart from IGG1 and 
IGHG2) and are categorized in the Pathology Atlas based on Prognostic summary and Cancer specificity. Apart 
from PPAP, which is a protein specific to PCa, all of them are unfavorable prognostic markers in certain types of 
cancer (in most cases renal cancer) which suggests that these glycoproteins are heavily involved in cancer progres-
sion. This information is summarized in Supplementary Table S8 supplemented by their Secretome annotation.

It is also important to note, that these glycoproteins have been detected in biofluids previously. All glyco-
proteins discussed above with the exception of POSTN have been detected in urine59, while POSTN has been 
detected in serum samples60 of PCa patients. This suggests their potential usefulness as a clinical marker. Whether 
the alterations in the glycosylation of these proteins is PCa specific or not, needs further investigation, especially 
in the context of their biomarker status.

Table 1.   The most important terms in the PPI Networks from the STRING analysis.

Database Description Number of genes Strength FDR

Protein–protein interaction networks for the 51 proteins underexpressed in PCa

KEGG Focal adhesion 12 1.39 6.62E−12

KEGG ECM-receptor interaction 6 1.47 2.49E−06

KEGG Vascular smooth muscle contraction 6 1.3 1.44E−05

GO BP Muscle contraction 13 1.33 6.53E−11

GO BP Actin filament-based process 14 1.05 7.47E−09

GO BP Cell junction assembly 9 1.43 2.94E−08

GO BP Cellular component organization 34 0.42 1.30E−07

GO BP Actin cytoskeleton organization 12 1.06 1.30E−07

GO BP Extracellular matrix organization 10 1.13 6.01E−07

GO BP Cytoskeleton organization 14 0.77 7.79E−06

GO BP Supramolecular fiber organization 9 0.97 4.79E−05

GO BP Platelet degranulation 6 1.27 8.66E−05

GO BP Cell adhesion 12 0.75 8.66E−05

GO BP Regulated exocytosis 11 0.8 8.66E−05

Protein–protein interaction networks for the 72 proteins overexpressed in PCa

KEGG Ribosome 8 1.22 4.25E−06

KEGG Spliceosome 8 1.22 4.25E−06

GO BP mRNA metabolic process 23 0.97 4.28E−13

GO BP RNA splicing, via transesterification reactions 15 1.15 2.64E−10

GO BP Protein localization to endoplasmic reticulum 9 1.3 1.76E−07

GO BP Metabolic process 60 0.23 1.92E−07

GO BP SRP-dependent cotranslational protein targeting to membrane 8 1.37 3.02E−07

GO BP Translational initiation 9 1.24 3.57E−07

GO BP Protein localization 25 0.54 8.45E−07

GO BP Negative regulation of gene expression 23 0.57 8.87E−07

GO BP Regulation of gene expression 38 0.36 2.04E−06

GO BP Cellular response to cytokine stimulus 17 0.69 2.08E−06

GO BP Localization 41 0.33 2.51E−06

GO BP Translation 11 0.92 3.63E−06
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In conclusion, our results indicate that alterations between PCa and Normal tissue glycosylation occur pri-
marily on the glycosite level, while overall glycosylation may be unaffected. Furthermore, altered glycosylation 
does not necessarily indicate differential expression on the protein level. The glycoproteins with significant dif-
ferences in glycosylation were all secreted either to blood or the ECM, and most of them are characterized as 
an unfavorable prognostic cancer marker by the Pathology Atlas. As altered protein glycosylation in cancer has 
been proven to be nonrandom, this suggests that further investigation of the glycosylation, and cancer specific-
ity of these potential prognostic markers and identification of their exact roles is reasonable and could lead to 
further advancement in understanding the function of glycosylation in cancer development and PCa prognosis.

Methods
Materials.  All chemicals used were HPLC–MS grade. Acetonitrile, Water, Acetone, Formic acid, and Ammo-
nium-bicarbonate were purchased from Merck (Darmstadt, Germany). Trifluoroacetic acid, Dithiothreitol, and 
Iodoacetamide were obtained from Thermo Scientific (Waltham, MA, USA). Methanol was purchased from 
VWR International (Debrecen, Hungary), RapiGest surfactant was obtained from Waters (Milford, MA, USA).

Detailed information on TMAs.  Four different TMA slides were purchased from US Biomax (Derwood, 
MD, USA): BNS19011, PR481, PR483c, PR633. All of them contained formalin-fixed paraffin-embedded (FFPE) 
cores with a diameter of 1.5 mm and a thickness of 5 μm. The specification sheets are available at https://​biomax.​
us with information about each core including age, pathological Grade, Stage, and Gleason Score. Each TMA 
core contains on average approximately 1 µg protein.

On‑surface digestion.  First, the TMA slides were baked at 60 °C for 2 h following the supplier’s instruc-
tions to prevent tissue detachment. Next, de-paraffinization was carried out by incubating the slides in different 
solvents/solutions sequentially as follows: xylene for 2 × 3 min, ethanol for 2 × 5 min, 90% ethanol—10% water 
for 3 min, 70% ethanol 30%—Water for 3 min, 10 mM NH4HCO3 (water) for 5 min and finally water for 1 min. 
After dewaxing, the slides were placed in antigen retrieval buffer (20 mM Tris–HCl, pH = 9.0) for 30 min at 
90 °C.

Following the preparation steps, the proteins in TMA cores were reduced using RapiGest and DTT in 1 µL 
of 20% glycerol for 20 min at 55 °C, then alkylated using IAA in 1 µL of 25 mM ammonium bicarbonate (ABC) 
puffer and 20% glycerol for 20 min at room temperature in the dark. The digestion was done in a cyclic manner, 
each one lasting for 40 min at 37 °C in a humidified box, 5 cycles in total. In the first two cycles, LysC-Trypsin 
mixture was added in a 1:25 ratio, in 1 µL 50 mM ABC and 20% glycerol. Subsequently, in the last three cycles, 
Trypsin was added in a 1:10 ratio, in 1 µL 50 mM ABC and 20% glycerol. After the digestion steps, the extrac-
tion of the protein digest was done by repeatedly pipetting 1 µL 10% acetic acid extraction solvent five times on 
the cores. Peptide extracts were then dried down, and clean-up was performed using C18 spin columns (Thermo 
Scientific) using the manufacturer’s protocol. The resulting samples were dried down and stored at -20 °C for 
further usage.

Acetone precipitation.  Samples were reconstituted in 15 µL 1% FA and 150 µL ice-cold acetone was added 
and the solution was stored at -20 °C overnight. Then the samples were centrifuged at 13,000 g for 10 min, then 
the supernatants were removed, dried down, and stored at -20 °C. The pellet fractions were also dried down, 
then resuspended in 10 µL of injection solvent and subsequently stored in the autosampler unit until analysis.

nanoUHPLC‑MS(MS) analysis.  Samples were analyzed using a Maxis II QTOF instrument (Bruker Dal-
tonik GmbH, Bremen, Germany) equipped with CaptiveSpray nanoBooster ion source coupled to a Dionex Ulti-
Mate 3000 RSLCnano system (Sunnyvale, CA, USA). Peptides were separated on an Acquity M-Class BEH130 
C18 analytical column (1.7 μm, 75 μm × 250 mm Waters, Milford, MA) using gradient elution (isocratic hold at 
4% for 11 min, then elevating B solvent content to 25% in 75 min, and to 40% in 15 min) following trapping 
on an Acclaim PepMap100 C18 (5 μm, 100 μm × 20 mm, Thermo Fisher Scientific, Waltham, MA) trap column. 
Solvent A consisted of water + 0.1% formic acid, Solvent B was acetonitrile + 0.1% formic acid, and the sample 
loading buffer was 0.1% TFA and 0.01% heptafluorobutiric acid in water.

For proteomics, DDA measurements were used. The cycle time was set at 2.5 s, with a dynamic MS/MS exclu-
sion of the same precursor ion for 2 min, or if its intensity is at least 3 times larger than previously. Preferred 
charge states were set between + 2 and + 5. MS spectra were acquired at 3 Hz in the 150–2200 m/z range, while 
MS/MS spectra at 4 or 16 Hz depending on the intensity of the precursor. For glycoproteomics MS/MS measure-
ments, the experimental settings were similar, except for collision energies. Mixed energy spectra were collected 
at 100% collision energy for 80% of the cycle time and 50% collision energy for 20% of the cycle time. For single-
stage MS measurements, spectra were recorded over the mass range of 300–3000 m/z at 1 Hz. Following each run, 
raw data were recalibrated using the Compass DataAnalysis software 4.3 (Bruker Daltonics, Bremen, Germany).

Data analysis.  Software used: MASCOT (https://​www.​matri​xscie​nce.​com/), MaxQuant 1.6.17 (https://​
maxqu​ant.​org), Perseus 1.6.5.0 (https://​maxqu​ant.​org/​perse​us/), R 3.6.1 (https://​www.r-​proje​ct.​org/), RStudio 
1.2.5001 (https://​rstud​io.​com/), Byonic 3.8 (https://​prote​inmet​rics.​org), GlycoPattern 4.7_b30. Exact parameters 
used for all the software are summarized in Supplementary Table S9.

Proteomics.  Protein quantitation was performed by MaxQuant61 on a focused Homo Sapiens database 
made from combining MASCOT62 search results from all MS/MS analyses. The MaxQuant output was then 

https://biomax.us
https://biomax.us
https://www.matrixscience.com/
https://maxquant.org
https://maxquant.org
https://maxquant.org/perseus/
https://www.r-project.org/
https://rstudio.com/
https://proteinmetrics.org


10

Vol:.(1234567890)

Scientific Reports |        (2021) 11:15886  | https://doi.org/10.1038/s41598-021-95417-5

www.nature.com/scientificreports/

loaded into Perseus, where proteins found in less than 60% of each sample group were removed. Subsequently, 
missing values were imputed from a normal distribution with the default settings for the whole matrix (down 
shift of 1.8 and width of 0.3). Statistical analysis was then performed, using Two-sample tests (Student’s t-test), 
Multiple-sample tests (ANOVA), and post-hoc tests (Tukey’s HSD). The exact settings for the statistical tests are 
summarized in Supplementary Table S10. Data visualizations were done in RStudio using the ggplot2 library63.

Glycoproteomics.  In the glycoproteomics analysis, glycosites were identified from the LC–MS/MS analysis 
of pooled pellet samples using Byonic64 with a |LogProb| value of at least 2. The same LC–MS/MS experiments 
were used to identify the composition of various glycans at these glycosylation sites. GlycoPattern33 was then 
used to quantify the glycopeptides based on single-stage nanoLC-MS corresponding to the linear combinations 
of the glycosites and glycans previously identified. The software identified the glycopeptides according to their 
exact mass, retention time (RT), and isotope cluster distribution, then performed label-free quantitation.

Pre-processing and statistical analysis were then carried out using R65 in RStudio66. The data were first submit-
ted to outlier filtering, where identifications with a RT outside of the Q1 (first quartile)—1.5 IQR (inter-quartile 
range) to Q3 (third quartile) + 1.5 IQR range were thrown out. Then, through sequential filtering steps, any data 
points with an AUC less than 1000, glycopeptides identified in less than 5 samples, and samples with less than 
10 glycopeptides identified were removed. Subsequently, the data were normalized using Quotient Total Area 
Normalization followed by log transformation67. The degree of fucosylation (ratio of fucosylated versus non-
fucosylated glycopeptides) and sialylation (the ratio of antennae that contain sialic acid versus antennae that 
does not) were then calculated for every glycosite. Statistical analysis was carried out in Perseus similarly to the 
proteomics dataset (exact settings are summarized in Supplementary Table S10), data visualizations were done 
in RStudio using the ggplot2 library63.

STRING.  Functional Enrichment of proteins was performed in STRING68 for Gene Ontology (GO) Terms 
and Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathways. The minimum required interaction score 
was set to the highest confidence (0.900), for active interaction sources “Textmining” was excluded.

Data availability
Experimental data has been submitted to the MassIVE data repository with the ID: MSV000087329.
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