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Abstract 

Automation risk prevails less in large cities compared to small cities but little is known about 

the drivers of this emerging urban phenomenon. A major challenge is that automation risk is 

quantified by work-related tasks that allows for measurement through occupation, which is in 

turn implicitly related to local economic structure and to individual career paths. This paper 

examines the role of working in cities on changes in automation risk through individual career 

mobility. Using panel data on Swedish workers, we show that the metropolitan effect of 

reducing automation risk is mainly induced through inter-firm job mobility. Separate estimates 

for different groups show that this effect accrues mostly to native, high-skilled and male 

workers. 
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1. Introduction 

Automation influences labour markets by replacing human workforce in certain tasks (Autor, 

Levy, & Murnane, 2003; Brynjolfsson & McAfee, 2014). Whether this threatens existing jobs 

or facilitates creation of new jobs depends on the type of investments into automation, worker 

skills and their potential renewal (Acemoglu & Restrepo, 2020a). Because investments into 

technologies as well as the skill level of human workforce typically differ across regions, the 

problem has a necessary spatial dimension. Accordingly, workers in small cities have been 

found to face higher automation risks than workers in large cities (Frank et al., 2018, Crawley 

et al., 2021). Further evidence suggests that investments into labour replacing technologies in 

metropolitan regions lead to employment growth in the long run because robots supplement 

automatable tasks that trigger upgrades in local skills (Leigh et al., 2020). Nevertheless, how 

individuals adopt their skills to avoid the threat of automation and how geography facilitates 

this process is one of the important questions in this quickly evolving, but still largely 

uncovered, field (Frank et al., 2019). 

In this paper, we expand on recent aggregate analyses (e.g., Crawley et al., 2021) by detailing 

the micro-mechanisms explaining the role of agglomeration in relation to regional automation 

vulnerability. Specifically, we look at how working in cities facilitates career upgrades and 

prevents automation risks. We argue that large labour markets create more favourable 

conditions for job mobility, through which individuals are able to reduce their exposure to 

automation. The role of cities in reducing automation risk therefore lies in facilitating upward 

career mobility. According to central tenets in urban economics, two mechanisms take place in 

cities in this regard. First, the demand for non-automatable tasks is high in cities due to their 

functional specialization (Duranton & Puga, 2005). Second, cities are arenas of learning that 

offer additional opportunities for individual workers to advance their career and perform tasks 

that are difficult to replace (Glaeser & Maré, 2001; Gordon, 2015; De la Roca & Puga, 2017). 
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However, workers are not homogenous in their ability to learn in cities, which arguably 

depends on their individual skill base and other personal attributes that may determine career 

mobility. High-skilled workers, for example, can further upgrade skills by learning while low-

skilled workers enjoy the demand for low-skilled non-automatable jobs (MacKinnon, 2017). 

The recent empirical analysis exploits employer-employee matched data covering a 10% 

random sample of the Swedish workforce over the 2005-2013 period. We apply the occupation-

level risk measure introduced by Frey and Osbourne (2017) to quantify how much an individual 

is exposed to automation. Descriptive statistics help us understand the role of cities in getting 

a low-risk job. Further, we apply multinomial logit models of occupation mobility that enables 

us to examine the role of large cities in helping workers to upgrade careers and prevent 

technology-driven displacement. 

Our results show that there are stark differences between small and large regions concerning 

the distribution of high- and low-risk automatable jobs. During this period, Sweden 

experienced a remarkable rise in the share of low-risk jobs that concentrated in metropolitan 

regions with a growing intensity. The largest cities of Sweden accounted for 58% of overall 

job creation between 2005 and 2013, which was 65% in the case of low-risk jobs. Workers in 

large cities have significantly higher chances of getting a low-risk job, which holds when 

controlling for unobserved individual heterogeneity. We find that workers decrease automation 

risk differently, depending on their sex and skill level. Evidence implies that high-skilled male 

workers (at least a college degree) realize dynamic career upgrades suggesting that networking 

and learning in cities helps them prevent automation risk. However, for female workers, low 

educated workers (less than college degree) and immigrants these effects are relatively smaller. 

Our finding that it is much easier for skilled workers to find automation-proof jobs in metro 

areas provide some empirical support for Moretti's (2012) idea that one of the major factors 

behind the spatial selection of skilled workers is the ongoing clustering of new 'innovative' 
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jobs. 

After this introductory section, the paper proceeds in four steps. The next section provides a 

review of the literature that is followed by an explanation of our estimation strategy. The fourth 

section introduces data and sets the stage for the individual-level econometric analysis in the 

fifth section. The paper then ends with some concluding remarks. 

 

2. Static and dynamic career upgrades 

As recent advances in the fields of automation technologies change everyday life, their 

prospective effects on the labour market have, unsurprisingly, become the subject of public 

concern. In a recent OECD report, Nedelkoska and Quintini (2018) argue that about 46% (ca 

210 million) of all jobs across 32 different countries face at least a 50% chance of being 

replaced by machines in the near future. At the same time, divergence and increasing regional 

differences characterize regional development in many developed economies (Storper, 2018; 

Iammarino et al., 2019). This accentuates further challenges in sustaining employment and 

welfare in many non-core regions. Although broad discussions in society premise the ’end-of-

work’ by stressing the adverse labour market effects of automation, it is still a matter of 

academic debate how automation will indeed influence labour markets. While some argue that 

the development and widespread adoption of artificial intelligence, robotics and other 

computer-aided manufacturing technologies imply the displacement of workers performing 

’rule-based’ routine tasks (Autor, Levy, & Murnane, 2003; Levy & Murnane, 2004; 

Brynjolfsson & McAfee, 2014; Autor, 2014; Heyman 2014; Acemoglu & Restrepo, 2018a; 

2019), others emphasize that automation increases the demand for labour in high-skill 

complementary tasks (e.g. programming, maintenance, design), and other seemingly unrelated 

non-tradable activities (e.g. culture, arts, leisure, personal services) through inter-industry 

spillovers (Autor & Salomons, 2018; Moretti, 2010). 
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Whether disruptive technological innovations will influence the future of work independently 

from the location of jobs is however a rarely addressed question. Some studies using aggregate 

data on robot adoption have recently showed that automation reduce the employment share of 

workers performing production-related routine tasks (Graetz & Michaels, 2018; Autor & 

Salomons, 2018; Acemoglu & Restrepo, 2020). Although the absence of detailed data limits 

our understanding on how automation-driven displacement may unfold in the spatial economy, 

these findings suggest that differences across local economies in terms of motivation and 

ability to adopt such technologies might be present.  

Research antecedents on the locational patterns of job-creation suggest that the labour market 

effects of automation could indeed vary across space and hence affect workers differently 

depending on their location. Since production-related routine occupations are easier to manage 

and control remotely by codified rules, they tend to be located on the outskirts of cities or in 

rural areas, where land rents and wages usually are lower (Scott, 2009; Moretti, 2012; Storper, 

2013). At the same time, the demand for both creative and high-skill jobs is higher in cities as 

well as the demand for low-skill service jobs (e.g. catering service workers, childcare workers, 

geriatric nurses, janitors, cleaners, hairdressers etc.) (Scott, 2009). Additionally, technology-

driven job-creation tends to be confined to larger urban areas where related activities, 

innovation capabilities and market knowledge competences have been already present 

(Shutters et al., 2016; Muneepeerakul et al., 2013). Consequently, as with the general 

geography of displacement, small cities and rural areas are likely to be hit harder by job 

displacement via the automation of production-related tasks, while large cities remain resilient 

or could even benefit from the positive employment effects of the on-going technological 

change (Eriksson & Hane-Weijman, 2017; Andersson et al., 2020). 

A recent study on U.S. MSAs corroborates this perspective by showing that small cities have 

higher average automation risk than large cities (Frank et al., 2018). Since the automation risk 
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measures frequently adopted for such empirical analyses are usually calculated at the 

occupation-level (see e.g. Frey & Osbourne, 2017; Arntz et al., 2016), the findings of Frank et 

al. (2018) and other similar studies (see e.g., Henning et al. (2016) for similar Swedish findings 

on regional automation risks and Crawley et al. (2021) for European NUTS regions) should be 

interpreted with caution. The average ‘automation risk’ of a geographical unit (or an industry) 

compresses all the information that the local occupational mix hides within itself. Given that 

the occupational structure of a region is primarily shaped by the local demand for tasks, spatial 

differences in automation risk reflect a set of location-specific attributes and also factors 

associated with the local industry structure. 

The demand for non-automatable tasks tends to be higher in large cities because of functional 

specialization (Duranton & Puga, 2005). Information- and communication technologies (ICT) 

allows firms to rationalize their production in space, move routine tasks offshore and keep only 

managerial tasks, creative activities and their supporting services in the largest cities. Some of 

these jobs do not require high educational attainment but social skills that usually are 

considered as ’bottlenecks’ of automation (Autor, Levy & Murnane, 2003; Levy & Murnane, 

2004; Frey & Osbourne, 2017). Since the overall share of less-automatable jobs tends to be 

higher in cities, workers who move to large cities are therefore expected to have a better chance 

of starting such low-risk jobs. We refer to this as the static upgrade in the career of moving to 

a city which prevails when the worker gets a relatively less-automatable job in a large city 

irrespective whether job search precedes moving or vice versa. Static upgrades can also be 

considered as occupational shifts that cause an one-off reduction in the automation risk by 

allowing workers to find less-automatable jobs in large cities with relative ease.1 Therefore, 

these one-time career upgrades cannot be considered as pure “city-effects” because they stem 

from simply the occupational structure of the local labour demand. 

                                                 
1
 Gordon (2015) labelled this one-off impact of moving to large cities as ‘elevator effects’. 
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Another way through which working in cities contributes to the prevention of automation risk 

is that workers in cities can step ahead in their career within a shorter period of time. Career 

progression in cities particularly depends on jobs that offer access to highly-valued elements 

of tacit knowledge and professional networks (Gordon 2015). That is, being exposed to cutting-

edge skills, gathering experience at top ranked employers and making valuable personal and 

business connections might have long-lasting effects on the career-path and job prospects of 

workers (De la Roca & Puga, 2017). Hence, individuals with urban work experience gain 

access to a wider range of better job positions, or become entrepreneurs easier (Faggio & Silva, 

2014). We refer to these vertical shifts along the career ladder as dynamic upgrades because 

they develop over time through the accumulation of knowledge and networking capital within 

cities. Recently, De la Roca and Puga (2017) provided some indirect evidence on such dynamic 

upgrades by showing that working in cities is associated with faster average wage growth.2 

Since tasks performed at higher levels of the career ladder (e.g., providing expertise, managing 

resources, negotiating, and interfacing with customers etc.) require interpersonal skills of 

different types (Borghans et al., 2008), occupational mobility through dynamic upgrades 

accompanies a reduction of automation risk. 

Note that the mechanisms underlying within-city dynamic upgrades are much more diverse 

than in the case of static upgrades where downward changes in automation risk stem from the 

fact that low-risk jobs tend to concentrate in large cities. Rather, dynamic upgrades in cities 

are, in part, the consequence of learning opportunities (Glaeser, 1999; Glaeser & Maré 2001; 

Gordon, 2015; De la Roca & Puga, 2017), effective information-exchange through social 

networks (Ioannides & Loury, 2004), and increased early-career job turnover (Wheeler 2008). 

Hence, the role of cities in reducing individual automation risk can be grasped through dynamic 

                                                 
2
 D’Costa and Overman (2014) found that the urban wage growth premium is larger for young workers. 
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career upgrades. However, to properly examine the extent to which such within-city upgrades 

help reduce automation risk, one has to rule out other factors determining occupational 

structure, especially unobserved worker heterogeneity. Controlling for worker heterogeneity 

is extremely important because the probability of getting a non-automatable job is likely to 

vary by unobserved abilities. As shown by Heckman, Stixrud & Urzua (2006) and many others, 

non-cognitive abilities and personality traits determine occupational preferences and the career 

path of workers.  

Taking individual characteristics into account when examining dynamic upgrades is also 

important because workers with different backgrounds may benefit from urban career 

opportunities to different degrees. In this sense workers in cities are not necessarily protected 

from technology-induced unemployment to the same extent. As argued by Sicherman and 

Galor (1990) upward career mobility is more likely among educated workers due to their better 

capabilities to adapt to various work situations. Therefore, workers with high educational 

attainment (college degree or more) are expected to be the primary beneficiaries of the dynamic 

upgrades in cities. Beside human capital, however, there are other individual and structural 

factors that determine workers' potential for career mobility (e.g., family background, 

household division of labour, labour market discrimination etc.) These factors may influence 

workers' networking behaviour, access to job information and therefore cause substantial 

differences between women and men, native workers and immigrants in career mobility. By 

examining effect heterogeneity across workers with different attributes one can identify the 

less resilient worker groups that remain susceptible to automation irrespective of their location. 

 

3. Modelling individual automation risk dynamics 

We begin with a simple conceptual framework in which changes in workers' automation risk 

are linked to individual attributes through occupation mobility choices. Since the extent to 
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which workers are exposed to the threat of automation depends mainly on the task-content of 

their jobs, most of the changes in automation risk necessarily stem from movements across 

jobs. More precisely, it comes from job mobility that involves the change of occupation. Hence, 

any factor that influences job mobility options has an indirect effect on individual exposure to 

automation. 

As in Sicherman and Galor (1990), job changes are assumed to result from an intertemporal 

utility maximization problem in which workers seek for a sequence of jobs that form an optimal 

career path. Expected lifetime utility is a function of potential earnings but the choice set of job 

mobility options are constrained by both individual attributes (e.g. personality traits, skills, 

education, family background etc.) and a set of other factors external to the worker. For 

example, intra-firm mobility is uncertain in the sense that within-firm job transfers and 

promotions are subject to the employers’ decision, whereas inter-firm mobility is constrained 

by the availability of local job opportunities. Consequently, at any point in time workers choose 

from a constrained set of mobility options. Then, this choice determines the direction of 

temporal shifts in the worker’s automation risk.  

Consider a panel of i = 1, 2, ..., N workers in which automation probability and other covariates 

are observed for t = 1, 2, ..., T periods. Between any consecutive periods t and t+1, workers go 

through one of the following alternatives described by j: moves to a job with lower automation 

risk (j = 1), moves to a job with higher risk (j = 2), or neither (j = 0). Suppose that, for each 

worker i and transition alternative j there is a continuous measure, 𝑦𝑖𝑗𝑡
∗ , that describes the 

feasibility of transition j for worker i. Since each transition alternative results from job changes 

(occupation changes), 𝑦𝑖𝑗𝑡
∗  depends on all factors that influence worker i’s choice set of 

mobility options: 

 𝑦𝑖𝑗𝑡
∗ = 𝑥𝑖𝑡′𝛽𝑗 + 𝜖𝑖𝑗𝑡, (1) 
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where 𝑥𝑖𝑡 is a vector of observed variables.3 Assuming that 𝜖𝑖𝑗𝑡 is i.i.d. across all outcomes and 

follows a type-I extreme value (Gumbel) distribution gives rise to a multinomial logit (ML) 

model where the probability of transition j can be written as: 

 
Pr (𝑦𝑖𝑡 = 𝑗 | 𝑥𝑖𝑡)  =  

exp(𝑥𝑖𝑡′𝛽𝑗)

∑ exp(𝑥𝑖𝑡′𝛽𝑗)𝑗

. (2) 

where 𝑦𝑖𝑡 is the actual outcome for individual i in period t. As discussed in Section 2, the size 

of the urban labor market may also influence the choice set of individual job mobility. 

Therefore, it is reasonable to include a variable into 𝑥𝑖𝑡 that reflects the size of the urban labor 

market where individual i works. Specifically, we assume that 𝑥𝑖𝑡′𝛽𝑗 = 𝑧𝑖𝑡′𝛿𝑗 + 𝑑𝑖𝑡𝛾𝑗 , where 

𝑧𝑖𝑡 is a vector of individual attributes (such as sex, age, marital status, educational attainment 

etc.) and 𝑑𝑖𝑡 is a dichotomous variable that takes value 1 if the individual works in a large 

metropolitan area. Since the paper aims to examine the role of large urban areas in reducing 

automation risk we focus on the identification of 𝛾𝑗 for j = {1,2}. To the extent that working in 

metro areas positively affects mobility into low-risk jobs, one would expect that 𝛾1 has a 

positive sign. Such reasoning, however, raises at least two issues. First, since the probability of 

each transition alternative j is explained by variables observed right before the transition itself, 

𝛾𝑗 coefficients in Eq. (1) capture multiple career-upgrading mechanisms depending on whether 

job mobility between t+1 and t involves changes in location or not. While in the case of workers 

who change jobs within metro areas, 𝛾1 captures the career upgrading effects discussed by 

Fielding (1992) and Gordon (2015), workers who decide to accept a job in a smaller labor 

market, the same coefficient captures the ‘static downgrading effect’ of moving into a rural or 

small urban area where the access to low-risk jobs within a reasonable commuting time is much 

more limited. For the same reason, 𝛾2 might be biased toward zero as well.4 

                                                 
3
 Sicherman and Galor (1990) used a similar model to investigate the role of education in intra- and interfirm 

career mobility. 
4
 Since learning activities do not necessarily involve job mobility, 𝛾𝑗 coefficients cannot capture the whole 
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A convenient way to identify the career-upgrading effects of cities is using data only for periods 

when workers did not move in or out of the same region type, that is, removing ‘move-years’ 

from the sample. By doing so we can eliminate the one-off static effect of migration and focus 

only on within-city dynamic upgrades that happen during the stay in the same region type.5 

Another issue concerning the estimation of 𝛾𝑗s in Eq. (1) is spatial sorting arising from the 

endogenous location choice of individuals. For instance, it seems plausible that individuals 

with specific career preferences choose to locate in large cities, because they expect continued 

career growth after moving in, or because certain job opportunities are simply not available 

elsewhere (e.g., prestigious jobs in high-tech industries or jobs requiring higher education). At 

the same time, as shown by Bacolod, Blum and Strange (2009), cognitive and social skills are 

rewarded more in large urban areas which might also push workers with such skills toward 

cities. Since these skills are also important determinants of occupational choice (see, e.g. 

Borghans et al., 2008; Heckman et al., 2006), they may also influence the probability of moving 

to a low-risk job. To properly examine the extent to which within-city career upgrading 

mechanisms help reduce automation risk, unobserved worker heterogeneity has to be ruled out. 

A straightforward way to address this issue is introducing worker fixed effects (𝛼𝑖) into Eq. (1) 

which implies the following transition probabilities: 

Pr (𝑦𝑖𝑡 = 𝑗 | 𝑥𝑖𝑡)  =  
exp(𝛼𝑖 + 𝑥𝑖𝑡′𝛽𝑗)

∑ exp(𝛼𝑖 + 𝑥𝑖𝑡′𝛽𝑗)𝑗

, 𝑗 = 0,1,2. 

As it is well-known, introducing fixed effects into logit models makes the maximum likelihood 

estimator (MLE) inconsistent. However, as shown by Chamberlain (1980), time-invariant fixed 

effects can be eliminated by using a likelihood function that conditions on the counts 𝒔𝒊𝒋 of the 

number of observations for each person i in which 𝑦𝑖𝑡 = 𝑗. Let 𝑣𝑖𝑗𝑡 be an indicator variable that 

                                                 
spectrum of dynamic career effects discussed in Section 2, only those that result in occupation mobility. 
5
 This strategy follows that of D’Costa and Overman (2014) to identify the urban wage premium. 
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takes value 1 if 𝑦𝑖𝑡 = 𝑗 and define 𝒔𝒊𝒋 = ∑ 𝑣𝑖𝑗𝑡
𝑻𝒊
𝒕=𝟏 . The conditional log-likelihood function to 

be maximized is 

 

log 𝐿𝑐  = ∑ log [
exp(∑ 𝑣𝑖𝑗𝑡𝑥𝑖𝑡′𝛽𝑗

𝑇𝑖
𝑡=1 )

∑ exp(∑ 𝑤𝑗𝑡𝑥𝑖𝑡′𝛽𝑗
𝑇𝑖
𝑡=1 )𝑤∈𝛶𝑖

]

𝑁

𝑖=1

 , (3) 

 

where 𝛶𝑖 = {𝑤 = (𝑤11, … , 𝑤𝐽𝑇) | 𝑤𝑗𝑡 = {0,1}, ∑ 𝑤𝑗𝑡
𝑇
𝑡=1 = 𝑠𝑖𝑗} is the set of all permutations of 

the observed sequence of transitions for individual i. Conditional maximum-likelihood 

estimates obtained by maximizing Eq. (3) are consistent and asymptotically normal, but due to 

the information loss that comes from using only within-group variation, it is not fully efficient 

(Greene 2012).6 Moreover, when fixed-effects are introduced into the model, estimates of 𝛾𝑗’s 

come from the sub-sample of those who moved across region types, because for immobile 

workers location is a time-invariant fixed effect. Since move-years are dropped from the 

sample in order to get rid of the static effect of migration, in the presence of fixed-effects the 

identification of within-city dynamic upgrades is based on the observations that pertain to the 

‘non-move years’ of those who moved to another region-type at least once. 

Given that mobile workers choose from a wider set of suitable job opportunities and therefore 

climb the career ladder much faster (van Ham, Mulder & Hooimeijer, 2001), they might not be 

representative of the whole workforce. Hence, in the presence of individual fixed effects the 

resulting estimates of 𝛾𝑗s cannot be referred to the whole population. Nonetheless, estimating 

Eq. (3) and excluding observations for move years are the best we can do to examine the role 

of cities in reducing individual automation risk.7 Of course, this approach can be used to 

identify the effects of more than one urban category or, indeed, a full set of city-region 

                                                 
6
 Note that, for workers where 𝒔𝒊𝒋 = 𝑇, are not used by the MLE, because their log-likelihood is equal to zero. 

7
 Estimating Eq. (3) also has the drawback that average partial effects cannot be evaluated without specifying the 

distribution of 𝛼𝑖 Therefore, the results are interpreted as odds-ratio effects. 
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dummies. Since figures on the distribution of automation risk (see Figures 1-2) suggest that 

low-risk jobs tend to concentrate in the three Swedish metropolitan areas and a few other large 

cities, in some of the specifications we consider multiple urban categories (metros and large 

urban city-regions). 

 

4. Data and measurement 

We use matched employer-employee data from Statistics Sweden covering the years between 

2005 and 2013. In this data, the annual wages of individuals active on the Swedish labour 

market, as well as their occupations, place of work and place of residence at the municipality 

level are recorded (along with other individual attributes like age, sex, family status etc.). The 

period 2005-2013 is chosen due to two reasons (c.f., Henning & Eriksson 2021): Previous 

accounts have not identified labour market polarization tendencies in Sweden prior to the initial 

year of our analysis, which makes this period particularly suitable for our purpose as we can 

expect substantial occupational shifts to occur. Second, the final year is chosen due to a revision 

in occupation codes from 2013 and onwards which makes comparisons prior and after 2013 

virtually impossible. To define occupations, the 4-digit SSYK-96 occupation nomenclature is 

used which is broadly consistent with the international ISCO-88 classification. 

Workers are allocated to municipalities using the address of the workplace. The municipalities 

are then classified into three region-types; metro areas, large urban areas and small regions. 

The ’Metro areas’ category labels the three largest cities of Sweden (Stockholm, Göteborg and 

Malmö), ‘Large urban areas’ labels other urbanized areas and university cities such as Umeå, 

Linköping, Karlstad etc. while ‘Small regions’ refers to the remaining, mostly sparsely 

populated, regions of Sweden. Originally, Statistics Sweden distinguishes between five 

categories of which the first and second correspond to our ‘Metro’ and ‘Large’ categories, and 

the rest makes up our ‘Small’ category. We focus on a small number of predefined region 
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categories because in fixed-effects ML models identification relies on observing outcomes for 

workers who move across region types (as discussed in Section 3). Hence, considering a full 

set of region dummies would not be reasonable due the relatively small amount of worker 

mobility in the data. 

As shown in Table A1 in the appendix, almost half of the population resides in the three 

metropolitan regions (49% in 2013) and about 52% of all employees. It is also where the 

greatest job growth has taken place (11.8%), while the number of employees has declined by 

about 1% in the small regions. Although the income levels are lower in the smallest regions 

the employment decrease is accompanied with the greatest relative increase in incomes. 

Manufacturing industries as well as occupations closely connected to manufacturing (e.g., 

machine operators and assemblers belonging to SSYK-codes 7 and 8) has withdrawn in a 

similar pace in all region-types but in the larger regions this is more accompanied with an 

increase in occupations requiring a college degree. This implies a divergence in the structural 

change as manufacturing jobs usually not requiring a college degree are replaced with new jobs 

requiring a college degree in the largest regions while that is not the case in the smallest regions 

(Henning & Eriksson, 2021). It also signals the spatial division of employment in Sweden as 

manufacturing indeed is present in the larger regions but that is often administrative units while 

more of the production units (employing the machine operators and assemblers) to a greater 

extent is found in the smaller regions. 

 

Measuring automation risk 

We measure automation risk using the estimates of Frey and Osbourne (2017) who looked at 

the US Department of Labor’s O*NET database to assess the probability of computerisation 

for 702 elements of the 6-digit Standard Occupational Classification (SOC).8 Automation 

                                                 
8
 In their study Frey and Osbourne (2017) proposed a mixed methodology that involves both expert evaluations 
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scores were matched to the Swedish data in two steps. We mapped SOC-10 codes onto the 

SSYK-96 classification using official correspondence tables between SOC-00, ISCO-88 and 

SSYK-96. As neither of the conversion tables provide a one-to-one correspondence, in the case 

of multiple correspondences automation scores were averaged out. As a result, 352 (out of 355) 

of the 4-digit SSYK-96 occupations were given a score. 

Although the O*NET dataset offers detailed information on the task content of occupations, its 

limitation for the measurement of automation risk is substantial. Most significantly, it provides 

data on job characteristics at the level of occupations and not workers. Since the actual task 

content of an occupation may vary across regions, it is possible that moving to another region 

type but staying in the same occupation may result in considerable changes in the automation 

risk of the individual. Moreover, workers may acquire new skills to become less susceptible to 

automation. As a result, some employees will be more valuable for the firm than others, even 

within the same occupation.9 Since learning activities does not necessarily involve any form of 

job mobility, the coefficient on workplace location (𝛾𝑗) cannot therefore capture the whole 

spectrum of dynamic career effects discussed in Section 2, only those that result in horizontal 

or vertical occupation mobility. 

Table 1 lists some SSYK-96 occupations from the top and bottom of the automation risk 

distribution. The less-susceptible occupations include medical doctors, psychologists, special 

education teaching professionals, therapists and nurses. Clearly, this group of occupations 

involve tasks such as caring, communication and social perceptiveness. The most susceptible 

occupations, however, involve routine tasks and mostly require physical skills. This group 

                                                 
and machine learning methods. As a first step, a group of AI experts were asked to hand-label 70 occupations, 

assigning 1 if automatable, and 0 if not. Then, the authors identified several O*NET variables that describe the 

level of perception and manipulation, creativity, and social intelligence required to perform these occupations. 

These variables were used to train a machine learning algorithm that provided a probabilistic assessment of 

automation risk for all 6-digit SOC occupations (including the 70 test occupations). Estimates are available in the 

appendix of Frey and Osbourne (2017). 
9
 Especially, when employees have access to certain firm-specific knowledge assets. 
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contains occupations such as manufacturing workers, assemblers and low-skilled clerks. 

The spatial division of labour imply that regions vary considerably in terms of what kind of 

activities are exposed to automation. Table 2 provides a short list of the most common low- 

and high-risk occupations for each region-type. As shown in the upper panel, in metro regions 

the least susceptible occupations mainly refer to sales activities and high-skill occupations 

(such as computer designers, programmers and high-education teaching professionals) while 

in large and small regions preschool and primary-level teaching are the most common low-risk 

activities. Conversely, in small and large urban regions employment in high-risk occupations 

is mostly found among different forms of machine operators and assemblers, while in metro 

regions it concerns clerks and service workers (lower panel). As depicted in Figure 1, these 

occupational disparities between region types concern the spatial concentration of low-risk 

occupations. The larger the region in terms of employment, the greater the concentration of 

low-risk occupations. Comparing 2005 with 2013, we also find indications that average 

automation probability tends to increase in smaller regions while remaining fairly stable in the 

largest ones. Hence, during the period we study in this paper, smaller regions have become 

increasingly susceptible for automation. 

This is partly related to the ongoing spatial division of job creation and destruction in Sweden, 

as the creation of new jobs have been mainly attributed to the large urban regions during the 

last decades (Eriksson & Hane-Weijman, 2017). As shown in Figure 2 (right) employment has 

mainly increased in the largest regions, while the relatively few remaining jobs in smaller and 

peripheral regions to the north-western border and central parts of Sweden is associated with 

an increasing automation risk over time (left). 
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Sample characteristics 

Summary statistics of our variables are reported in Table 3 which distinguishes between movers 

(i.e., those who move at least once across region-types) and stayers (i.e., those who stay in the 

same region-type). Since in fixed-effects multinomial logit models, the identification of region-

type dummies is based on movers only (for reasons discussed in Section 3), it is important to 

see whether there are any systematic differences between the group of movers and stayers. 

Only 12% of the observed workers changed location at least once during the period 2005 to 

2013. The average mover is five years younger than the average stayer (43 years). Workers 

between 16 and 34 years moving for the first job or education are thus more geographically 

mobile (Lundholm, 2007). The largest number of observations can be found in the ’35-44 

years’ age category in the full sample, however, movers concentrate in the category ’25-34 

years’. 48% of the observed workers are women and 43% have at least one child. Along these 

attributes slight differences can be seen between movers and stayers. Among movers there are 

fewer women and parents. One-third of the overall sample have a college degree, while in the 

case of movers the proportion of highly educated workers is 7 percentage points higher (40%). 

On average, 87% of the observations are individuals working in metros or other large cities in 

year t, and metro regions alone represent half of the overall sample. The regional division 

however conceals considerable differences between moving categories. More stayers tend to 

work in metro areas (52%) than movers while more movers locate in large cities (43% 

compared to 36%). These figures, by and large, confirm previous studies on mobility in Sweden 

showing that the main flows are between small and large regions, and large regions and metros, 

respectively (Eriksson & Rodriguez-Pose, 2017). 

Considering non-move years only, 6.1% percent of the observations correspond to years when 

workers decrease their automation risk by moving to low-risk jobs in metro areas. The 

prevalence of downward changes in automation risk is 5.2% in large urban regions and 5.1% 
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in small regions. Similar patterns can be found when focusing on occupation mobility that 

involves upward changes in automation risk. While in metro areas 22.3% of the observations 

relate to such risk changes, in small regions this ratio is 20.7%. According to these statistics 

job mobility that involves changes in automation susceptibility increases with the size of the 

region. Moreover, job mobility is more common among movers in any type of region. 

In order to make the discussion on automation risk dynamics more concrete, it is worthwhile 

considering some typical examples of occupation mobility that involve downward/upward 

changes in automation risk. Table A2 in the Appendix lists the most common occupational 

transitions for each region type. As can be seen there, these occupational changes are 

independent of location and happen within a narrow range of activities. In most cases workers 

seem to choose occupations in which they can utilize their expertise and previously acquired 

knowledge (e.g., nurses/midwives, cashiers/salespersons, construction workers/frame builders) 

and this motivation is independent of whether the occupational switch involves downward or 

upward changes in automation risk. 

 

5. Results 

Reducing automation risk in metro areas 

We begin by estimating Eq. (2) ignoring unobservable individual heterogeneity but removing 

periods when workers moved to another region type. In this baseline multinomial logit model 

transition probabilities are explained by a set of individual characteristics such as sex, age, 

education, place of birth, having children and also a dummy for working in metro areas. Given 

that the domain of automation probability is the interval [0,1] the automation risk of the 

worker’s current occupation is also included into the model to control for further career 

upgrading opportunities. Since workers in the lower tail of the automation risk distribution 

(e.g., medical doctors, dieticians and speech therapists, see Table 1) are hardly able to further 
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reduce their automation exposure by changing occupations, one would expect that changes in 

automation risk between t+1 and t is negatively correlated with the initial risk level observed 

in period t. 

Columns (1) and (2) of Table 4 report the logarithm of relative risk-ratios for the baseline 

model. These estimates show that individuals in metro areas are more likely to change 

occupations than those who work elsewhere. Working in metro areas is associated with a 16.2% 

increase in the relative risk ratio of downward changes in automation risk and a 5.2% increase 

in the relative risk ratio of upward changes (relative to the baseline of no change). As discussed 

earlier, however, unobserved individual attributes such as personality traits and skills may be 

important determinants of job mobility. Because such unobservables are correlated with 

workplace location, these estimates are likely to be biased. Columns (3) and (4) report the 

maximum-likelihood estimates obtained by maximizing the conditional log-likelihood function 

in Eq (3). Since the conditional MLE removes subjects where the dependent variable does not 

vary in time, the number of observations drops by 0.8%. The results show that working in 

metro areas is associated with a significant increase (19.5%) in the odds of reducing automation 

risk by moving to less susceptible occupations versus staying in the same occupation. At the 

same time, the effect on the relative chance of upward changes drops and becomes 

insignificant. The last model in columns (5) and (6) introduces another locational dummy for 

large urban areas but the results remain unchanged. The probability of moving to jobs with 

lower automation risk is only higher in metros (relative to small regions) and working in metros 

or other large urban regions does not increase the odds of upward changes in automation 

exposure. 

Results in Table 4 suggest that only workers in metros are more likely to reduce their 

automation susceptibility through occupational changes. However, as argued in the previous 

section, a large proportion of observed job changes are horizontal movements that take place 
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between occupations with more or less similar task-contents. This naturally raises the question 

of whether metro areas only contribute to horizontal job mobility or also facilitate career 

upgrades that imply larger drops in automation risk. Since the baseline model is unable to 

answer this question at its current form, we proceed by estimating the same model with a 

threshold for minimum risk changes. By looking at changes that exceed this threshold, we can 

separately examine whether working in metros (and other large urban areas) promotes faster 

career advancement. The threshold was chosen to match the variance of annual risk changes 

(10 percentage points), which modified the set of transition alternatives in the dependent 

variable as follows: (i) moves to a job where automation risk is at least 10 percentage points 

lower (ii) moves to a job where risk is at least 10 percentage points higher, (iii) neither.10 

Point estimates for relative risk-ratios in the first two columns of Table 5 suggest that workers 

in metro areas are more likely to undertake occupation shifts that result in greater changes in 

automation risk. Working in metros is associated with a 21.9% increase in the odds of 

decreasing automation susceptibility at least 10 percentage points. Compared to metros, large 

urban areas have a much smaller impact on career upgrades which completely disappears in 

the conditional ML model that allows for fixed effects (columns 3 and 4). This model shows 

that working in metro areas increases the odds of reducing automation risk by at least 10 

percentage points (by 20.6%) and also decreases the odds of increasing automation 

susceptibility (by -11.1%). Thus, not only the chance of horizontal job mobility is higher in 

cities, but also, upward job mobility that reduces individual susceptibility to a greater extent.  

Overall, there is evidence of a broad contrast between the workers of the largest Swedish metros 

and those who work in other parts of the country. Workers in metropolitan areas are more likely 

to reduce their automation exposure through occupational mobility. Since the models are 

                                                 
10

 Given that the results may be sensitive to the choice of the threshold, we also ran the ML model using other 

values (i.e 25 percentage points) but they led to the same conclusion. 
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cleared of unobserved worker heterogeneity and the confounding effects of migration (by 

dropping all observations corresponding to move years) this result can be attributed to the 

dynamic career upgrading or “escalator” effect of metropolitan areas. 

 

The role of inter- and intra-firm upgrades 

 

Given that our data provide information on employer-employee matches we can distinguish 

between two types of job mobility through which automation risk can be reduced. The first is 

inter-firm mobility (when the workers move across firms), and the second is intra-firm mobility 

(when they are promoted or transferred to another job within the same firm). As argued in 

Section 2, large labour markets provide more opportunities to reduce automation risk through 

inter-firm mobility, however, the relationship between the size of the labour market and within-

firm job mobility is less clear. Wheeler (2008) argues that workers in cities converge to 

efficient job matches earlier because large urban markets allow them to try themselves in a 

wider range of jobs and thus learn more quickly about their abilities. As job turnover decreases 

with work experience in cities, intra-firm upward mobility becomes more important as a source 

of career upgrading that reduces workers’ susceptibility to automation. Since breaking up 

productive matches is not in the interest of the employer, firms in urban areas might prefer 

promoting their proven employees in order to keep them. On the other hand, if large urban 

labour markets allow firms to enhance productivity by recruiting skilled workers at lower costs 

and productivity gains from channeling external knowledge are sufficiently high, employers 

may prefer hiring new employees (poaching) over investing and promoting one of their existing 

staff members. 

To unravel the relative role of intra- and inter-firm career upgrades in the reduction of 

individual automation risk we consider another model where the dependent variable consists 
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of the following transitions: (i) moves to a job with lower automation risk within the same firm, 

(ii) moves to a job with lower automation risk in another firm, (iii) moves to a job with higher 

automation risk (iv) neither. We do not distinguish between intra- and interfirm mobility in 

case of increasing automation risk because intrafirm job changes that increase automation risk 

are rarely observed in the sample. Considering a distinct outcome for these rare events would 

thus lead to biased estimates (see e.g. King and Zeng, 2001). 

Given that the number of potential employers within the region strongly influences the 

possibility of movement between employers, we include the number of firms per 1000 persons 

as a further control. If interfirm job mobility in large cities is driven by the need to improve 

matches and to acquire new knowledge assets, the probability of interfirm upgrades should still 

be higher in cities even after controlling for the local number of firms. 

Results reported in columns 1-3 of Table 6 show that workers in metro areas are more likely to 

reduce their automation risk by changing employer and occupation at the same time. Working 

in the largest metros increases the odds of inter-firm upgrades relative to the base outcome by 

35.0% while its effect on the odds of intra-firm upgrades is only 20.1%. Similar results are 

obtained from the threshold model that looks at larger (> 10 percentage points) changes in 

automation risk (columns 4-6). According to this model, the odds of experiencing a large 

interfirm upgrade increase by 22.9% while the odds of large intrafirm upgrades increase by 

19.7%. We can thus conclude that although metros facilitate risk reduction through both inter- 

and intrafirm mobility, the primary source of within-city career upgrading is interfirm mobility. 

When we look at changes that exceed 10 percentage points, location seems to have a similar 

effect on both mobility types.11 

The finding that intra-firm upward mobility is more common in metros suggest that urban firms 

                                                 
11

 For the ‘Metro areas’ variable, the difference between the estimated relative effects on upward inter- and 

intrafirm mobility in the first model is 0.108, with z-score 1.910 (p < 0.001), while for the ‘Large urban areas’ 

variable the difference is 0.098 with 1.80 (p < 0.001). For the threshold model reported in columns 4-6, the 

difference between the effects on inter- and intrafirm mobility (0.026) is not significant. 
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provide better career opportunities for their proven employees and prefer promotion over hiring 

new employees for higher positions.12 However, this finding might be the consequence of 

automation itself. Dauth et al. (2018) found that employers react to the penetration of robot 

technologies by changing the tasks for their workers to avoid layoffs. If labour replacing 

technologies spread faster among urban firms, intra-firm job mobility might be more common 

in cities. 

 

Heterogeneous upgrades for different worker groups 

Since workers with different characteristics benefit from working in large metros to a varying 

degree, full sample estimates might obscure considerable differences between worker groups. 

In our context, examining the extent of heterogeneity in the effects of cities is crucial to identify 

groups for which long-term automation exposure is expected. For instance, it is possible that 

women are less likely than men to benefit from the career opportunities offered by cities due 

to limited access to networks, gender differences in household responsibilities and labour 

market discrimination (Rosenthal and Strange, 2012).13 Although women are generally more 

likely to fill positions with lower automation risk (e.g., nursing, teaching and different forms 

of clerical work) they are disadvantaged relative to men in opportunities for career 

advancement. 

 

Another susceptible group is immigrants whose career mobility is often hindered by the limited 

international transferability of human capital, the lack of intangible assets involving linguistic 

proficiency and access to effective search channels. Although upward mobility in occupational 

                                                 
12

 Our finding that interfirm career upgrades are more likely in metro areas is in line with the results of Andersson 

and Thulin (2013). 
13

 Forrett and Dougherty (2004) showed that there are substantial differences in networking behavior between 

women and men which might also affect the extent to which women and men can benefit from dynamic career 

upgrades in cities. 
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status might set in through economic assimilation (Chiswick et al., 2005; Rooth and Ekberg, 

2006), low mobility at the outset lead to long-term occupational mismatches by pushing 

immigrants toward high-risk routine activities for a longer period of time. In the presence of 

these disadvantages and possible labour market discrimination one would expect that cities 

make less of a contribution to reducing automation risk along immigrants’ careers. 

Educational attainment is also an important attribute by which the career upgrading effect of 

cities might vary across the members of the workforce. In general, workers with college degrees 

(or more) have better capabilities to adapt and self-renew in an evolving labour market. This 

potential for “labour branching” (MacKinnon, 2017), is because they can apply to a wider range 

of jobs, have better access to employment opportunities with the potential for career 

advancement, and therefore have a higher chance to get low-risk jobs compared to their low-

skilled peers whose job-search tend to be narrower. Recent studies on urban wage premium 

showed that for college educated workers the urban wage premium grows steadily with 

between-firm job shifts (Carlsen et al. 2016; Matano & Naticchioni, 2016). This suggests that 

the career upgrading effect of cities is expected to accrue mostly to skilled workers. 

We examine effect heterogeneity across work groups by estimating the original specification 

in its general form for each group separately.14 Each model contains controls for observed 

individual attributes, as individual fixed effects. Once again, move years are dropped from all 

models in order to get rid of the confounding “elevator effect” of migration.  

Results reported in Table 7 show considerable differences in the relative-risk ratios of region 

types. Separate estimates for female and male workers confirm the expectation that men can 

take more advantage of their work location then women. While for men the relative probability 

of reducing automation risk is increased by 37,3% in metros, for women it is increased only by 

                                                 
14 We estimate the model without any thresholds because downward changes that exceed 10 percentage points (or 

more) are rare events for most of the susceptible groups.  
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24%. Moreover, for men large urban areas also have a smaller positive effect (16%). 

Our results for immigrants are in line with the above expectations in the sense that immigrants’ 

upward mobility is constrained irrespective of their work location. Since the models filter out 

unobservables it is unlikely that our estimates reflect the lack of language skills, networking or 

other personal attributes. Apart from labour market discrimination they face, immigrants are 

often unable to utilize their human capital in the host country due to the limited international 

transferability of human capital. Even if the immigrant worker is highly qualified, in the 

absence of country-specific knowledge (such as legal practices, local norms) she/he might be 

unable to find employment in her/his own field (Rooth and Ekberg, 2006). As a result, 

immigrants’ automation risk may decrease at a slower rate throughout their careers. Since 

native workers do not face such disadvantages, they can more readily enjoy the career benefits 

of metros.  

Finally, the last rows of Table 7 provide some insights on the role of education in exploiting 

career opportunities offered by large labour markets. For low-skilled workers (less than college 

degree) we find that working in cities slightly increase the relative probability of downward 

changes in automation risk (by 18.3%), and it also reduces the chance of upward changes by 

12.3%. At the same time, in the case of workers with college degrees (or more), metros are 

associated with a 41.5% increase in the odds of downward changes in automation risk relative 

to the base outcome of no change. Although these results suggest that more educated workers 

can take advantage of the career opportunities offered by cities to a greater extent, less educated 

urban workers may have brighter career prospects in cities as well. As low-skilled service jobs 

in cities have lower automation risk, it is also easier for less educated workers to escape from 

the potential labour market threat posed by AI and the spread of robot technologies. 
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6. Conclusions 

Workers in small urban areas are usually depicted as being more exposed to the threat of 

technological unemployment caused by automation, because these regions tend to rely more 

on production-related routine skills and this is unlikely to change in the future (Frank et al. 

2018). In this paper we examined whether, and for whom, large cities offer career 

opportunities which might imply the reduction of automation risk. This was accomplished by 

means of matched employer-employee data covering a 10 % random sample of the Swedish 

labour force during the period 2005-2013.  

Our descriptive evidence suggest that the concentration of susceptible jobs is higher in smaller 

regions and that the urban-rural divide has increased over the period studied here (covering 

the Great Recession). In that sense, our findings confirm previous results of Crawley et al. 

(2021) that automation exposure decreases with the degree of agglomeration. By means of the 

level of detail of our data, we can however show that the groups of workers at risk of 

automation differs across the regional hierarchy. While the highest concentrations of workers 

in susceptible occupations in metro-regions are different forms of clerks and service workers, 

a greater share of manufacturing workers are at risk outside the city-regions. In that sense, the 

spatial division of labour entails that different groups of workers are at greater risk of facing 

automation-related displacement in different types of economic spaces. Given the fact that 

completely new tasks tend to occur in large cities with diversified economies where the higher 

potential for spillovers and learning fosters the birth of new activities (Duranton & Puga, 

2001), we can expect that these spatial differences also entail increasing transaction costs for 

susceptible groups of workers to adjust to the ongoing realignments of the labour markets if 

better local alternatives are deteriorating over time. Since the majority of new jobs have been 

created in the largest labour markets in Sweden (c.f., Eriksson & Hane-Weijman, 2017), and 

the remaining jobs in smaller regions are becoming increasingly susceptible as shown in the 
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results presented here, this would entail that migration to larger regions is the main viable 

strategy to adapt. Especially, because the probability of a job to appear in a region is higher if 

related jobs are already present (Muneepeerakul et al., 2013; Shutters et al., 2016), we should 

expect that the majority of new jobs in the service sector are more likely to be created in large 

cities, where the employment share of services is larger. 

The logical consequence of this finding is that workers in large cities have better chances of 

finding a non-automatable job as years go by. Our empirical results indeed show that working 

in cities have a positive and statistically significant effect on the relative probability of 

downward changes in automation risk even after controlling for a wide range of individual 

attributes influencing occupation choice and labour market opportunities. However, these 

benefits of urban life cannot be reaped without effort. Rather, it involves learning, networking 

and intense competition on the part of ambitious and skilled workers seeking for jobs that 

promise advancement in their careers. Every factor that hampers these activities impairs the 

chances of reducing the automation-driven risk of displacement. Such factors include, for 

example, the lack of skills, family background, limited access to professional networks or 

labour market discrimination. Workers who face these barriers are less likely to benefit from 

the career upgrading effect of cities. In this regard the most susceptible workers are the 

immigrants, but women and workers without college degrees also benefit relatively less from 

the career advantages cities offer.15 Hence, government responses to technology-driven labour 

market disruptions have to combine several instruments in order to be efficient for different 

groups of workers. Mobility enhancing instruments that encourage migration toward cities 

(e.g., travelling and housing allowances or improving housing accessibility) might be useful 

tools to alleviate technological unemployment (c.f., Storper, 2018) but only for the most 

                                                 
15

 The financial crisis of 2008 probably further worsened the chances of these susceptible groups and therefore 

increase the extent of effect heterogeneity between worker groups. Finding out how career upgrading in cities 

developed in different phases of the crisis is certainly a policy-relevant question that deserves further attention 

and careful empirical investigation, therefore it is left for further research. 
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skilled. In the case of more vulnerable, less-skilled, workers, the emphasis should be on 

creating general conditions for job mobility (e.g., by providing training and up-to-date 

information on the availability of low-risk jobs). 

Finally, if indeed about 46% of all jobs in the OECD face a significant risk of being replaced 

by machines in the near future as suggested by Nedelkoska & Quintini (2018), a greater 

awareness needs to be put on the fact that this will not only vary across nations but also vary 

greatly within economies. This calls for political attention and is clearly connected to the 

current debate concerned with the link between structural change and political polarization and 

discontent challenging established post-war political structures around Europe on the one hand 

(Rodríguez-Pose, 2018), and calls for a new “place-sensitive distributed development policy” 

on the other (Storper, 2018; Iammarino et al., 2019). 
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Table 1: Automation risk of least and most susceptible occupations 

TOP 10 least susceptible occupations TOP 10 most susceptible occupationss 

Occupation title Auto. 

risk 

Occupation title Auto. 

risk 

Medical doctors 0.001 Electrical-equipment assemblers 0.908 

Dieticians 0.004 Pharmaceutical assistants 0.920 

Speech therapists 0.005 Metal wheel-grinders and tool sharpeners 0.925 

Psychologists and related professionals 0.007 Government tax and excise officials 0.930 

Teaching professionals, academic subjects 0.008 Cashiers and ticket clerks 0.934 

Geriatric nurses 0.009 Jewellery and precious-metal workers 0.950 

Medical care nurses 0.009 Debt-collectors and related workers 0.950 

District nurses 0.009 Library and filing clerks 0.958 

Special education teaching professionals 0.010 Numerical clerks 0.959 

Production managers in education 0.010 Paperboard, textile products assemblers 0.970 

 

Table 2: The most common occupations with lowest and highest automation risk in 

different region types. 

Top 5 occupations with lowest automation probability  

Metro regions Large regions Small regions 

Occupation title 

E

mp

. 

sh

ar

e Occupation title 

Em

p. 

sh

are Occupation title 

E

mp

. 

sh

ar

e 

Technical and commercial sales 

representatives 

2,9

4 

Pre-primary education teaching pros 2,4

9 

Pre-primary education 

teaching associate pros 

2,

30 

Computer systems designers, 

analysts and programmers 

2,7

7 

Primary education teaching pros 2,1

1 

Primary education teaching 

pros 

2,

19 

Pre-primary education teaching 

associate pros 

1,8

8 

Technical and commercial sales 

representatives 

1,7

6 

Technical and commercial 

sales representatives 

1,

42 

Primary education teaching pros 1,7

5 

Public service administrative pros  1,3

6 

Nursing associate pros 1,

00 

College, university and higher 

education teaching pros 

1,2

8 

Nursing associate pros 1,3

4 

Social work pros 0,

87 

Top 5 occupations with highest automation probability  

Metro regions Large regions Small regions 

Occupation title 

E

mp

. 

sh

ar

e Occupation title 

Em

p. 

sh

are Occupation title 

E

mp

. 

sh

ar

e 

Other office clerks 2,2

9 

Other office clerks 2,0

1 

Other office clerks 2,

04 

Helpers in restaurants 1,9

8 

Helpers in restaurants 1,7

5 

Machine-tool operators 1,

98 

Numerical clerks 1,2

6 

Machine-tool operators 1,2

9 

Helpers in restaurants 1,

69 

Accountants 0,8

6 

Numerical clerks 1,0

9 

Numerical clerks 1,

15 

Receptionists  0,7

4 

Other machine operators and 

assemblers 

1,0

4 

Other machine operators and 

assemblers 

0,

98 

Notes: Authors’ own calculations based on a 10% random sample of the Swedish Admin Data 

containing 3,327,846 observations for 499,507 workers. 
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Table 3:  Descriptive statistics 

 Overall Movers Stayers 

Sex (%) 48.5 43.5 49.1 

Age (years) 42.8 37.8 43.2 

16-24 years (%) 7.5 12.5 6.9 

25-34 years (%) 21.0 32.6 19.6 

35-44 years (%) 26.3 25.7 26.3 

45-54 years (%) 24.7 18.6 25.4 

55+ years (%) 20.3 10.3 21.5 

Having a child (%) 42.7 41.2 42.9 

Born in Sweden (%) 87.8 90.7 87.4 

Less than college degree (%) 66.8 60.1 67.6 

College degree or more (%) 33.1 39.8 32.3 

Workplace location (%)    

- Metro regions 50.3 38.4 51.8 

- Large urban regions 36.6 42.6 35.9 

- Small regions 12.9 18.9 12.2 

Job changes + downward changes in auto. risk (%)    

- Metro regions 6.1 7.4 5.7 

- Large urban regions 5.2 7.0 4.9 

- Small regions 5.1 6.6 4.7 

Job changes + upward changes in auto. risk (%)    

- Metro regions 19.7 22.3 19.2 

- Large urban regions 18.9 21.0 18.3 

- Small regions 18.7 20.7 18.3 

Number of workers 499,507 58,896 440,611 

Note: Notes: Authors’ own calculations based on a 10% random sample of the Swedish Admin 

Data containing 3,327,846 observations for 499,507 workers. 
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Table 4: Multinomial logit models of changes in automation risk 

 Model 1 Model 2 Model 3 

dep. var.:  

changes in auto. risk. 

Downward 

changes in 

auto. risk  

Upward  

changes in 

auto. risk  

Downward 

changes in 

auto. risk  

Upward  

changes 

in 

auto. risk  

Downward 

changes in 

auto. risk  

Upward  

changes 

in 

auto. risk  

  (1) (2) (3) (4) (5) (6) 

Metro areas 1.162*** 1.052*** 1.195*** 0.983*** 1.260*** 0.955 
 (0.006) (0.003) (0.032) (0.022) (0.05) (0.032) 

Large urban regions     1.067 0.966 

     (0.041) (0.030) 

Sex 1.028*** 0.951***     
 (0.003) (0.003)     

Born in Sweden 1.250*** 0.912***     

 (0.009) (0.004)     

Having children 1.077*** 0.825***     

  (0.005) (0.002)     

Age 0.977*** 1.005*** 1.112*** 2.284*** 1.127*** 2.282*** 

 (0.001) (0.003) (0.001) (0.002) (0.001) (0.002) 

College degree or 

more 

3.404*** 0.952*** 4.212*** 0.891*** 4.212*** 0.891*** 

 (0.075) (0.048) (0.093) (0.02) (0.093) (0.020) 

Auto. risk in period t 9.3370*** 0.7100*** 16681*** 0.001*** 16681*** 0.001*** 

 (0.093) (0.004) (650.5) (0.000) (650.5) (0.000) 

Individual fixed 

effects 
No Yes Yes 

Log-likelihood -2,455,530 -905,581 -903,582 

N 3,643,033 3,616,988 3,616,988 

Note: The table reports relative-risk ratios and their standard errors. Estimation method: 

maximum-likelihood estimator. Transition j = 0 (no change in auto. risk) is chosen as the base 

outcome. Dependent variables are measured between t and t+1, all level variables are measured 

in t. *** indicates significant at the 1% level. 
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Table 5: Multinomial logit models of large changes in automation risk 

 Model 1 Model 2 

dep. var.:  

changes in auto. risk. 

Downward 

changes 

(min 10 pps) 

Upward 

changes 

(min 10 pps) 

Downward 

changes 

(min 10 pps) 

Upward 

changes 

(min 10 pps) 
 (1) (2) (3) (4) 

Metro areas 1.219*** 1.050*** 1.206*** 0.889*** 
 (0.011) (0.003) (0.061) (0.037) 

Large urban regions 1.040*** 0.994 1.049 0.938 

 (0.009) (0.004) (0.05) (0.037) 

Sex 1.104*** 0.977***   
 (0.006) (0.003)   

Born in Sweden 1.361*** 0.890***   

 (0.012) (0.004)   

Having children 1.077*** 0.812***   

  (0.005) (0.002)   

Age 0.972*** 1.007** 1.232*** 3.031*** 

 (0.001) (0.001) (0.002) (0.006) 

College degree or more 2.268*** 0.990 5.104*** 0.824*** 

 (0.014) (0.005) (0.138) (0.021) 

Auto. risk in period t 24.705*** 0.720*** 0.001*** 0.000*** 

 (0.247) (0.004) (0.000) (0.000) 

Individual fixed effects No Yes 

Log-likelihood -2,255,048 -653.663 

N 3,643,033 3,618,007 

Note: The table reports relative-risk ratios and their standard errors (in parentheses). Estimation 

method: maximum-likelihood estimator. Transition j = 0 (changes within the range of -10 and 

10 percentage points) is chosen as the base outcome. Dependent variables are measured 

between t and t+1, all level variables are measured in t. ***, ** indicates significant at the 1 

and 5% levels. 
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Table 6: Multinomial logit models of intra- and inter-firm career upgrades 

 Model 1 Model 2 (with threshold) 

dep. var.: 

intra- and 

interfirm 

mobility 

  

Intra-firm 

mobility + 

downward 

changes in 

auto. risk 

Inter-firm 

mobility + 

downward 

changes in 

auto. risk 

Upward 

changes 

in auto. 

risk 

Intra-firm 

mobility + 

>10 pps 

decrease in 

auto. risk 

Inter-firm 

mobility + 

>10 pps 

decrease in 

auto. risk 

>10 pps 

increase 

in auto. 

risk 

(1) (2) (3) (4) (5) (6) 

Metro areas 1.201*** 1.350*** 0.952 1.197** 1.229** 0.887** 

 (0.064) (0.078) (0.032) (0.081) (0.090) (0.037) 

Large urban 

regions 0.993 1.220*** 0.948 1.001 1.107 0.919* 

 (0.053) (0.071) (0.031) (0.067) (0.082) (0.039) 

College 

degree or 

more 1.111*** 1.111*** 2.282*** 1.239*** 1.226*** 3.031*** 

 (0.002) (0.002) (0.002) (0.002) (0.004) (0.006) 

Age 4.133*** 4.450 0.932 4.855*** 5.165*** 0.824*** 

 (0.157) (0.116) (0.021) (0.223) (0.165) (0.021) 

Number of 

firms (per 

1000 persons) 0.998 1.003*** 0.999 0.997* 1.003* 0.999 

 (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) 

Automation 

risk in period t 21332.8*** 13030.0*** 0.000*** 550179.6*** 271305.3*** 0.000*** 

 (1066.639) (651.494) (0.000) (37962.4) (18720.0) (0.000) 

Individual 

fixed effects Yes Yes 

Log-

likelihood 
-913,846 

-658,636 

N 3,616,988 3,616,007 

Note: The table reports relative-risk ratios and their standard errors (in parentheses). Standard 

errors are clustered by regions. Estimation method: maximum-likelihood estimator. Base 

outcome: no change in auto. risk Dependent variables are measured between t and t+1, all level 

variables are measured in t. ***, ** and * indicate significant at the 1, 5 and 10% levels. 
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Table 7: Heterogeneous effects by worker groups 

dep. var.:  

changes in auto. risk. 

Downward changes in auto. 

risk 

Upward changes in auto. risk 

  (1) (2) 

Female     

     Metro areas 1.275*** (0.069) 0.944 (0.042) 

     Large urban areas 1.028 (0.051) 0.994 (0.041) 

Male     

     Metro areas 1.443*** (0.087) 0.966 (0.049) 

     Large urban areas 1.183** (0.067) 0.928 (0.044) 

Swedish     

     Metro areas 1.357*** (0.057) 0.859 (0.030) 

     Large urban areas 1.028 (0.04) 0.994 (0.032) 

Immigrant     

     Metro areas 1.186 (0.179) 0.859 (0.105) 

     Large urban areas 0.951 (0.139) 1.010 (0.119) 

Less than college degree     

     Metro areas 1.183** (0.062) 0.877** (0.039) 

     Large urban areas 1.070 (0.051) 0.952 (0.038) 

College degree or more     

     Metro areas 1.415*** (0.103) 1.050 (0.061) 

     Large urban areas 1.054 (0.073) 0.953 (0.051) 

Note: Each model contains individual fixed effects and controls for age, education and auto. 

risk in period t. Education controls are not included in the last two models (less than college & 

college or more). The table reports log relative-risk ratios, their standard errors (in parentheses), 

and relative risk ratios (in brackets). The base outcome is “no change in auto. risk”. Dependent 

variables are measured between t and t+1, all level variables are measured in t. ***, ** and * 

indicate significant at 1%, 5% and 10% level respectively. 
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Table A1: Summary statistics for region types 

 
Metro regions (N=3) Large regions (N=19) Small regions (N=50) 

 
2005 2013 Ch. 2005 2013 Ch. 2005 2013 Ch. 

Population 4 327 353 4 760 110 10.0% 3 429 596 3 544 470 3.3% 1 356 308 1 340 284 -1.2% 

Employment 1 895 669 2 119 017 11.8% 1 418 748 1 442 349 1.7% 551 405 546 018 -1.0% 

Median income 3025.9 3350.4 10.7% 2872.0 3205.0 11.6% 2730.6 3083.2 12.9% 

College degree 33.5% 38.4% 5.0 26.8% 30.8% 4.0 19.8% 22.2% 2.3 

Manufacturing 14.7% 11.0% -3.7 20.8% 16.4% -4.4 22.3% 18.8% -3.5 

SSYK 7-8 5.8% 4.5% -1.3 11.7% 9.4% -2.3 12.9% 11.6% -1.3 

Notes: Authors’ own calculations based on the ASTRID database. 
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Table A2: Most frequent occupation switches in different region types 

Metro areas Diff. in 

auto. risk.   Source occupation Target occupation 

Decreasing auto. risk  

1 Nursing associate professionals Nursing and midwifery professionals -0.001 

2 Metal-processing-plant operators Metal- and mineral-products machine operators -0.025 

3 Mining and construction labourers Building frame and related trades workers -0.055 

4 Computer associate professionals Computing professionals -0.071 

5 Wood treaters, cabinet-makers Building frame and related trades workers -0.117 

Increasing auto. risk  

1 Nursing and midwifery professionals Nursing associate professionals 0.001 

2 Legislators and senior government officials Production and operations managers 0.071 

3 Housekeepers and related workers Helpers in restaurants 0.078 

4 Architects, engineers and related professionals Physical and engineering science technicians 0.035 

5 Special education teaching professionals Other teaching professionals 0.031 

Large urban areas  

  Source occupation Target occupation   

Decreasing auto. risk  

1 Nursing associate professionals Nursing and midwifery professionals -0.001 

2 Mining and construction labourers Building frame and related trades workers -0.055 

3 Tellers Stall salespersons -0.148 

4 Metal-processing-plant operators Metal- and mineral-products machine operators -0.025 

5 Physicists, chemists and related professionals Architects, engineers and related professionals -0.035 

Increasing auto. risk  

1 Nursing and midwifery professionals Nursing associate professionals 0.001 

2 Legislators and senior government officials Production and operations managers 0.071 

3 Pelt, leather and shoemaking trades workers Textile-, leather-products machine operators 0.148 

4 Architects, engineers and related professionals Physical and engineering science technicians 0.035 

5 Housekeepers and related workers Helpers in restaurants 0.078 

Small regions  

  Source occupation Target occupation   

Decreasing auto. risk  

1 Nursing associate professionals Nursing and midwifery professionals -0.001 

2 Tellers Stall salespersons -0.148 

3 Police officers and detectives Public service administrative professionals -0.399 

4 Helpers in restaurants Housekeepers and related workers -0.078 

5 Crop and animal producers Animal producers and related workers -0.234 

Increasing auto. risk  

1 Nursing and midwifery professionals Nursing associate professionals 0.001 

2 Legislators and senior government officials Production and operations managers 0.071 

3 Architects, engineers and related professionals Physical and engineering science technicians 0,035 

4 Other sales and services elementary occup Manufacturing labourers 0.051 

5 Wood treaters, cabinet-makers workers Wood-products machine operators 0.028 
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Figure 1: Average automation probability increases in small regions. 
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Figure 2: Changes in automation risk and employment density (2005-2013) 


