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ABSTRACT

Loma acerinae is a xenoma-forming fish microsporidium described from common ruffe Gymnocephalus
cernua (Perciformes: Percidae) and also found in Ponto-Caspian gobies (Gobiiformes: Gobiidae). This
casts doubt on the strict host specificity of this parasite. The largest subunit RNA polymerase II (rpb1)
was used as a genetic marker of the parasite isolated from six host species of Perciformes (G. cernua
from the Baltic Sea), Atheriniformes (Atherina boyeri from the Azov Sea) and Gobiiformes (Neogobius
spp. and Zosterisessor ophiocephalus from the Black Sea and Ponticola kessleri from the Caspian Sea
basin). Two major rpb1 haplogroups were found with 98.5% identity between the groups. Notably,
Haplogroup I was associated with Neogobius spp. samples (n 5 6) only, whereas Haplogroup II
included the samples from other host species (n5 7). These findings confirm the broad distribution and
host range of L. acerinae, but also indicate that certain patterns of host-driven intraspecific poly-
morphism may exist. Furthermore, the study revealed low similarity between the ribosomal RNA gene
sequences of L. acerinae and the type species, Loma morhua (as well as other species of the genus). This
suggests loose genetic association within the genus, and may raise the need for the taxonomic revision of
L. acerinae.
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Loma acerinae is a xenoma-forming fish microsporidium that was originally described from
the intestine of the common ruffe Gymnocephalus cernua (Perciformes: Percidae) (Lom and
Pekkarinen, 1999). A recent morphological and molecular genetic study has confirmed that
the microsporidium species found in Ponto-Caspian gobies (Gobiiformes: Gobiidae) and big-
scale sand smelt Atherina boyeri (synonym Atherina mochon pontica) (Atheriniformes:
Atherinidae) was L. acerinae (Ovcharenko et al., 2017). Due to the wide host range of L.
acerinae including phylogenetically distant hosts, and the divergence in the sampling sites of
gobies and the sand smelt (the Black Sea) vs. those of common ruffe (the Czech Republic and
Finland), it is of great interest to elucidate the intraspecific genetic polymorphism of the
parasite.

In the present paper, we used small subunit rRNA gene (SSU rDNA) and the largest
subunit RNA polymerase II (rpb1) as genetic markers to compare L. acerinae samples.
Thirteen samples of L. acerinae isolated from six species of fish hosts were examined: G.
cernua (number of examined samples n 5 2) from Finnish Bay of the Baltic Sea (608060N
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298550E), monkey goby Neogobius fluviatilis (n 5 4), round
goby Neogobius melanostomus (n 5 2) and grass goby
Zosterisessor ophiocephalus (n 5 3) from Karkinit Bay of the
Black Sea (458520N 338280E), A. boyeri (n 5 1) from Sivash
Bay of the Azov Sea (458250N 358100E) and bighead goby
Ponticola kessleri (n 5 1) from the Volga River Delta in the
Caspian Sea (468100N 498130E) (Fig. 1).

Adult fishes were caught by a fishing net, transported to
the laboratory in cooled plastic bags, chilled on ice, then
euthanised by quick and accurate decapitation (Jenkins
et al., 2014). Then the fishes were dissected and their inner
organs were examined visually for the presence of parasite
xenomas (Lom and Dykova, 1992). Xenomas were excised
and fixed with 95% ethanol for molecular genetic analysis.
For DNA extraction, the ethanol was removed, the tissue
sample was dried until remnant ethanol evaporated, then
100 mL of lysis buffer (2% CTAB, 1.4 M NaCl, 100 mM
EDTA, 100 mM Tris-Cl, pH 8.0) (VWR Life Science
AMRESCO) was added. The samples were homogenised
with a plastic pestle adapted for a 1.5-mL microcentrifuge
tube (SSIbio), followed by incubation at 65 8C for 2 h in 500
mL lysis buffer as above with the addition of 0.2% of b-
mercaptoethanol (VWR Life Science AMRESCO). Genomic
DNA was extracted by a phenol/chloroform extraction
method, isopropanol sedimentation and 70% ethanol
washing (Malysh et al., 2019).

To amplify a fragment of SSU rDNA, the universal SSU
rDNA primers 18f (50-GTTGATTCTGCCTGACG-30) and
1047r (50-AACGGCCATGCACAC-30) were used (Weiss
and Vossbrinck, 1999). For rpb1, novel degenerate primers
lgtvRPB1F (50-CCKGARTGGATGATCATMAGTG-30) and
lgtvRPB1R (50-ATCRAARTCVGCRTTGTACG-30) were
designed on the basis of the respective sequences of L.
acerinae (Genbank accession # AJ278951), Glugea anomala

(# AJ278952), Trachipleistophora hominis (# AJ278945), and
Vavraia culicis (#AJ278956), aligned in BioEdit software
version 7.2.5 (Hall, 1999). The primer sequences were
selected manually and checked for specificity using Primer-
BLAST online utility (https://www.ncbi.nlm.nih.gov/tools/
primer-blast/) and for compatibility using PerlPrimer soft-
ware version 1.1.21 (Marshall, 2004).

The PCR was applied using a protocol including the
initial denaturation at 95 8C for 5 min, 35 cycles of dena-
turation at 95 8C for 1 min, the annealing at 54 8C for 1 min,
the elongation at 72 8C for 1 min, and the final elongation
step at 72 8C for 5 min (Malysh et al., 2020). The PCR
mixture contained 13DreamTaq Green PCR Mastermix
(Thermo Fisher Scientific) and 10 nM of primers. The
amplicons were visualised using electrophoresis in 1%
agarose gels. Then gel fragments containing the specific
amplicons were excised, melted with 3M guanidine iso-
thiocyanate (Thermo Fisher Scientific), absorbed using sili-
con dioxide (Sigma-Aldrich) and eluted with deionised
molecular grade water (Vogelstein and Gillespie, 1979). The
purified DNA fragments were sequenced in both directions
by Sanger dideoxy method using BigDye� Terminator v3.1
Cycle Sequencing Kit (Applied Biosystems, Inc.) with
respective forward and reverse primers as above, and
detected on ABI Prism 3500 Genetic Analyzer. The raw
reads with no ambiguous sites (double peaks etc.) were
aligned using Clustal W multiple alignments in BioEdit. The
sequence identities and genetic distances were calculated
using BioEdit. Phylogenetic reconstruction was performed in
MEGA 7 (Kumar et al., 2016). The maximum likelihood
method using the Tamura 3-parameter model with a pro-
portion of invariable sites and gamma distribution of rate
categories was applied. G. anomala was used as an outgroup.
The rpb1 sequence of L. acerinae available in Genbank
(#AJ278951) was excluded from the analysis due to un-
certainties in the nucleotide sequence and respective amino
acid translation.

Partial sequences of SSU rDNA (950 bp in length)
were obtained for 13 samples of microsporidia from Perci-
dae, Gobiidae, and Atherinidae, showing 100% identity
to each other. When compared to Genbank entries, the
sequences showed 100% identity to L. acerinae from
G. cernua (#AF356224) and big-scale sand smelt A. boyeri
(#KT934810) and 99.6% identity to another isolate from G.
cernua (#AJ252951). However, SSU rDNA sequence identity
of L. acerinae ranged between 85.1 and 91.6% when
compared to Loma morhua (#KX084449) from Atlantic cod
Gadus morhua (Gadiformes: Gadidae), and other species
attributed to the genus Loma, as well as representatives of
other fish-infecting microsporidia from the genera Glugea,
Dasyatispora, Heterosporis, Ichtyosporidium and Pleisto-
phora (Table 1).

The PCR assay using the primers designed for the
amplification of the rpb1 gene fragment was successful, and
the obtained 686-bp-long sequences showed 98.6–100%
sequence identity among the samples examined (Table 2). In
particular, rpb1 sequence of L. acerinae from G. cernua
(# MN335641) was 100% identical to those from A. boyeri

Fig. 1. Sampling sites of fishes infected with Loma acerinae in
Europe. 1 – Finnish Bay, Baltic Sea; 2 – Karkinit Bay, Black Sea; 3 –
Sivash Bay, Azov Sea; 3 – Volga River Delta, Caspian Sea basin
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(# MN335645) and Z. ophiocephalus (#MN335642), whereas
the DNA sequence obtained from P. kessleri (#MN335646)
contained one nucleotide alteration (R) at position 485. The
samples from N. fluviatilis (#MN335643) possessed 8 vari-
able nucleotides at positions 120 (C/T5 Y), 198 (C/A5M),
339 (Y), 354 (C/G 5 S), 393 (R), 471 (T/G 5 K), 598 (Y)
and 672 (Y). Additionally, the samples from N. melanosto-
mus (#MN335644) had nucleotide variation (Y) at position
378. As a result, 99.8–100% sequence identities were detec-
ted within the haplogroups, whereas the identity was 98.5–
98.8% between the groups (Table 2). Notably, Haplogroup I
was associated with Neogobius spp. samples (n 5 6) only,
and Haplogroup II included the parasite samples (n 5 7)
from the other host species (Fig. 2).

The type host of L. acerinae is G. cernua collected from
Czechoslovakia (Jirovec, 1930), whereas L. acerinae was also
reported from the same host in Finland (Lom and Pekkar-
inen, 1999). In the present study, two samples of the
microsporidium from this host species were collected in
Finnish Bay, adjacent to Finland and belonging to the same
water basin (Baltic Sea) and the same geographic area
(Northern Europe). Thus, all examined samples of L. acer-
inae are of European origin.

Previous studies have shown that SSU rDNA was a
reliable molecular genetic marker for the species identifica-
tion of Microsporidia (Weiss and Vossbrinck, 1999; Issi
et al., 2010; Tokarev et al., 2010; Sokolova et al., 2016; Issi,
2020), although closely related species may be very similar
both in ultrastructure and in rDNA sequences (Malysh et al.,
2013). The present results strengthen the findings of
Ovcharenko et al. (2017). The identical SSU rDNA se-
quences in microsporidia samples obtained from distant
locations indicate that this haplotype is common for L.
acerinae, though a limited level of variation exists, as seen
for another isolate from G. cernua (#AJ252951).

When comparing the SSU rDNA of L. acerinae to L.
morhua and other species allocated to the genus Loma, the
DNA sequence identity does not exceed 92%. Since L.
morhua is the type species for the genus Loma, the DNA
sequence-based comparisons suggest that L. acerinae does
not fit to this genus, therefore taxonomic redefinition may be
needed.

For a more robust identification and intraspecific dif-
ferentiation of microsporidium samples, the rpb1 gene is
widely exploited as a reliable genetic marker (Cheney et al.,
2001; Grushevaya et al., 2018; Tokarev et al., 2018a,b;
Tokarev et al., 2020). A high level of sequence identity of this
protein-coding gene obtained for all examined samples of
L. acerinae was consistent with the morphological findings
that they all belong to the same species. Interestingly,
L. acerinae from G. cernua, A. boyeri and P. kessleri and
Z. ophiocephalus possessed almost identical rpb1 sequences
belonging to the same haplogroup (with a single nucleotide
alteration in the isolate from P. kessleri). On the other hand,
the Neogobius-associated samples were clearly distinct,
belonging to another haplogroup. These findings confirm
the broad distribution and host range of L. acerinae, but also
indicate that certain patterns of host-driven intraspecific
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polymorphism of the parasite may exist. Further studies are
needed to elucidate the biological meaning of the genetic
divergence between Neogobius-associated samples and those
from other host species.
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