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ABSTRACT

Bovine blood samples were treated with high hydrostatic pressure (HHP) to examine the changes that may
occur in the blood related to its colour, microbiological characteristics, protein denaturation, and dynamic
viscosity. Pressure treatments were carried out from 100 to 600 MPa in 100 MPa scale up, with 5 min
holding time. The blood samples were treated with anticoagulant (EDTA) to eliminate the possible
measurement distorting effects. We found that 2 log reduction in the microbial load could be achieved with
a pressure treatment above 400 MPa. According to the protein denaturation measurements (DSC), blood
proteins were resistant to pressure treatment, even at 300-400 MPa a substantial part of proteins remained
in native state. The colour of the samples got darker with the rising pressure, however, visible colour change
was observed only above 400 MPa. It can be established, that the HHP treatment was suitable to increase
the microbiological stability of blood, without significantly changing its techno-functional properties.

KEYWORDS

bovine blood, microbiological stability, high hydrostatic pressure, colour, DSC

* Corresponding author. Tel.: +36 1 3057660. E-mail: Csehi.Barbara@uni-mate.hu


https://orcid.org/0000-0002-0100-0278
mailto:Csehi.Barbara@uni-mate.hu
http://dx.doi.org/10.1556/066.2020.00325

334 Acta Alimentaria 50 (2021) 3, 333-340

1. INTRODUCTION

Blood is a specific connective tissue in liquid state, built up from plasma with suspended ele-
ments in it, a rich source of iron and protein (Ofori and Hsieh, 2011). Blood as a resource is
currently scarcely used, despite the fact that the protein content of whole blood is approx. 18%,
the protein content of the plasma is 6-8 g dL ™" in pigs and 7-9 g dL " in cattle (In et al., 2002;
Lynch et al, 2017). Apart from it being a protein source, knowing the proportion of anaemia
caused by iron deficiency in the population - primarily among youngsters and women - the
other most important nutrient in blood is iron. Pig blood contains 1,490.14 mg kg~" of iron in
terms of dry matter content, which is outstanding among food products (Sorapukdee and
Narunatsopanon, 2017).

Last year's estimated “waste” of this rich protein source only from pigs was 6,465 tonnes in
Hungary, 625,352 tonnes in Europe, and 435,524 tonnes in the USA according to Eurostat and
USDA slaughter statistics from 2018 (Eurostat, 2020; USDA, 2020). It is estimated that China
produces 1,500,000 tonnes of pig blood per year with a protein content equivalent to 2,000,000
tonnes of meat or 2,500,000 eggs (Wang et al., 2007). If the blood is not collected for further
processing, it has to be treated as hazardous waste, so the industry is not simply wasting this
opportunity, but paying for treatment and neutralisation. Some of the blood and blood proteins
are used by the meat industry as a food ingredient as natural colourant, emulsifier, fat substitute,
or texture modifying agent. Only about 30% of the blood from slaughterhouses is used by the
food industry worldwide (Ofori and Hsieh, 2012). The blood reduces the amount of cooking loss
released during heat treatment by binding water and fat, also forming a kind of matrix that can
bind nutrients and flavourings (Chen and Lin, 2002; Toldra et al., 2008). Blood, containing all its
fractions, can only be added into food products in limited quantities. The characteristic smell,
colour, and metallic taste of blood is given by the heme part (Duarte et al., 1999). Haemoglobin
in the blood could be suitable for preventing the development of iron deficiency due to its higher
bioavailability ratio (Liu et al., 1996). However, without compromising the organoleptic prop-
erties of the final product, blood can be added to only about 0.5-2.0% of the product (Ofori and
Hsieh, 2012). According to this, blood must be divided into fractions for further use (even for
food industry), or innovation of blood-based food products should be encouraged. Consumer
preferences are significantly influenced by the colour of meat and meat products (Claus and Du,
2013). Therefore, it is essential that the colour of the finished products should meet the con-
sumer's acceptance, and if possible and technologically feasible, colourants with natural origin
should be used. Application of blood as natural colourant is one of the most popular way of
using blood. However, the suitability of a natural colourant in a given product is greatly
influenced by the form, quantity, and condition in which that specific colourant is available. The
microbiological quality of blood from slaughterhouses must be improved before it is used as a
food ingredient (Toldra et al., 2004, 2008). High hydrostatic pressure treatment (HHP) can be
suitable for this. HHP is a gentle food preservation process, during treatments the microor-
ganisms in food are partially or completely inactivated by treating the product at a pressure of
100-800 MPa, proteins in microbes are denatured (covalent bonds are broken down) and cell
death occurs (Morales et al.,, 2008), meanwhile organoleptic properties of the product only
slightly change (Campus, 2010). In case of the vegetative pathogens, 2-4 log reduction has been
observed in various meat products, resulting increased food safety, microbiological stability, and
shelf life (Bajovic et al., 2012). HHP treatment of blood and its use is a less researched topic.
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Toldra et al. (2004) found that HHP treatment of blood at 400 MPa for 15 min caused significant
improvement in microbiological quality and did not adversely affect colour characteristics or
protein solubility. However, it is essential to examine what kind of physical and chemical
changes may occur in the blood as a result of the pressure treatment and how these changes can
subsequently affect the properties of the final product.

2. MATERIALS AND METHODS
2.1. Samples

Bovine blood was obtained from a cattle herd of a rural farm, breed of Hungarian Simmental,
age of 6 years. For comparability and to analyse the effects of the pressure treatment, EDTA
(ethylene-diamine-tetra-acetic acid) was used as anticoagulant. The samples were vacuum
packed airtightly in polyethylene (Cryovac©, BB4L) package with an average weight of 50 g.

2.2. HHP treatments

High-pressure experiments were performed in a Resato FPU-100-2000 (laboratory scale, Resato
International B.V, The Netherlands) high-pressure equipment, that contained a pressurising
(1,600 mm X 2,200 mm X 830 mm) and a control (1,300 mm X 950 mm X 1,400 mm) unit.
The samples were subjected to pressure treatments from 100 MPa to 600 MPa with 100 MPa scale
up and 5 min holding time, uniformly. The pressure medium was propylene glycol (Resato PG
fluid) in the vessel. The initial temperature of the samples was 1-3 °C (cooled in icy water), and
due to the adiabatic heating, sample temperature increased by approximately 3 °C/100 MPa during
the treatments. The pressure profiles in the sample holder during the treatments were logged.

2.3. Colour measurements

The colour measurements were performed with a Minolta CR-400 (Minolta Co. Ltd., Osaka,
Japan) tristimulus colorimeter, repeated five times. During reflection colour measurement, the
three data provided by the instrument are L', a , and b, which can be used to infer the colour
and colour change of the samples. To calculate the total colour difference (AE") between un-
treated and treated samples, average values of L*, a*, and b” in the following equation were used:

AE" = [(AL")? + (Aa")? + (Ab")Y]™

where AL, Aa", és Ab*are the differences between the values of L*, a*, and b" in the untreated
and treated samples (Salamon et al., 2016).

2.4. Dynamic viscosity

For dynamic viscosity measurements Rheomat 115 (Contraves, Malaysia) rotary viscometer was
used based on the modified method of Islam and Azemi (1997). For coaxial cylindrical
(concentric) viscometers, the liquid is between the two measuring cylinders. Prior to mea-
surement, all samples were set to the same temperature (5 °C). Measurements were carried out
in triplicates. Dynamic viscosity (for non-Newtonian fluids) can be calculated from the reading
(), constant of the measuring system (z = 195.5) and the velocity gradient (D = 57.20 s~ ).
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Shear stress : 7 = a*z[mPa]

Dynamic viscosity : 7 = %[mPa]

2.5. Thermodynamic measurement (DSC)

A Micro DSC III (Setaram, France) microcalorimeter was used for thermodynamic analysis
of control and pressure-treated samples. The reference sample was distilled water. The samples
were measured in the temperature range of 20-95 °C, with a reduced heating rate of 1.5 °C min ™"
by the method of Davila et al. (2007). The measured sample volume was 778 + 10 mg in each
case. The obtained heat flux curves were evaluated with Callisto Processing 1.706 program.

2.6. Microbiological analysis

Determination of TVC was performed according to the ISO 4833-1: 2014 (2014) standard of
plate counting method by using TGA agar.

2.7. Statistical analysis

Statistical analyses were performed using SPSS 20.0 for Windows (Chicago, Illinois, USA). To
determine the effect of treatments, one-way analysis of variance (ANOVA) was performed at a
significance level of P < 0.05. Tukey's test was applied to compare the mean values when
ANOVA showed significant differences.

3. RESULTS AND DISCUSSION

3.1. Colour measurement

Due to the high pressure treatments, the L* colour parameter values decreased significantly
(P < 0.05), highest level of decrease could be observed particularly in case of 300, 400, and 500
MPa treatments (Fig. 1). The samples lost from their original brightness and became darker. The
a" red colour component results showed an intense decrease due to 300 MPa and above levels of
pressure treatments, changes were significant compared to the control sample (P < 0.05). The b*
yellow colour parameter also showed a significant change in the colour due to pressure treatments
at each level (P < 0.05). The colour of the blood is mostly given by the haemoglobin in it, so the
colour change after the pressure treatment is presumably related to haemoglobin. Bou et al. (2019)
found that chicken haemoglobin remains relatively stable after high hydrostatic pressure treat-
ment, however, methaemoglobin and insoluble forms of heme appear. Heme molecule part and its
Fe*"-ion redox chemistry properties are presumably responsible for the colour change.

3.2. Dynamic viscosity

Figure 2 illustrates the shear stress values obtained as a function of different shear rates. It can be
seen from the flow curves that with increasing levels of pressure treatments, the shear stress
values also increased. After 400 MPa treatment, the blood sample remained in liquid state, but
particularly in case of the 500 and 600 MPa pressure treatments, there was a significant increase



Acta Alimentaria 50 (2021) 3, 333-340 337

| mL* ma* oo

Colour values, L*, a* b*

-5 4 0OMPa 100 MPa 200MPa 300 MPa 400 MPa 500 MPa 600 MPa
MPa

Fig. 1. Changes in colour components of bovine blood after HHP treatment (Asterisk marks the significant
changes. The confidence level was 95%)
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Fig. 2. Changes in shear stress of bovine blood after high pressure treatment

in the viscosity of bovine blood samples (7 400 MPa = 23.95 Pas, n 500 MPa = 119 Pas, 600
MPa = 62.54 Pas, at highest shear rate), the observed differences were even in the order of
magnitude of the values. The proteins coagulate due to high hydrostatic pressure treatment,
causing to the blood to flow more densely. Presumably the protein denaturation in the samples
treated at 600 MPa caused a small amount of plasma release, which resulted in lower values than
in case of the 500 MPa. The Ostwald-de-Waele model was fitted to the different flow curves so
that the parameters of the flow curve could be quantified. The models proved to be adequate in
all cases based on the correlation coefficients (r* = 0.79-0.99). The power exponent “n” was less
than 1 in each case, which indicates a shear thinning rheological behaviour, therefore, by
increasing the deformation rate, the slope of the flow curve decreases, ergo the viscosity also
decreases. This probably happens because the damaged (denatured/aggregated) protein frag-
ments are more easily aligned with the direction of shearing during the measurement.

3.3. Thermodynamic measurement

The enthalpy peaks in Fig. 3 indicate the aggregation and denaturation of the proteins. Ac-
cording to literature data, the detected peak (68 °C - 70 °C) probably belongs to albumin, which
provides the largest part of blood proteins (Davila et al., 2007). On the thermogram, a decrease
both in the temperature peak and enthalpy values can be observed compared to the control
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Fig. 3. Changes in thermodynamic characteristics of bovine blood after HHP treatment

sample due to protein denaturation. Particularly at higher levels of pressure, such as 500 and 600
MPa, the enthalpy values decreased with 50% and 68%, respectively (Csehi et al., 2017). This

suggests that the amount of proteins that could be denatured by heat during the thermal analysis
was greatly reduced.

3.4. Microbiological examinations

The results of the microbiological measurements are shown in Fig. 4. It is clearly visible from the
initial values that blood is a great substance for microbial growth, 10> CFU g~ ' was detected
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Fig. 4. Microbiological changes of bovine blood after HHP treatment
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already in the control sample even as the samples were only minimally exposed to contami-
nation. From the results it can be concluded that even 100 MPa pressure treatment resulted in
an order of magnitude reduction of the number of microbes. As we increased the level of
pressure, the TVC number showed a decreasing trend. 400 MPa treatment destroyed nearly all
microbes in the blood sample, and above 500 MPa treatment their numbers were below
detection limit. Consequently, high pressure treatment can be a good alternative for blood
preservation.

4. CONCLUSIONS

Based on the above results, it can be established that high pressure treatment of 400 MPa is
already effective to reach the sufficient microbiological stability of bovine blood, as it results in a
2 order of magnitude microbial count reduction, possibly providing more stable raw material for
further processes from food safety perspective. According to the thermophysical measurements
(DSC), the pressure of 400 MPa does not yet cause severe changes in the protein structure, so the
blood remains in a liquid state, therefore, it can be used conveniently from a techno-functional
point of view.
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