
APPLICATIONS 

THE MODEL SOLVATION OF COMPLETE SYSTEM 

In the next part we expand the numerical method from the chapter [2,2]         of 

rezolving a nonlinear system of equations: 

    We can consider a nonlinear system: 

                                             (j=1, ..., m)                   1            

We costruct the equivalent problem for the calculus of the values x1,...,xn, which 

provide the functional minimization: 
 

                                                                                  2. 

 

Where the functions are given under the form (1). We have to observe that the 

solution x1,...,xn, of the system (1) provide in the same time the functional 

minimum (2), is true the reciprocal too. In these conditions the solvation 
method can be replaced with the problem of minimization of a functional 

without supplementary restrictions. The last problem is more general and easier, 

using one from the known methods of improvement without restrictions, for 

example: 

-the method of unidimensional variation 

-the Box method 
-the Hooke-Jeeves method (pattern search)  

-the Rosenbrock method 

-methods of gradient type 

-the method of type Newton-Rapson  

-methods of contraction, etc. 

 
 

The Box method (in literature known as different denominations: the Spandley 

method or Hex method, or the n-dimensional simplex), does not presume the 

continuity, the derivation of the functions. In the n-dimensional space we 

construct a regular figure with n+1 vertexs with equal distances between vertexs 

named simplex (for example in the three-dimensional a tetrahedron, etc.). We 

calculate the  in the simplex vertexs. The afferent vertex to the highest value, 

repetitive we replace with a vertex of opposite sense, symmetrical, obtaining a 

new simplex. Repeating the method we skip the anterior selected vertexes, in 

case of need for precision we reduce the dimension of the simplex side, 

obtaining the vertex of expected value. In literature are indicated the 
expressions of obtaining the simplex vertexes, of choosing the new vertex. 

 

The model solving steps are: 
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◼ We read the number of variables (n), the initial size of the       n-

dimensional (a) simplex side, the error threshold () for the   

calculus, the maximum number of iterations (t) 

◼ We construct the vertexes V1, ..., Vi, ..., Vn+1 of the simplex, in this 

way: 

 

     3. where 
 

 

 

 

  

 
 

 

◼ We calculate the  value in every vertex of the simplex 

◼ We choose the highest value (the worst possibility) of  in the 

simplex vertexes, vertex that was not selected before and we keep its 

value   (  R

ix  ) 

◼ We calculate the new symmetrical vertex in the place of the selected 

one for elimination (this will be the image of the vertex that have to be 
eliminated in the mirror of the other vertexes) using the relation (3,4) 

 

◼                                                               (i=1, . n)                4. 

 

 

◼ We repete the algorithm from the point 3 until the way out condition 

in one of the vertexes is satisfied,    or the iterations number has 

reached the t value. 

◼ We post the point coordinates, the  value, the iterations number, , t, 
a values 

If the approximation is not acceptable, we reduce the size of the simplex 

side, and we continue from point 3 omitting the selected vertexes choosing a 

less bad vertex. 

 

There are not restrictions between the number of relations and the  
number of variables. If the problem has more solutions, in literature are 

often introduced supplimentary aim functions, obtaining  optimum solutions. 
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NUMERICAL SIMULATION 

In the presentation we use the research results  realised with the support of Cluj 
Sapientia University in 2004. We are foreshadowing the solvation of a 

nonlinear electric network open with the relations system: 

 

                                                    2.1.  

 

We construct the functional .2): 
 

                                                                                      2.2. 

 

 
Procedure MATLAB : 
a = 0.0001; 
x = zeros(3,1); 
y = zeros(3,1); 
F = zeros(3,1); 
maxx = 0; 
maxy = 0; 
imax = 0; 
tx = 0; 
ty = 0; 
nx = 0; 
ny = 0; 
x(2) = 0.0001; 
y(3) = 0.0001; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
for j = 1:100000 
F(1) = (4*x(1)^3-y(1)^3-3*x(1)^2*y(1)+3*x(1)*y(1)^2+y(1)- 
5)^2+(3*x(1)^3+y(1)^2+x(1)-9)^2; 
F(2) = (4*x(2)^3-y(2)^3-3*x(2)^2*y(2)+3*x(2)*y(2)^2+y(2)- 
5)^2+(3*x(2)^3+y(2)^2+x(2)-9)^2; 
F(3) = (4*x(3)^3-y(3)^3-3*x(3)^2*y(3)+3*x(3)*y(3)^2+y(3)- 
5)^2+(3*x(3)^3+y(3)^2+x(3)-9)^2; 
maxF = max(F); 
imax = 0; 
for i = 1:3 
if maxF == F(i) 
imax = i; 
end 
end 
tx = sum(x); 
ty = sum(y); 
nx = tx - 2*x(imax); 
 
ny = ty - 2*y(imax); 
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x(imax) = nx; 
y(imax) = ny; 
F(imax) = 0; 
end 
F(imax)=(4*x(imax)^3-y(imax)^3-3*x(imax)^2*y(imax)+3*x(imax)*y(imax)^2+y(imax)- 
5)^2+(3*x(imax)^3+y(imax)^2+x(imax)-9)^2; 
maxF = min(F); 
for i = 1:3 
if maxF == F(i) 
imax = i; 
end 
end 
display(F(imax)) 

display(x(imax)) 
display(y(imax)) 
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