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ABSTRACT

Breast cancer is characterized by oncobiosis, the abnormal composition of the microbiome in neoplastic
diseases. The biosynthetic capacity of the oncobiotic flora in breast cancer is suppressed, as suggested by
metagenomic studies. The microbiome synthesizes a set of cytostatic and antimetastatic metabolites that
are downregulated in breast cancer, including cadaverine, a microbiome metabolite with cytostatic prop-
erties. We set out to assess how the protein expression of constitutive lysine decarboxylase (LdcC), a key
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enzyme for cadaverine production, changes in the feces of human breast cancer patients (n 5 35). We
found that the fecal expression of Escherichia coli LdcC is downregulated in lobular cases as compared to
invasive carcinoma of no special type (NST) cases. Lobular breast carcinoma is characterized by low or
absent expression of E-cadherin. Fecal E. coli LdcC protein expression is downregulated in E-cadherin
negative breast cancer cases as compared to positive ones. Receiver operating characteristic (ROC) analysis
of LdcC expression in lobular and NST cases revealed that fecal E. coli LdcC protein expression might have
predictive values. These data suggest that the oncobiotic transformation of the microbiome indeed leads to
the downregulation of the production of cytostatic and antimetastatic metabolites. In E-cadherin negative
lobular carcinoma that has a higher potential for metastasis formation, the protein levels of enzymes
producing antimetastatic metabolites are downregulated. This finding represents a new route that renders
lobular cases permissive for metastasis formation. Furthermore, our findings underline the role of onco-
biosis in regulating metastasis formation in breast cancer.
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INTRODUCTION

Breast cancer is characterized by an altered gut [1–7], breast [8], oral [9], and urinary [9]
microbiome. The majority of studies reported suppressed microbiome diversity (reviewed in
Ref. [10]). Animal [11, 12] and human studies [13] suggest that antibiotic administration that
reduces the biomass and diversity of gut flora, increases the risk for breast cancer development.
Probiotic treatment has an inverse effect by decreasing the incidence of breast cancer [14]. These
observations suggest a pathophysiological role for the oncobiome in breast cancer.

Changes to the microbiome can affect the immune functions of the host [15] and the mi-
crobes can modulate the behavior of the host by secreting pleiotropic metabolites. These me-
tabolites get to cancer cells through the systemic circulation [10]. The majority of the studies
report lower diversity in the breast cancer oncobiome as compared to the healthy eubiome,
resulting in a restricted biosynthetic capacity [3, 6, 7]. This lower biosynthetic capacity probably
leads to lower production of bacterial metabolites in both the serum and the tumor. A number of
antineoplastic bacterial metabolites were identified in breast cancer, including short chain fatty
acids [10], lithocholic acid [7, 16] and cadaverine [6].

Cadaverine can be synthesized from lysine through decarboxylation by bacterial enzymes
(LdcC and CadA) [17, 18], although the human body can also produce cadaverine. Shigella
flexneri, Shigella sonnei, Escherichia coli, and Streptococcus possess enzymes for cadaverine
biosynthesis [19]. The main role of cadaverine is to buffer the pH of the environment [20]. The
receptors for cadaverine are members of the trace amino acid receptor (TAAR) family [6, 21].
High TAAR1 expression correlates with better survival in breast cancer [22]. Furthermore,
TAAR1, TAAR2, TAAR3, TAAR5, TAAR8, and TAAR9 can repress breast cancer [6]. Cadaverine
suppresses epithelial-to-mesenchymal transition, cellular movement, chemotaxis, diapedesis, and
metastasis formation in breast cancer cells, but has no effect on non-transformed cells [6].

There is an ample set of metagenomic studies in breast cancer cases [10]. However, to our
best knowledge, no protein studies are available due to difficult sample preparation and lack of
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antibodies for analysis. In the current study, we assessed the expression of a bacterial enzyme,
LdcC, which produces the cytostatic bioactive metabolite, cadaverine [6]. The aim of this study
was to assess the fecal protein expression of E. coli LdcC in breast cancer patients.

MATERIALS AND METHODS

Patient cohort

Fecal protein expression was assessed in a female breast cancer patient cohort composed of 35
participants with a mean age of 57 years. Samples from stage I–III and Nottingham grade 1–3
patients were used in the study. The average stage and grade were not statistically different
amongst the groups. Fecal samples were obtained from patients with no special type (NST) and
lobular tumors; tumors of other histological types were excluded.

The collection and biobanking of feces were authorized by the Hungarian national authority
(ETT). Patients and healthy volunteers meeting the following criteria were excluded from the
study: 1) has a previous history of breast cancer or had been operated due to neoplasia, 2) has a
disease of unknown origin, 3) has a chronic contagious disease, 4) had contagious diarrhea 6
months prior to enrollment, 5) taken antibiotics within the 6 months prior to enrollment, 6) had
chemotherapy, biological therapy, or immunosuppressive therapy 6 months prior to enrollment,
7) used intravenous drugs 12 months prior to enrollment, 8) had piercing, tattooing,
acupuncture, or other endangering behavior or action 12 months prior to enrollment, 9)
exposure to an allergen to which the enrolled individual had been sensitized to, or 10) under-
went colonoscopy 12 months prior to enrollment. The first morning feces was sampled; samples
were frozen and deposited in the biobank within 2 h after defecation. Samples were stored at
�70 8C until subsequent use. We obtained informed consent from study participants. The
patient’s routine pathological data were assessed in the study and were compared to the fecal
expression of E. coli LdcC.

Fecal protein sample preparation

Fecal proteins were isolated as described in Ref. [6]. Fecal samples (100 mg) were lysed in 500 mL
RIPA buffer (50 mM Tris, 150 mM NaCl, 0.1% SDS, 1% Triton X-100, 0.5% sodium deoxy-
cholate, 1 mM EDTA, 1 mM Na3VO4, 1 mM PMSF, 1 mM NaF, protease inhibitor cocktail) and
sonicated (Qsonica Q125 Sonicator, Newtown, Connecticut) 3 times for 30 s with 50%
amplitude. After centrifugation, 8 mL b-mercaptoethanol and 25 mL 53 SDS sample buffer (50%
glycerol, 10% SDS, 310 mM Tris HCl, pH 6.8, 100 mM DTT, 0.01% bromophenol blue) were
added to each 100 mL extract. Then, fecal protein samples were heated for 10 min at 96 8C and
held on ice until loading. Protein extract (40 mL) was loaded on 8% SDS-PAGE gels and proteins
were separated and transferred onto nitrocellulose membrane. Ponceau-red staining took place
after transfer, but before blocking. Ponceau-stained membranes were photographed and used in
subsequent analyses. Membranes were cut at the 70 kDa standard and the top part was blotted
for LdcC (E. coli LdcC, 1:100, Abcam (ab193351)). Membranes were blocked in TBST con-
taining 5% BSA for 1 h and incubated with anti-LdcC primary antibody overnight at 4 8C. After
washing with 13 TBS-TWEEN solution, the membranes were probed with IgG HRP-conju-
gated peroxidase secondary antibodies (1:2000, Cell Signaling Technology, Inc, Beverly, MA,
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USA). Bands were visualized by enhanced chemiluminescence reaction (SuperSignal West Pico
Solutions, Thermo Fisher Scientific Inc., Rockford, IL, USA). Blots were evaluated by densi-
tometry using Image J software and antibody signals were normalized to total protein stained by
Ponceau-red (Sigma-Aldrich). A sample LdcC blot is published in Ref. [6].

Statistical analysis

All data are represented as average ± SEM. Statistical tests are mentioned in figure captions. For
statistical analysis, Graphpad 8.1 software was used. The receiver operating characteristic (ROC)
curve was re-calculated using R (version v 3.6.3 (2020-02-29)) [23] and the pROC package [24].

RESULTS

Fecal expression of LdcC is low in the E-cadherin negative, lobular subtype of breast
cancer

First, we assessed the fecal protein expression of E. coli LdcC as a function of the histological
subtype of breast cancer. We found that the fecal expression of E. coli LdcC enzyme was lower in
the lobular subtype compared to the invasive carcinoma of no special type (NST) of breast
cancer (Fig. 1A).

Fig. 1. Fecal expression of E. coli LdcC enzyme is lower in lobular, E-cadherin negative than in NST,
E-cadherin positive breast cancer cases.
(A) Fecal samples of 29 NST and 6 purely lobular cases were assessed by Western blotting using an anti-
LdcC antibody. Protein content-normalized values are plotted. (B) Fecal samples of 29 E-cadherin positive
(Ecadhþ) and 6 E-cadherin negative (Ecadh�) breast cancer cases were assessed by Western blotting using
an anti-LdcC antibody. Protein content-normalized values are plotted. Data are presented as average ±
SEM. Significance between groups was analyzed by two-tailed Student’s t-test using Welch’s correction.

** indicates statistically significant differences between groups at P < 0.01
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Lobular breast carcinoma is characterized by lower or absent E-cadherin expression [25].
Furthermore, the absence of E-cadherin is a predictive factor for metastasis formation, and
therefore, predicts poorer clinical outcomes [25–27]. We compared the LdcC expression in E-
cadherin positive and negative tumors. The fecal expression of E. coli LdcC was significantly
lower in E-cadherin negative cases as compared to E-cadherin positive cases (Fig. 1B).

The striking difference in the fecal expression of E. coli LdcC in E-cadherinþ versus
E-cadherin� cases prompted us to assess whether it would be possible to discriminate between
E-cadherinþ and E-cadherin� cases using LdcC expression. To that end, we performed a ROC
analysis. According to the ROC analysis, fecal E. coli LdcC expression is a good assay to classify
E-cadherinþ and E-cadherin� cases (Fig. 2). The area under the curve for the ROC analysis was
0.8276 (Std error: 0.0864, 95% confidence interval [CI]: 0.6583–0.9969). The threshold of the
curve was 0.642 (corresponding specificity 83.33% (CI: 50–100) and sensitivity was 72.41% (CI:
55.17–86.21)). The P value for the curve was P50.0126.

DISCUSSION

All previous work on the breast cancer oncobiome applied nucleic acid-based techniques [10].
The bacterial metabolome was not assessed in dedicated studies, only tangentially in general
metabolomic studies [7, 28, 29]. General bacterial proteomic studies are missing. Due to these

Fig. 2. ROC analysis of fecal E. coli LdcC expression to distinguish E-cadherin positive and E-cadherin
negative breast cancer cases.
Fecal E. coli LdcC protein expression values were entered into an ROC analysis using the Graphpad 8.1

statistical software
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caveats, we do not have a comprehensive picture of the metabolic function of the oncobiome
and its pathophysiological role in breast cancer. Our aim was to provide an initial, rudimentary
study on fecal bacterial protein expression in breast cancer patients, as a proof of principle study.
The major technical drawback we faced was the lack of antibodies against relevant bacterial
enzymes in diverse species. In this study, we used an antibody specific to the LdcC enzyme that
produces cadaverine, which has cytostatic properties in breast cancer [6]. The anti-LdcC anti-
body was specific for E. coli and there were no available antibodies against the same enzyme in
other species. LdcC was downregulated at the DNA level, when comparing breast cancer pa-
tients to healthy controls [6]. In support of this observation, breast cancer is characterized by
suppressed diversity [10] and suppressed biosynthetic capacity of the gut microbiome [3, 6, 7].

Fecal E. coli LdcC enzyme expression was downregulated in lobular E-cadherin negative breast
cancer cases. E-cadherin is a cell adhesion molecule, which is crucial in the suppression of invasion
[26]. Epigenetic reprogramming or mutations that downregulate E-cadherin expression support
tissue invasion and metastasis formation [25–27, 30]. Re-expression of E-cadherin reprograms
mesenchymal cells towards epithelial morphology [30]. Lobular breast cancer has a higher po-
tential for metastasis formation, marked by a higher frequency of peritoneal metastases (e.g.,
Krukenberg tumors). Increased peritoneal metastases is probably linked to low or absent E-cad-
herin expression. The finding that fecal E. coli LdcC expression was lower in E-cadherin negative
cases is in good agreement with the observation that oncobiosis supports metastasis formation in
breast cancer [6, 7, 15]. Cadaverine, produced by LdcC, suppresses metastasis formation [6].

Earlier, metagenome-based reports have suggested that the breast cancer oncobiome changes
as a function of stage [6, 7], estrogen, and HER2 receptor status [1, 2, 10]. Therefore, the as-
sociation of oncobiome changes with lobular breast cancer or with E-cadherin status is not
surprising. However, to the best of our knowledge, breast cancer oncobiome changes have not
associated with E-cadherin expression in breast cancer.

What do these data suggest to us from a functional perspective? The literature suggests that
the biosynthetic or “bioconversion” capacity of the oncobiome in breast cancer is drastically
suppressed [10, 31–35]. Bacterial estrogen reactivation, through the bacterial estrobolome, is
upregulated in breast cancer patients. Increased estrogen reactivation and reuptake supports the
proliferation of breast cancer cells [3, 4, 33, 35]. Cytostatic bacterial metabolites were also
identified, such as short chain fatty acids [10], lithocholic acid [7, 16, 36] and cadaverine [6].
LdcC plays role in cadaverine biosynthesis. LdcC is downregulated in E-cadherin negative cases
that have a higher risk for metastasis formation. These observations support the idea that
oncobiotic transformation in breast cancer downregulates the production of cytostatic and
antimetastatic metabolites and, hence, supports metastasis formation in humans [6, 7, 15]. The
bacterial metabolome-driven metastatic events are likely to be parallel mechanisms to the
pathways regulated by the loss of E-cadherin or other adhesion proteins.

We are approaching a better understanding of the pathological role of the oncobiome and
the oncobiotic transformation in breast cancer. This study provides evidence that the low
bacterial production of cytostatic/antimetastatic metabolites in human breast cancer supports
metastasis formation in breast cancer. Furthermore, the results of the DNA-based studies
suggesting differences in the microbiome in subtypes of breast cancer [1, 2, 6, 7, 35] can be
translated into changes in the proteome and, most probably, to changes in the bacterial
metabolome as well. From a therapeutic perspective, these data support the applicability of
bacterial metabolites in suppressing or preventing breast cancer metastasis.
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PERSPECTIVES

Oncobiosis characterizes most cancers [37, 38]. Breast cancer oncobiosis affects the distal gut
[1–7], oral [9], urinary [9] and the breast’s own microbiome [8]. Apparently, changes to these
microbiome compartments can increase the risk for developing breast cancer. Breast cancer
cases in women peak around the menopause, hence, aging is a risk factor for breast cancer.
Aging comes along with dysbiosys [39, 40] suggesting a likely causative relationship between
changes to the microbiome and increased risk to breast cancer. Aging-associated, low grade
inflammation is held responsible for the deterioration of multiple organs and organ systems
[39–43]. Inflammation may in one hand damage cells and lead to mutations and cellular
dysfunction, eventually to cell death [44]. Furthermore, constant low grade inflammation may
be a pathway for the aging-associated simplification of the microbiome [39]. These changes are
then translated to changes to the microbial metabolome [45] that may in turn give an age-
related pathway for breast carcinogenesis.
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