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Abstract 

Introducing new definitions for system and its main systemic properties, new evolution 

preservation principles, composition laws for systems, speeds, impulses, inertia, pressure, etc in 

n-dimensional space are stated. Also, new numerical methods in non-linear equations and new 

relaxing solutions for specific differential equations are presented, together with critical points, 

expansion of the studies in other applications in physics, automatics, robotics, quantum 

mechanics, biology, astronomy, ecology, etc. The composition laws for speeds, impulses, 

inertias, relative variation in n-dimensional space, can be considered relativity’s theory develop, 

easy applicable in the researchers current activity, engineers, etc., having a strong integrator 

character of different scientific branches, promoting the idea of a future common methodology. 

The principle of total relative variation conservation is similar to the Hamilton’s principle in the 

classic physics, and having a universal n-dimension expression is easily applicable in all 

applications, including engineering. The paper opens new horizons in scientific frontier 

research, sustaining the numerical methods development and the tendency of information 

digitization, of the standardizing methodological research. 
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1. OBJECTIVES, IMPORTANCE, IMPACT 

 
The fundamentation on new basis  of the systems study, with principles, laws, methods and new 

knowledges. The new  models system can be useful for researchers, projectors, students in the study of 

the currrent  problems, or in some of the limits of the science problems. Considering that the fundamental 

request of any modelling, is to be able to reproduce  better the observed dates, in the conditions of a more 

simply model.  

 
2. MODELS, DIEFINITIONS, PRINCIPLES, PROPERTIES OF THE 

SYSTEMS IN THE N  DIMENSIONAL DOMAIN 

 
From G.Galilei to nowadays, the specialists susstain that the fundamental states of the matter is the 

moving and  not the rest. Generally a system can be described in proportion with its components variation 

indepndently of the nature of these variations (space, energy, information, mass, speed, etc.). Depending 

of the organization level of the systems, of the interactions type, the variations can be regular or irregular. 

How a system in the most general case can cross different organizational level in the both directions from 

the presystemic level (for example sub quantum level characterized from the independent/equiprobable 

behavior of the components), passing from different levels of interdependence/action, and culminating in 

superior organizations such as symmetry, harmony, synchronism, etc., the variations of the components 

become more or less regular. 

It has been ascertained that the superior levels  of organization are characterized  also 
through the equiprobability of the components actions. Practically has been ascertained that the 
construction process of the structure ( see the defining  of the structure notion  gave farther on) 
is of long standing, the decomposition can be sometimes very fastly (right  explosive). 

Generally we can imagine just a repetitive cycle of these levels of organization. 
The systems can be rigorously defined if apart from relations of evolution are known 

included the in-out laws  [5], [6], [7], [8]. 
In practice the finite  physical systems often are modelled  through equations, equations 

systems, identities. 
For describing the system we will prefer one of the following descriptions: 
a. In a metrical space 

 

S (x1, ..., xn)  n 
 

With a system of nonlinear functions in the form 
 

Fj = Fj (x1, ..., xi, ..xn )          (j = 1, ..., m)         (1. 1.) 

 
b. x  state vector n-dimensional with components x1,x2,...xn;   
      f( x, t) field vector with the components f1,f2,...fn under the form:  
      x = f( X, t) 
 

Observation.[4]: a differential equation of superior order, under the form: 
 
     x(n) + f(x, x’, x’‘,... x(n-1),t) = 0  
 

Can be brought in the form b, if there are introduced the dependent variables x1,x2,...xn defined 
in this way: 



 
     x’1= x2                                                                                                   x’n-1 =xn 
 

     x’2 =x3                                                                                                    x’n = - f(x1, x2, x3... xn-1
 , x,n t) 

 

The elements of the variations can appear under different forms (space, information, energy, mass, 

etc.). 

In the natural systems in some conditions the variation (space, information, etc.) it can be transformed 

in energy, and  the energy can be transformed in the mass. The transformations can take place in the both 

directions. 

Starting from the notions of hypervolume V(x1, ..., xn ) we define the operator of the relative 

variation. .[1],[2]: 
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In the case of the classical systems the hypervolume can represents for example  the function of 

transfer T of the system.  

= )(V = )(T  dT/T= − )(Y )(X  

in which the variables Y are outputs, the possible functions objective, respectively variables X represent 

the inputs, the perturbations of the system. 

In the situation of the other partitions ( states, external perturbations, commands etc.), the relation 

aforesaid can be completed ( the positive terms have output or objective character, and the negative terms 

have input character, perturbations, etc.) 

In some special systems, the hypervolume can be definited in this way: 

 = x
p

V I

i
, the exponents pi can be weights or dimensional coefficients, concentrations, etc.   

The hypervolume can be introduced as a generating function of the system (1.1) definited in this way: 

= F j
V       with the definition functions of  the system. 

In the literature in accordance of )(V  the systems can be classified as conservative (hamiltonians) 

when = )(V 0, respectively dissipative with )(V < 0 [9]. 

The specific punctual values 
i

a  for the variables of the  type in for a concrete system 1.1 will take the 

form  

        =
j ijii xa FFjx )/).(/1(  

              

If the laws of the interior interaction are completed with the relations of interactions with the exterior  

environment , we can define a model of complete system. 

If the system 1.1 corresponds to the conditions 

 

Fj (x1, ..., xi, ..., xn) = cj         (j = 1, ..., m) 

 



And  = )(V  0    (elements  d ix / ix  unique) 

A complete system is formed.     

This system – apparently isolated – [9] similar to the systems orientated to objects from informatics 

includes even the effects of the exterior world. 

The complete systems have specific properties, for example are not sensible at perturbations, etc., 

they have oscilating properties, increasining the causal efects, the functional laws usually are valid 

including in the asymptotic limit domains etc. We can obtain a form of complete system, for example if 

we express the relations of the system under the form of  equalities, identities. 

For example, from the relation  = T  known in physics, we can obtain the forms  

1)/( = TE   and  0/// −+ dTdTd   where  represents wavelenght,  angular 

speed, T period. 

The relaxing state. The distant states of relaxation of the systems are the asymptotic states, where 

because of the high entropy, at  too low energies or too high, becomes dominant the interdependence/ 

probability equal with the components and it must be checked the laws validity of initial working. It could 

be demonstrated that the relaxing states for a 1.1 system ( to which tend asymptotic the free evolution, 

even if it will not reach this state especially), it can be obtained with the system of relations:    

 )(V )(V⎯→⎯ ,                  =
j ijii xa FFjx )/).(/1( = 1 . 

These solutions can supply the final states of relaxing, the evolution direction, respective, the 

necessary time until the relaxation. 

It can be observed that for the independent components with = xkV . ,   results )(V = )(V . 

It can be noticed that the differential equations can be brought to the form )(V  through elementary 

transformations, then compared with the form )(V  can be obtained  directly the expressions a i. In this 

way, for the individual differential equations can be obtained the expressions a I more simply. 

For example, in the case of classical volumic dilation, the classic law of dilation is valid until the 

volume reaches 2V0  proper to the state of relaxation. In the case of some sistem with fluid structure, it is 

posible that the extreme point of relaxing is a point of working of the system. 

Analogous, in the annex, are illustrated, starting from the equation Srődinger for a system  with slow 

interaction, new relations for the energetic levels of relaxing (asymptotics), asyimptotic solutions of new 

type for the differential equation Ricatti, used in automatics and physics, asymptotic solutions for the 

general harmonious motion, asymptotic expression for the first fundamental square form of the surface in 

the differential geometry. 

  
Critical points ( of equilibrium) 

Analogous the conception of proper values from the theory of the liniar systems, we introduce for the 

nonlinear systems the critical points, like those points in which the relative variation reaches values with 

integer numbers: 

( ) ,3 ,2 ,1,0,*1)/( == kkxdx p
i

ii  

For discret values we can take approximately: 

 

         0 if )/( ii xdx < 0,5 

Pi =    1 if )/( ii xdx  [0,5-1,5)                        

         2 if )/( ii xdx  [1,5-2,5)...... 

 



These points help us at the determination of the attraction points (attractors) of the system. So, a 

system can have more critical points. In the current actual practice it is used the proper point of the value 

k= 0. Some authors are calling the critical points as points of local equilibrium. 

The systems, in the evolution course, can reach more critical points. Between critical points, become 

characteristic the undulating properties with high speeds, until when around the critical points the speeds 

decrease, it becomes a priority the material (inertial) properties.  

Because of the undulating conduct which occur at high speeds ( at smaller temporal intervals ), the 

evolution has a leap character between the critical points. In the case of interaction of two or more 

systems, the evolution tends to critical (new) points, which can be points of accumulation of type cycle 

limit, with entropy and proper potential energy:  

  
i

i




       ,...2,1,0=




 

For example, for two systems: −
−−

−=
−

−
−

kkx ),(
1

12

2

12

1

12

2

12
















 

 
Between the critical points, the evolution is posible only at the reaching of some energetic thresholds 

ΔE= h. . 

The complex systems, without the dinamical components, contain both inertial components and 

functional components. Due to the variation of the wavelenght ( i ) are obtained results with changes of 

speed. It is posible that through a successful superior position of the luminous sources, can be realised 

luminous motors? 

It is extremely important the correct defining of the equation of evolution. The results in the domain 

of chemical kinetics underline that, to obtain oscillator evolutions is necessary at least two relations and a 

supplementary condition, some relations being nonhomogeneous.The presence of the attraction zones, of 

the limit cycles, characteristic for the systems with proper organization, imposes the necessity of the 

existence of the nonliniar character, of a spatial and temporal order. If it is kept the place of the 

components, i
 in their growing succesion, the system have not a chaotic conduct. [9]. The converse is 

not true, because symmetrical pairs of some oscillations can change the place in temporary succesion. By 

replacing the pair with only a variation, we can still obtain a growing succesion. If the inferior term of the 

succesion changes the place, appear temporal salts. Condition of uncertainty type can also appear because 

of the insufficient number of relations. We are underlining that the theory of catastrophes through  the 

study  of the ramifications approaches incomplete systems (fragments of system) with a insufficient 

number of relations, without equilibrium states (example poles in the case of liniar systems). In the case 

when the number of the relations is large, comparable with the number of variables, the importance of the 

interactions is growing, the group and the phase effects are with approximation  identically, the speeds do 

not pass the speed of the light in vacuum. At the reduction of the relative variations at the level of the 

values threshold of the critical points, the afferent energetic levels can disappear (the phenomenon of 

contraction). At the systems with large number of variables, with less relations, the case of weak 

interactions, to which the volume increases, the inertia diminishes, the speeds of phase can pass the speed 

of light in vacuum. It is expected that at the systems with weak interactions, the critical points would have 

monochromatic characteristics.The system can be presented simultaneous through diverse essential 

proper critical points (example the independent systems). The existence of the positive or negative 

reaction can be appreciated according the positive or negative sign of the product of relative variations 

i
, respective of the coefficients aij

. 

    If the product is negative and also exist positive factors, the evolution is chaotic (the motivation is 

similar to the utilization of the Liapunov exponents [9]). 

 



Conditions of periodicity 
It could be illustrated that similar with the Barchausens condition from the study of the electric 

oscillations, if it is added a negative reaction  , the necessary condition of periodicity (symmetry) 

becomes 0)/()/( =+ dxdx ii ,    or V.  = ± 1,   V representing the hypervolume, respective the 

function of the transfer of the system. In practice it can be built new experiences with pairs of 

synchronizing symmetries, which are giving rise to rotations. 

At a series of systems well definite (for example at the complete systems) the components have 

different variations but equal speeds (for example the complex chemical systems, the speed of the colors 

components of the white light, the speed of the human parameters which is satisfying the Weber law of 

the equality of thresholds of human sensibility). 

 
Conditions of causality, controllability 

We are telling that  x1 depends causal of x2 if )1(X     )2(X   

The system is controllable if it )( y
i

  can be brought at zero from any point through x
i

( ). 

We have to observe that in the conditions above it is not necessary to know the relations form of 

interdependence.    

 

The synthesis of the evolution relations 
Starting from a classic series of powers 

y = y0 + a1.h + a2 h2 + a3 h3  + ...+ an hn =  y0  ( 1+(a1 / y0 )h   + (a2/ y0 )h2   + ... +(an / y0 )hn  ) 

 

... 

It can be illustrated a relation of type error of form 

(y- y0 ) /y0 = 
   (a1 / y0)h   + (a2/ y0)h2   + .... +(an / y0)hn  )= b1 h   + b2h2   + .... +bnhn  ) 

On the other side, a relation of error can be also obtained through the expression of a relation of type 

Tailor of form: 

  y = y0 (1+ c1.h(1 + c2 h (1+ c3 h...)...) 

  (y- y0 ) /y0 = c1.h + c1 c2 h2 + c1 c2 c3 h3 +…+ c1... cn hn          cn  = (1/n) .(fn  / fn-1)│x0 

 

c1  = a1 / y0       c1 c2 = a2/ y0        ... 

 

Having recurrence relations: 

 

cn  = an  / an-1   

 

We are recommending the last development, which has a high convergence speed, it is easily to be used 

inclusive in the discrete domain. 

Expressing one by one error relation of the above type for the essential variables of the system, 

replacing the observed/measured values for these variables in these relations, we can achive the 

superposition of these expressions in one general expression for example through the next method:  

 

a.  = [(Y-Y0)/ Y0 ] = 1 -  (1- i) – after the composition law of the errors of  grade 1. 

 

  =  i  - (1. 2  
+  1. 3  +  ...+1. n  +  

                                         +2. 3  
+  2. 4 +  ...+2. n  + 

                                          ... 

                                          +n-1. n )+            

     (1. 2  3 
+  1. 2 4  +  ...+n-2. n-1 n)+ 



     .......................................................................... 

 

      (-1)n+1.( 1. 2 ...n) . 

    
 

 

     Example for   n=2,         =  (1+ 2) - 1. 2 

 

For a total error of maximum 5%, in the case for example n=4, it is necessary that the error of 

the components  has not to pass 1%. 

 

The correspondence relation 
We can name as a correspondence relation between the classic models of system and of those proposed 

(including the relativist models) for example the HUBLE law from astronomy: 

 

v = c .                 and generalising 

 

 

ix = n. i   if     i <  ix   and,    

i = k. ix   if    ix  < i              i = 1,n 

 

Finally we obtain 

v = c .[ )(V  ± )](r  = c . <  arV , )]()([   = bi vi  

where v is the speed, c the light speed in vacuum, respective i  wavelenght.  

The above expression expresses the composition relation of the speeds in the n-dimensional – 

respective at a correct defining of the functions, [1,1] including the effects of the extern average, when the 

system on the whole is not moving, so v = 0 – it is speaking about the preseving of the total speed. If the 

total speed is not equal with 0, for example the system is not defined complete, the system or the ether can 

move. The values ω(r), are  )(r   reference system, (in the upper example are expressions of the values 

n and k). The sign + have the terms with   ix  < i , respective the sign – have the terms with ix  > i .The 

condition ω(r) = 0 correspond to the case ix  = i . 

The expression ai
 was defined before. The upper relation was determinated for the validity domain of 

the Huble relation. 

According to the above defined relation, the speed has components of every variable element of the 

hypervolume, irrespective of their physique significance. Another correspondence can be expressed 

through the transfer function concordant to the upper relation. 

                                 
The interaction 

If ii xdx / ) << p
i
, and  )/( ii xdx    is the movement measure, the expression  p

i
 - )/( ii xdx  can be 

the inertia measure around the critical point p
i
.  The interaction measure is the product of the movement 

and inertia:   
 

 

                              

 

i

id





))/(-  ()./( S
1

j
1

p iij

n

i

n

j

iii
xdxxdx aa

= =

=



or ,  S = [P. )(V  – ( )(V )2] 

 

The condition of realizability involves an finite interaction for every temporary interval: 

   S <  const. 

It can be observed that in the case S = 0 we have two solutions: (V) 0 =  and )(V =P 

Where the p
j
 values correspond to the critical points value of the variables j. 

The expression of the relative impulse: 
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In the same way there can be expressed new relations for the pressure, density, thermic conductibility, etc. 

 

The superposition of the inertias is also very important: 
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The expression of the inertia theory is suggested by the law of the error composition of  the first rank 

from the error theory. 

In this way we expressed the superposition of the relative variations, so the subsystems superposition. 

Through the observed/measured variables composition brought at the error form, we can realize the 

subsystems superposition in only one relation. 

The Einstein’s energy-mass relation following the results presented in the upper part can be expressed 

in this way: 

ccc PmE
222
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Using an estimator of the form = min(p - ) having controls of the type u = p, the theory of the 

variational calculus can be reformulated, the maximum principle, the study  of the optimal filters (the 

Wiener-Hopf equation). 

 

The principle of  preserving the total relative variation 
In the case of the systems can be definited the principle of preserving the total relative variation, which 

explains the posible variations between the variables with different physical significants with the 

condition of the constant keeping or at minimum level of the total relative variation. ( in the annex is 

explained the levitation posibility) 

 

=




 −= 

V V

VVPS
0 0

2

))(()(* MIN/CONST 

  The principle reminds of the Hamilton principle from physics, but having only a unique 

form becomes easily applicable in practice, even at the discret systems. The minimization can be realised 

for example even  in the discret case following the principles of dynamic programming. 



  
The adaptability 

The low changing elements are called strong elements (pulley). In order that the system can be adaptable 

at soft elements (faster changing, more unstable), it is necessary that it contains soft elements in sufficient 

relative quantity and variation 

 
 
 

Where p is the number of the terms of the soft elements. 

The relative variation of the hypervolume is function of strong and soft elements: 

 
 
 

We can particularize the Boltzmann relation of entropy under the form: 

 
   
 

 
We can estimate the mesure of the system adaptability and through the minimum number of 

interactions, the relative variation threshold p  necessary, the necessary time, upon that, the soft elements 

produce structural variations in the system.  

The adaptation is a dissipative process, which diminishes the entropy, (diminishes the relative 

hypervolume of the system too).  

 
The evolution preserving law 
Generalising the inertia law of Newton from physics, we are defining the evolution preserving law 

even in the interaction conditions: 

A system is preserving the continue evolution if it is preserving its curve form of the evolution. 

We can sustain for example that the system evolution is according at the evolutionn curve, if the past, 

the present, the future of the system is on the curve. 

The system evolution can change as a result of the intern working, or of the anisotrophy changing of 

the environment. Omitting the environment changing , with regard to the evolution preserving law we can 

stipulate only the indispensable conditions. For the formulation of the sufficient conditions must be 

included in the model inclusive the environment variations. In the case of a complete system this is 

possible if there are known the variation laws of the environment. We can enumerate as a necessary 

conditions for example: 

 -if the system is keeping its form of the evolution equations 

 -if it is satisfying an invariate expression, which contains at least some three consecutive points of 

the trajectory, etc. 

Similar to the notion of curvature of the space from physics (inclusive the relativity theory) we will be 

able to define expressions of evolution threshold, after that we can characterize the movement, for 

example on the form: 

=)(kI  1  stable liniar evolution on the initial curve (every k point of the  trajectory) 

=)(kI  const ≠ 1 nonlinear stable evolution of constant curvature 

)(kI ≠ )1( −kI    variable, k discontinuity point of the trajectory. 

A first relation can be definited for example as: 
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The curvature ratio 
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of 4 consecutive points of the trajectory are taken at equal temporal intervals. It can be verified that 

the upper relation has the invariate value equal with 1 for the liniar systems and it respects the curvature 

conditions upper definited. The upper conditions can stand at the durable evolution verification base. 

We have to remember that the relativity theory sustains the preservation of the equations form of 

evolution for the inertial systems. 

 
The stability condition 

If the hypervolume V > 0 and  ω(V)  0, the system is stable in Liapunov sense [6]. 

So, the conditions V > 0 and ω  0, can be used for the analysis of the systems stability. 

We have to remark that in this way we can analyse the stability without knowing the evolution law, only 

on the base of measured or observed variables.  

 
The symmetry 
Concordant to the theory of differential equations, a system is symmetrical if it is satisfying the 

condition: 

1 1 2 2 n n(dx / x ) (dx / x ) (dx / x )= = =  

 

For the critical points of the symmetrical systems, is valid the expression: 

 =


k
i

i




     integer number. The relation is known in the P, V, T space from 

thermodynamics. 

 
 The synchronism 

The evolution is called synchronic if the different elements )/( ii xdx own similar importance 

(probability), so are satisfying the relation  i i i(dx / x ) const =  in the conditions 

 1 2 n =  = =  . 

 
The structure, the observability 
In universe everything varies. The variaton measure and the observers resolution are the conditions 

for which  depends what is the structure and what is the variation. In these conditions the variable xi  is an 

structural element of the system if is satisfying the condition: 

 

 

 
where C0 is a constant of observer, a level that can still be observed as a variation. 

The structure of the system is composed from that xi elements, that are satisfying the upper condition, 

so are appearing in the description of the system model. 

Similar to the anterior definition we are defining the variation observability: 

The variation of the element system  xi is observable, if 
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                                            and 

 
where Cm and CM depend of the observer capacity. 

                       

Generally C0  ≤   CM but the visible domain can contain structural elements with variations, respective 

everything that belongs to the definite interval of the two upper limit values. 

The structure is created in long-standing time, and usually is breaking up suddenly. The science 

studies detailed the matter disintegration, but it is studied less the transformation process of the energy in 

matter.  

 
Spectral interpretations 

It is obvious that in some communication systems in the case of very weak signals, it is recommended the 

utilization of the relative expressions, for example in the case of a x signal of order of size ~ 10-12 m and  

dx ~ 10-14 m even the signal identification is easily remaking the signal under the form: 

   
    (~ 10-2 m). 

 
With the help of the spectral variables,we can classify the systems after their state         (i =1,n): 

 

a)                        processes with inertial states 
 
 
b)                                     (integer number) – processes with critical states 
 
 
c)                                       states of avalanche, oscillatory, explosive, catastrophies 
 
 

A solution of the system model (1.1) 

As we know  the probabilities of the operational research, specially the methods of improvement without 

restrictions, a system of nonlinear relations of the type (1.1.) can be solved easier searching the solution of 

a equivalent system of type 

Gj = Fj (x1, ..., xi, ..., xn) - cj = 0   (j = 1, ..., m)   under the form 

 

 

Using a known computing method (for example the method of the n-dimensional simplex) [1],[2], [11]. 

The solvation of a nonlinear relations system through the minimization of a functional, appart from the 

method generality is advantageous even through the fact that it does not presume conditions between the 

number of relations and the number of variables, there can be introduced new variables and relations (for 

example for the replacing of a nonlinear differential relation with a set of liniar relations). 

If we include in the expression of the functional an objective function expected from minimum type, we 

can obtain even optimum solutions. The possibility of the generalization in the case of the multiobjective 

problems is obvious. Combining the method with the relaxation principle and with the evolution 

description with new dynamic series of rapid convergence  similar to the Volterra type relations, we can 

solve  problems of variational type too. 
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In literature [4] are known replacing methods of some nonlinear relations of type (1.1) with sets of 

linear relations. 

The minimization of the functional combined with the n-dimensional simplex method is advisable, 

not existing continuity and derivativability conditions, so in general are avoied the minimum local cases. 

In the annex we present a concrete example using this method. 

In treating the upper problems we do not need the mass notion. A series of other problems can make 

the object of a future article. 

 

3.APPLICATIONS 

3.1 THE MODEL SOLVATION OF COMPLETE SYSTEM 
 

In the next part we expand the numerical method from the chapter [2,2]         of rezolving a nonlinear 

system of equations: 

    We can consider a nonlinear system: 

                                              (j=1, ..., m)                   3.1        

    

We costruct the equivalent problem for the calculus of the values x1,...,xn, which provide the 

functional minimization: 

 

                                                                                   3.2. 

 

Where the functions are given under the form (3.1). We have to observe that the solution x1,...,xn, of 

the system (3.1) provide in the same time the functional minimum (3.2), is true the reciprocal too. In these 

conditions the solvation method can be replaced with the problem of minimization of a functional without 

supplementary restrictions. The last problem is more general and easier, using one from the known 

methods of improvement without restrictions, for example: 

-the method of unidimensional variation 

-the Box method 

-the Hooke-Jeeves method (pattern search)  

-the Rosenbrock method 

-methods of gradient type 

-the method of type Newton-Rapson  

-methods of contraction, etc. 

The Box method (in literature known as different denominations: the Spandley method or Hex method, or 

the n-dimensional simplex), does not presume the continuity, the derivation of the functions. In the n-

dimensional space we construct a regular figure with n+1 vertexs with equal distances between vertexs 

named simplex (for example in the three-dimensional a tetrahedron, etc.). We calculate the  in the 

simplex vertexs. The afferent vertex to the highest value, repetitive we replace with a vertex of opposite 

sense, symmetrical, obtaining a new simplex. Repeating the method we skip the anterior selected 

vertexes, in case of need for precision we reduce the dimension of the simplex side, obtaining the vertex 

of expected value. In literature [11] are indicated the expressions of obtaining the simplex vertexes, of 

choosing the new vertex. 

 

The model solving steps are: 

◼ We read the number of variables (n), the initial size of the       n-dimensional (a) simplex side, the 

error threshold () for the   calculus, the maximum number of iterations (t) 

◼ We construct the vertexes V1, ..., Vi, ..., Vn+1 of the simplex, in this way: 
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                                                                                                                        (3.3).                                              

 

 

 

  

 

◼ We calculate the  value in every vertex of the simplex 

◼ We choose the highest value (the worst possibility) of  in the simplex vertexes, vertex that was 

not selected before and we keep its value   (  
R

ix  ) 

◼ We calculate the new symmetrical vertex in the place of the selected one for elimination (this will 

be the image of the vertex that have to be eliminated in the mirror of the other vertexes) using the relation 

(3,4) 

 

◼                                                               (i=1, . n)                3.4. 

 

 
◼ We repete the algorithm from the point 3 until the way out condition in one of the vertexes is 

satisfied,    or the iterations number has reached the t value. 

◼ We post the point coordinates, the  value, the iterations number, , t, a values 

If the approximation is not acceptable, we reduce the size of the simplex side, and we continue from 

point 3 omitting the selected vertexes choosing a less bad vertex. 

 

There are not restrictions between the number of relations and the  number of variables. If the 

problem has more solutions, in literature are often introduced supplimentary aim functions, obtaining  

optimum solutions [16]. 

 
NUMERICAL SIMULATION 

In the presentation we use the research results [16] realised with the support of Cluj Sapientia University 

in 2004. We are foreshadowing the solvation of a nonlinear electric network open with the relations 

system: 

 

                                                    3.2.1.  

 
 

We construct the functional (3.2): 

 

                                                                                      3.2.2. 

 

       
For the functional minimization we have used the Box method (of the n-dimensional simplex) starting 

from the point (0,0) with  a side equal with 2, the partial results being reproduced in the next table: 
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                          The simulation steps.    Table nr.1. 

The 

iteration 
X Y  

a = 2            p = 0,5174              q = 0,9314 

1 
0,000

0 

0,000

0 

106,

000 

2 
0,517

4 

1,931

4 

617,

781 

3 
1,931

5 

0,517

4 

48,8

40 

4 
−1,41

40 

1,414

0 

1488

,000 

5 
1,931

4 

0,517

4 

617,

781 

a = 0,1         p = 0,0965             q = 0,0258 

1 
0,517

4 

1,931

4 

48,8

40 

2 
0,613

9 

1,957

2 

672,

117 

3 
0,543

2 

2,127

9 

48,1

40 

4 
0,446

7 

2,002

1 

60,4

60 

5 
0,613

9 

1,957

2 

37,6

80 

6 
0,639

8 

2,053

8 

36,1

37 

7 
0,710

5 

1,983

1 

26,7

74 

8 
0,736

4 

2,079

7 

24,6

99 

9 
0,808

1 

2,009

0 

16,4

75 

1

0 

0,833

9 

2,105

6 

14,2

77 

1

1 

0,905

6 

2,034

9 

7,71

1 

1

2 

0,931

5 

2,131

6 

5,92

4 

1

3 

1,003

2 

2,060

9 

1,71

2 

1

4 

1,029

1 

2,157

8 

1,02

3 

1

5 

1,100

8 

2,087

1 

0,22

7 



       In the beginning we have used the simplex side a = 2, but because the functional value has 

repeted from the vertex 5, it was necessary the continuation from point 3 with a smaller side (a = 

0,1).After 15 iterations we obtained the solution x = 1,1008 és y = 2,0871, which would be possible 

improving only with a smaller side. For verification, we obtained  minimum with the packet of 

MATLAB programs. After 154 iterations, on the next graph can be observed that the upper point is one of 

the problem solutions, the calculating solution being: x = 1,0831 şi  y = 2,0260.                            
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Figure 1.  The graphic representation of the functional 

3.2. Relaxing conditions, ( the tendency towards independence/equiprobability) 

 
 
 
 
 
 
     
 
The gases dilation: 

 
V=V0(1+γ.Δt) 
 
V- V0 / V0 = γ.Δt    → 
 
γ.Δt = 1 
 
Vmax  = 2. V0 
 
The harmonious movement:   
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The thermodynamic system 

 
 
 
 
 
 
 
 
 

 

 

Quantum power levels 

                                       The wave function y(x) satisfies the Schrodinger equation 
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 The asymptotic solution of the Ricatti equation: 

 
R ''u (x)+ 'R 'u (x)+[ 'Q -P] u (x) = 0 
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Asymptotic expression for the first fundamental square form of the surface from the 

differential geometry. 
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3.3. A LEVITATION, THE INERTIAS COMPOSITION  
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If some relative variations are increasing, the inertia can decrease. 

 
3.4.  CRITICAL POINTS 
 
 
 
 
 
Example: The Voltera model for the surviving of the fish species 
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3.5. A connection to the theory of relativity 
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Where T is the temperature,  =v/c , v system speed, c the speed of light. 
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