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Abstract. The two main concepts of Rigidity Theory are rigidity, where
the framework has no continuous deformation, and global rigidity, where
the given distance set determines the locations of the points up to isome-
try. We consider the following augmentation problem. Given a minimally
rigid graph G = (V,E) in R2, find a minimum cardinality edge set F
such that the graph G′ = (V,E + F ) is globally rigid in R2. We provide
a min-max theorem and an O(|V |2) time algorithm for this problem.
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1 Introduction

Let us consider the following motivating question: Given some sensors in the
plane and the distances between some pairs of them, at least how many of them
need to be localized so that we could reconstruct the exact sensor-locations?
This is the so-called global rigidity pinning (or anchoring) problem. Sometimes
measuring the exact locations is too expensive or even impossible. Instead, one
may ask at least how many new distances need to be measured so that the
distances uniquely determine the positions of the sensors (up to isometry). This
problem is called the global rigidity augmentation problem. The concept of global
rigidity, which appears in the previous network localization problems, plays an
important role in rigidity theory [3, 5, 12].

Let us consider the aforementioned problems by the means of Rigidity The-
ory. A d-dimensional framework is a pair (G, p), where G = (V,E) is a graph
and p : V → Rd is a map of the vertices to the d-dimensional space. We call p
a realization of G in Rd. Two frameworks (G, p) and (G, q) are equivalent if
||p(u)− p(v)|| = ||q(u)− q(v)|| for every uv ∈ E. (G, p) and (G, q) are congru-
ent if ||p(u) − p(v)|| = ||q(u) − q(v)|| holds for every vertex pair u, v ∈ V , or
in other words, when (G, q) can be obtained from (G, p) by an isometry of Rd.
We say that the framework (G, p) is globally rigid if each framework (G, q)
which is equivalent to (G, p) is also congruent to (G, p), that is, the length of the
edges in (G, p) uniquely determines the realization up to isometry of Rd. (For
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example, Figure 1(c) is a globally rigid framework in R2.) A framework (G, p)
is called rigid if there exists an ε > 0 such that each framework (G, q), which is
equivalent to (G, p) and for which ||p(v)−q(v)|| < ε holds for each v ∈ V , is also
congruent to (G, p), that is, if every edge-length preserving continuous motion of
the framework results in a framework which is congruent to (G, p). (See Figure
1(a) for an example of a non-rigid and Figure 1(b) for a rigid framework in R2.)

(a) (b) (c)

Fig. 1: Frameworks of various rigidity in R2. (a) A non-rigid framework. (b) A
rigid framework which is not globally rigid. (c) A globally rigid framework.

Deciding whether a given framework is rigid (globally rigid, respectively) in
Rd is NP-hard for d ≥ 2 (d ≥ 1, respectively) [1, 21]. The analysis gets more
tractable if we consider generic frameworks where the set of coordinates of the
points is algebraically independent over the rationals. In this case, the rigidity
and the global rigidity of the framework depends only on the underlying graph G
[5, 8, 23]. (We note that reconstructing the position of the points is a challenging
task, even if they are uniquely determined by the framework, see [2, 16, 22]. In
this paper we do not address this problem.)

A graph G is called rigid (or globally rigid) in Rd if each (or equivalently
some) of its generic realizations as a framework is rigid (or globally rigid, respec-
tively). The combinatorial characterization of rigid and globally rigid graphs is
known for d = 1, 2 [11, 20] while it is a major open problem of rigidity theory
for d ≥ 3. We shall use these combinatorial characterizations in our work.

For generic frameworks, the global rigidity augmentation problem can be
modelled as follows:

Problem 1 Given a graph G = (V,E), find an edge set F of minimum cardi-
nality on the same vertex set, such that G+ F = (V,E ∪ F ) is globally rigid in
R2.

The complexity of Problem 1 is open. There are some partial results in con-
nection with it, for example, Fekete and Jordán [6] gave a constant factor ap-
proximation for the global rigidity pinning problem in R2 for generic frameworks,
however, the complexity of that problem is also open. In Section 5 we show how
the result of [6] can be applied to give a constant factor approximation for Prob-
lem 1.

In this paper we shall solve Problem 1 optimally for a special case. A graph
G = (V,E) is called minimally rigid, if G is rigid but G− e is not rigid for any



Globally rigid augmentation of minimally rigid graphs in R2 3

e ∈ E. We show that, if G is minimally rigid in Problem 1, then we can give a
min-max theorem and also an O(|V |2) time algorithm that solves the problem
optimally. Moreover, it follows from this result that the globally rigid pinning
problem also can be solved optimally for minimally rigid graphs (see Section 5).
The most of the proofs are left for the full version of this extended abstract [17].

2 Preliminaries and Definitions

2.1 Rigidity in R2

In this subsection we collect the basic definitions and results from rigidity theory
that we shall use. There are several equivalent approaches to graph rigidity, for
our purpose, a combinatorial one is the most practical. For a detailed introduc-
tion to rigidity theory including the equivalence of our approach, the reader is
referred to [14].

A graph G = (V,E) is called sparse if i(X) ≤ 2|X| − 3 for all X ⊆
V with |X| ≥ 2, where i(X) denotes the number of edges induced by X. A
graph G = (V,E) is called tight (or sometimes Laman) if it is sparse and
|E| = 2|V | − 3. This definition can be used for the characterization of the rigid
graphs in R2 by the fundamental results of Pollaczek-Geiringer and Laman.

Theorem 1 ([20],[19]). A graph G is minimally rigid in R2 if and only if G
is tight. Thus, a graph G is rigid in R2 if it contains a spanning tight subgraph.

As we work in R2 we omit this indication from the rest of this paper. A
graph G = (V,E) is called k-connected if |V | > k and G − X is connected
for any vertex set X ⊂ V of cardinality at most k − 1. Connectivity has several
connections to rigidity. An often used folklore result is the following (see [14]).

Lemma 1. If G = (V,E) is a tight graph for which |V | ≥ 3, then G is 2-
connected.

The most important result related to our problem is the following characteriza-
tion of global rigidity in R2 due to Jackson and Jordán. An edge e of a rigid
graph G is called redundant if G − e is rigid. A graph is redundantly rigid
if all of its edges are redundant.

Theorem 2 ([11]). A graph G = (V,E) with |V | > 3 is globally rigid in R2 if
and only if it is redundantly rigid and 3-connected.

Based on the above results, the problem we shall solve in this paper is equiv-
alent to the following.

Problem 2 Given a tight graph G = (V,E), find a graph H = (V, F ) with
a minimum cardinality edge set F , such that G ∪ H is redundantly rigid and
3-connected.

If G has at most 3 vertices then G is tight if and only if it is globally rigid
[11], hence the solution of Problem 2 is obvious. Thus we may suppose in what
follows that G contains at least 4 vertices.
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2.2 The redundant rigidity augmentation problem and co-tight sets

Let us first investigate the problem of augmenting a tight graph G = (V,E) to
a redundantly rigid graph by a minimum number of edges. This problem was
considered and solved before by García and Tejel [7]. A generalization of this
augmentation problem to (k, `)-tight graphs appears in a work by the authors
of this paper [18]. We use some ideas from both of these works.

Tight graphs have some well known properties. By definition, any subgraph
of a sparse graph is also sparse and any tight subgraph of a sparse graph is
an induced subgraph. With standard submodular techniques one can prove the
well-known fact that the intersection and the union of two tight subgraphs of a
sparse graph is also tight if they have at least two common vertices (see [14]).
Given two vertices u, v ∈ V of a tight graph G = (V,E), this fact implies that the
intersection of all the tight subgraphs of G which contain both of u and v is also
tight, and hence it is the unique minimal tight subgraph of G containing both
of u and v. Let us denote this unique minimal tight subgraph of G containing
both of u and v by T (uv) (or simply by T (e) when e is an edge between u and
v). It is easy to see that the edge set of T (e) is exactly the set of those edges of
G which become redundant if we add the edge e to G (see [7]). Similarly, if we
add the edges e1, . . . , ek to G, (the edges of) some subgraph of G will become
redundant, which we denote by R(e1, . . . , ek). For the sake of convenience, we
will not distinguish a graph from its edge set, that is, we denote the edge set
of T (e) and R(e1, . . . , ek) by T (e) and R(e1, . . . , ek), respectively. The following
statement generalizes the fact that R(e1) = T (e1).

Lemma 2 ([7, Lemma 4]). Let G = (V,E) be a tight graph. Then R(e1, . . . , ek) =
T (e1) ∪ · · · ∪ T (ek) for arbitrary edges e1, . . . , ek.

Lemma 2 is the base of our method hence we will use it throughout the paper
without explicitly referring to it.

Given a tight graph G = (V,E), a non-empty set C ( V is called co-tight if
V −C induces a tight subgraph. This is equivalent to the following: C is co-tight
in G if 0 < |C| ≤ |V |−2 and 2|C| = i(C)+d(C, V −C), where d(X,Y ) denotes
the number of edges between two disjoint sets X,Y ( V . For the sake of brevity,
let us abbreviate the name of minimal co-tight sets by MCT sets. See Figure 2
for an example. Observe that every tight graph G on at least 4 vertices contains
at least two co-tight sets that do not contain each other, as any edge forms a
tight subgraph of G.

Let C be a co-tight set of a tight graph G. If {u, v}∩C = ∅, then V (T (uv))∩
C = ∅ by the definition of T (uv). Thus the next lemma follows easily by
Lemma 2.

Lemma 3 ([18, Observation 5.3]). The vertex set of any edge set that aug-
ments a tight graph G to a redundantly rigid graph must intersect every co-tight
set.

Let C∗ denote the family of all MCT sets of G. We shall use the following
key result on MCT sets (which are called minimal co-rigid sets in [14]).
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Fig. 2: A tight graph with two MCT sets, the set formed by the big (blue) circles
and the set formed by the (gray) square. Adding an edge between any (blue)
circle vertex and the (gray) square vertex augments G to a redundantly rigid
graph, which is not globally rigid, as it is not 3-connected. Adding an edge
between a (red) triangle vertex and the (gray) square vertex augments G to a
3-connected but not redundantly rigid graph.

Lemma 4 ([14, Theorem 3.9.13]). Let G be a tight graph. Then the members
of C∗ are pairwise disjoint or there are two vertices v, w ∈ V such that {v, w} ∩
C 6= ∅ for all C ∈ C∗.

If there are at least two intersecting MCT sets, then it is easy to deduce from
Lemma 4 that the edge e = vw (for the pair v, w ∈ V provided by the lemma)
is an optimal solution of the redundant augmentation problem, that is, R(e) =
T (e) = G. In the general case, the following theorem determines the cardinality
of the optimal augmentation.

Theorem 3 ([18, Theorem 1.1]). Let G be a tight graph on at least 4 vertices.
Then min{|F | : F is an edge set on V for which G + F is a redundantly rigid
graph } = max

{⌈
|C|
2

⌉
: C is a family of disjoint co-tight sets in G

}
.

2.3 The 3-connectivity augmentation problem

By Lemma 1, every tight graph is 2-connected and thus we need to augment a
2-connected graph to a 3-connected graph. There exists several methods to deal
with this particular problem, even linear time algorithms [10]. However, we also
need to augment G to a redundantly rigid graph hence we stick to a simpler
approach following the ideas of [13].

Let us call u, v ∈ V a cut-pair of G, if G−{u, v} is not connected. If u, v is a
cut-pair in G, then let b(u,v)(G) denote the number of components of G−{u, v}.
Let b(G) denote the maximum value of b(u,v)(G) over all cut-pairs u, v of G. If
there are no cut-pairs in G, let b(G) := 1. Let N(X) denote the neighbor set
of X ⊆ V , that is, N(X) := {v ∈ V − X : there exists an edge uv such that
u ∈ X}. A set P ⊂ V is called a 3-fragment if |N(P )| = 2 and P ∪N(P ) 6= V .
The maximum number of pairwise disjoint 3-fragments is denoted by t(G).



6 Cs. Király and A. Mihálykó

To augment a 2-connected graph G to a 3-connected graph, we need to in-
crease the number of neighbors of each 3-fragment of G, and hence the vertex
set of any edge set that augments G to a 3-connected graph must intersect all
3-ends. Moreover, any edge set F that augments G to a 3-connected graph needs
to span a connected graph on the components of G − {u, v} for every cut-pair
u, v. Thus |F | ≥ b(G)− 1. These imply the following well-known statement.

Lemma 5. Given a 2-connected graph G, the minimum number of edges that
augments G to a 3-connected graph is at least max

{
b(G)− 1,

⌈
t(G)
2

⌉}
.

In fact, any 2-connected graph can be augmented to a 3-connected graph by a
set of max

{
b(G)− 1,

⌈
t(G)
2

⌉}
edges (see [10, 13]).

Let us call an inclusion-wise minimal 3-fragment a 3-end. As every 3-fragment
contains at least one 3-end, t(G) is equal to the number of pairwise disjoint 3-
ends. In a rigid graph, this latter value is equal to the number of 3-ends since
their disjointness follows by the following result of Jackson and Jordán [11].

Lemma 6 ([11]). Let G be a rigid graph in R2. Then, for any two disjoint cut-
pairs v1, v2 and u1, u2 of G, u1 and u2 are in the same component of G−{v1, v2}.

3 Min-max theorem

In this section we shall merge the results on the redundant rigidity and 3-
connectivity augmentation problems to a new min-max theorem for the global
rigidity augmentation problem by mixing the statements of Theorem 3 and
Lemma 5, as follows.

Theorem 4. Let G = (V,E) be a tight graph on at least 4 vertices. Then

min{|F | : F is an edge set on V for which G+F is globally rigid} = max

{
b(G)−

1,max
{⌈
|A|
2

⌉
: A is a family of disjoint co-tight sets and 3-fragments

}}
.

Proof (Sketch). Recall that a graph on at least 4 vertices is globally rigid if and
only if it is 3-connected and redundantly rigid by Theorem 2. The min ≥ max
implication in Theorem 4 is obvious since the set of endvertices of the optimal
augmenting edge set must intersect all co-tight sets and 3-fragments by Lemmas
3 and 5. Notice that, if G is 3-connected, then Theorem 4 follows directly by
Theorem 3. Hence from now on, we may assume that G is not 3-connected. In
this case we shall extend the proof of Theorem 3 given in [18] with the ideas of
the 3-connectivity augmentation method given by Jordán [13]. Hence to prove
the min ≤ max part, let us consider the family of all MCT sets and 3-ends of
a tight graph G. Let us call the inclusion-wise minimal elements of this family
the atoms of G. (In Figure 2 these are the three sets formed by the highlighted
vertices: the big (blue) circles form an MCT set, the (gray) square vertex form an
MCT set which is also a 3-end, and the (red) triangle vertices form a 3-end.) Let
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us denote the family of atoms by A∗. We shall show that the atoms are pairwise
disjoint and there exists a set of max

{
b(G)− 1,

⌈
|A∗|
2

⌉}
edges that augments

G to a globally rigid graph. Hence we first need the following counterpart of
Lemma 4 for atoms.

Lemma 7. Let G = (V,E) be a tight graph which is not 3-connected. Then the
atoms of G are pairwise disjoint.

Note that if G is 3-connected, Lemma 7 does not always hold (see Lemma 4).
As we have seen before in Section 2.3, the 3-ends of G are pairwise disjoint and
Lemma 4 implies that two MCT sets can only intersect each other in special
circumstances. Beside these facts, the proof of Lemma 7 uses the following in-
termediate result. The proofs of both lemmas can be found in the full version
[18] of this extended abstract.

Lemma 8. Suppose that G = (V,E) is a tight graph. Let a ∈ A be a vertex from
an atom A ∈ A∗ of G. Then there is no v ∈ V such that a, v forms a cut-pair.

Now, we turn to prove that there exists a set of max
{
b(G)− 1,

⌈
|A∗|
2

⌉}
edges

that augments G to a globally rigid graph. A set X is called a transversal of
a family S if |X ∩ S| = 1 for each S ∈ S and |X| = |S|. As the members of A∗
are pairwise disjoint if G is not 3-connected by Lemma 7, choosing one arbitrary
vertex from every member of A∗ leads to a transversal of A∗.

Let P be a transversal of A∗. Observe that P is a minimum cardinality vertex
set that intersects all MCT sets and 3-ends, and consequently all co-tight sets
and 3-fragments. Hence |A| ≤ |P | holds for an arbitrary family A of disjoint co-
tight sets and 3-fragments. We shall show now that a connected graph on P of
A∗ augments G to a globally rigid graph, that is, 3-connected and redundantly
rigid. Later, we will reduce the number of edges needed for this augmentation
to the optimum value. First it is easy to observe that any connected graph on P
augments G to a 3-connected graph since P covers all 3-ends (by the definition
of the atoms and Lemma 7) and contains no vertex from any cut-pair by Lemma
8.

Lemma 9. Suppose that G is a tight graph which is not 3-connected. Let P be
a transversal of A∗. Then, for any connected graph H = (P, F ) on P , G ∪H is
3-connected.

To show that the above augmentation gives a redundantly rigid graph, one
can extend the ideas of the proof of Theorem 3 from [18] for atoms by using
Lemma 7 instead of Lemma 4. (Again, see [17] for the full proofs.) Recall that
R(F ) denotes the set of redundant edges of G in G+ F .

Lemma 10 (Extension of [18, Lemma 5.8]). Suppose that G is a tight graph
which is not 3-connected. Let P be a transversal of A∗ and let F be the edge
set of a connected graph on P ′ ⊆ P . Then R(F ) is the minimal tight subgraph
containing all elements of P ′. In particular, if F is the edge set of a star K1,|P |−1
on the vertex set P , then G+ F is redundantly rigid.
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Observation 1 Lemmas 9 and 10 imply that G+ F is globally rigid if F is an
edge set of an arbitrary connected graph (in particular, a tree) on a transversal
P of A∗.

The idea of Observation 1 can be found in [15], where the authors got to this fact
from a different approach, with the so-called extreme vertices . The connection
between these two approaches is presented in [18, Lemma 5.10].

By the min ≥ max part of Theorem 4,
⌈
|A∗|
2

⌉
edges are always needed to

augmentG to a globally rigid graph. However, if |A∗| ≤ 3 then it is indeed enough
to do so by Observation 1. On the other hand, if |A∗| > 3, then we need to reduce
the number of edges used by the augmentation provided by Observation 1. To
this end, we shall use the following straightforward adaptation of [18, Lemma
5.9] (see [17] for the proof).

Lemma 11. Let G = (V,E) be a tight graph which is not 3-connected and let
P be a transversal of A∗. Suppose that x1, x2, x3, y ∈ P are distinct vertices.
Let T ∗ = T (x1y) ∪ T (x2y) ∪ T (x3y). Then T ∗ = T (x1y) ∪ T (x2x3) or T ∗ =
T (x2y) ∪ T (x1x3) holds.

Observe that the operation in Lemma 11 allows us to reduce the cardinality
of the edge set used for the augmentation by maintaining the property that it
augments G to a redundantly rigid graph. However, we also need to maintain
the 3-connectivity of the augmentation to complete the proof of Theorem 4.

To reduce the number of edges needed for the augmentation in such a way
that the global rigidity of the augmented graph is maintained, we do the following
procedure. Initially, let F := ∅ andN := P . During the procedure, the setN ⊆ P
stands for “not fixed” vertices while vertices in P −N are the “fixed” vertices. We
can fix an edge f1f2 by removing f1 and f2 from N and adding f1f2 to F . In each
step of the procedure we carefully choose two vertices from N and fix the edges
between them (decreasing the number of vertices in N by two and increasing
the number of edges in F ). Hence the edge set F always covers the vertices of
P −N . We shall keep the following properties during the whole procedure:

1. For an arbitrary star SN on the vertex set N , G+F + SN is a redundantly
rigid graph.

2. In every 3-end of G+ F , there is at least one vertex from N

3. max
{
b(G+ F )− 1,

⌈
|N |
2

⌉}
+ |F | = max

{
b(G)− 1,

⌈
|P |
2

⌉}
.

Notice that Properties 1–3 hold for N = P and F = ∅ by Lemmas 9 and 10.

Remark 1 Properties 1 and 2 ensure that G + F + SN is redundantly rigid
and 3-connected, and thus globally rigid by Theorem 2. Property 3 ensures the
optimality.

Remark 2 If |N | ≥ 4, then from any two edges chosen on x1, x2, x3 ∈ N fixing
one of them maintains Property 1 by Lemma 11 .
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By Remark 2 we always aim to find at least two possibilities to fix such that
Property 2 holds. Also, if it can be done so that max

{
b(G + F ) − 1,

⌈
|N |
2

⌉}
decreases by one, then we can maintain Properties 1–3. Roughly, we distinguish
4 different possibilities in each of which we find 3 vertices from N such that we
can apply Remark 2 and hence we can fix one edge while maintaining Properties
1–3.

Lemma 12. Let G be a tight graph which is not 3-connected such that |A∗| ≥ 4.
Let P be a transversal on A∗. Let N ⊆ P be a vertex set and F be an edge set
on P such that they satisfy Properties 1–3. If |N | ≥ max{4, b(G+F ) + 1}, then
we can choose f1, f2 ∈ N , such that for N − {f1, f2} and F + {f1f2} (that is,
for fixing f1f2) Properties 1–3 also hold.

Proof. We use the following method for the proof. This is the core of our algo-
rithm which we will describe in Section 4.

1 If b(G+ F )− 1 ≥
⌈
|N |
2

⌉
, then

2 If there is only one cut-pair (u, v) such that b(u,v)(G+ F ) = b(G+ F ),
then

Choose x1, x2 from a component of G+F −{u, v} that contains at
least two vertices fromN . Let x3 ∈ N be a vertex from a component
of G+ F − {u, v} that does not contain x1 and x2.

3 else
Let (u1, v1) and (u2, v2) be two cut-pairs for which b(u1,v1)(G+F ) =
b(G+ F ) = b(u2,v2)(G+ F ). Choose x1, x2 ∈ N from two different
components of G+F−{u1, v1} that do not contain {u2, v2}. Choose
x3 ∈ N from a component of G+F −{u2, v2} that does not contain
{u1, v1}.

4 else
5 If there is a cut-pair {u, v} such that for one component of G+F−{u, v},

say K, |N ∩K| ≥ 2 and |(V −K) ∩N | ≥ 2, then
Choose x1, x2 from N ∩K and choose x3 ∈ N from (V −K) ∩N .

6 else (Notice that if b(G+ F ) = 1, then this is the only possible case.)
Choose x1, x2, x3 ∈ N arbitrarily.

7 If G+ F + S(N − {x1, x3}) + x1x3 is redundantly rigid, then
f1 := x1, f2 := x3.

else
f1 := x2, f2 := x3.

First we prove that the above method is consistent, that is, we can execute
each of its steps. As |N | ≥ b(G+F )+1 and P contains no vertex from a cut-pair
of G by Lemma 8, |N | > b(u,v)(G + F ) for an arbitrary cut-pair {u, v}. Hence,
there exists a component of G + F − {u, v} that contains at least two vertices
from N . This shows that we can choose vertices in Steps 2 and 5 consistently.
Meanwhile, in Step 3 there are at least two components of G + F − {u1, v1}
that do not contain {u2, v2} since |N | ≥ 4 and thus b(u1,v1)(G+ F ) ≥ 3.

Now let us turn to show that the choice of f1 and f2 maintains Property 2.
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Claim. Suppose that there is a cut-pair {u, v} such that for one component of
G + F − {u, v}, say K, x1, x2 ∈ N ∩K and x3, y ∈ (V −K) ∩ N . Then fixing
either x1x3 or x2x3 maintains Property 2.

Proof. Notice that the role of x1 and x2 is symmetric thus we might suppose
that we fixed the edge x1x3. Suppose that we form a new 3-end L in G + F
with it. Then necessarily x1, x3 ∈ L. If x2 ∈ L or y ∈ L, then Property 2 holds
automatically. On the other hand, if none of them is in L, then there is a cut-pair
in K∪{u} or in K∪{v} which separates x1 from x2. There is another cut-pair in
V −K (other than {u, v}, say {u′, v′}) which separates x3 from y. Both remain
cut-pairs after fixing the edge x1x3. However, this contradicts the assumption
that L is 3-end in G+ F , as |N(L)| = 2 must hold for a 3-end. ut

Notice that the conditions of the above Claim hold in Steps 2, 3 and 5
thus with our choice of x1, x2, and x3 Property 2 is maintained. If G + F is
already 3-connected, then Property 2 is obvious. Otherwise, in Step 6, every
cut-pair cuts G + F into two component, one of which contains exactly one
element from N by the condition of Step 5. For the sake of a contradiction,
assume that G + F + f1f2 contains a 3-end L which contains no element of
N −{f1, f2}. Let N(L) = {u, v}. Then N ∩L = {f1.f2}, V −L−{u, v} 6= ∅, and
u, v is a cut pair of G + F . By our above condition, (u, v) cuts G + F into two
component one of which contains exactly one element from N . Hence exactly L
and V − L − {u, v} are these two components. Moreover, as |L ∩ N | = 2, this
implies |N ∩ (V − L− {u, v})| = 1, contradicting |N | ≥ 4.

Now we show that our method maintains Property 3. Fixing any edge de-
creases

⌈
|N |
2

⌉
by one while increases F by one. By Steps 5 and 6 it is enough to

keep Property 3 true as in this case max
{
b(G+F )− 1,

⌈
|N |
2

⌉}
> b(G+F )− 1.

We need to show that if the condition in Step 1 is true, then we also decrease
b(G + F ). If b(G + F ) − 1 ≥

⌈
|N |
2

⌉
, then there can be at most two cut-pairs of

G+F satisfying b(u,v)(G+F ) = b(G+F ) by a simple calculation on the number
of 3-ends (see [13]). If there is only one, the pair (u, v) chosen in Step 2, then
we only need to decrease b(u,v)(G + F ). Since x1x3 and x2x3 both connect two
different components of G + F − {u, v}, b(u,v)(G + F ) decreases by one after
fixing any of them. If there are exactly two such cut-pairs, (u1, v1) and (u2, v2)
chosen in Step 3, then we need to decrease b(u1,v1)(G+ F ) and b(u2,v2)(G+ F )
simultaneously. Again our choice of x1x3 and x2x3 guarantees this.

Therefore, by Remark 2 applied to Step 7, fixing f1f2 maintains Properties
1–3. This completes the proof of Lemma 12. ut

We apply Lemma 12 recursively until |N | < max{4, b(G+ F ) + 1}. To com-
plete the proof of Theorem 4, we need to show the following.

Claim. If |N | ≤ max{3, b(G+F )}, then, for an arbitrary star SN on N , G+F +

SN forms a globally rigid graph for which |F |+ |SN | = max
{
b(G)− 1,

⌈
|P |
2

⌉}
.
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Proof. G+F +SN is globally rigid by Remark 1. By Property 3 it is enough to
show that max

{
b(G+F )− 1,

⌈
|N |
2

⌉}
= |SN | = |N | − 1. If |N | = b(G+F ), then

max
{
b(G+ F )− 1,

⌈
|N |
2

⌉}
= |N | − 1 as

⌈
|N |
2

⌉
≤ |N | − 1. On the other hand, if

|N | < b(G+ F ), then 2 ≤ |N | ≤ 3 thus
⌈
|N |
2

⌉
= |N | − 1. ut

Recall that A∗ consists of pairwise disjoint MCT sets and 3-ends of G and
hence the maximum in Theorem 4 is at least max

{
b(G)− 1,

⌈
|A∗|
2

⌉}
. On the

other hand, the above claim implies that G can be augmented to a globally
rigid graph by an addition of an edge set of cardinality max

{
b(G)− 1,

⌈
|P |
2

⌉}
=

max
{
b(G)− 1,

⌈
|A∗|
2

⌉}
. This completes the proof of Theorem 4. ut

4 Algorithmic aspects

It is easy to see that the proof of Theorem 4 provides an algorithm for Problem
2 when the input tight graph G = (V,E) is not 3-connected. On the other hand,
the algorithm of García and Tejel [7] or that by the authors of this paper in [18]
provides an algorithm for the case where G is 3-connected since in this case we
only need a redundantly rigid augmentation of G. In this section we sketch how
one can provide an O(|V |2) time algorithm for Theorem 4.

Theorem 5. Let G = (V,E) be a tight graph. There exists an O(|V |2) time
algorithm that finds a graph H = (V, F ) with a minimum cardinality edge set F
for which G+H is a globally rigid graph.

Proof (sketch). Note that the tightness of G implies that |E| = 2|V | − 3. Hence
the 3-connectivity of G and all cut-pairs and 3-ends of G can be found in O(|V |)
time by the algorithm of Hopcroft and Tarjan [9].

The algorithm of Berg and Jordán [4] checks the tightness of G in O(|V |2)
time, moreover, after this it can be used to calculate T (ij) for each pair of
vertices i, j ∈ V in linear time. This fact was used to show that the algorithms
in [7] and [18] both provide an optimal redundantly rigid augmentation of G in
O(|V |2) time which completes the proof when the input is 3-connected.

To start the algorithm of Lemma 12, we first need a transversal of A∗. (And
this is also needed to solve the case where |A∗| ≤ 3.) This can be calculated
in O(|V |2) time by using [18, Algorithm 6.1] and [18, Algorithm 6.9] with some
slight modifications. We leave the details to the full version of this paper [17].

Since F is a matching throughout the algorithm of Lemma 12, we need to
run the algorithm recursively O(|V |) times, and G + F has O(|V |) edges in
each recursive call of the algorithm. To execute the steps of the algorithm, we
need to know every cut-pair (u, v) of the graph G + F along with the value of
b(u,v)(G + F ), and we need to check whether the condition of Step 5 holds.
These all can be checked in O(|V |) time based on the structure provided by the
algorithm of Hopcropft and Tarjan [9], see again the full version [17] for more
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details. Finally, Step 7 of the algorithm of Lemma 12 can also be executed
in O(|V |) time since we only need to calculate the subgraphs T (xx1), T (xx2),
T (xx3), and T (x1x3) (which needs O(|V |) running time by [4]) for an arbitrarily
chosen x ∈ N − {x1, x2, x3} and check whether T (xx1) ∪ T (xx2) ∪ T (xx3) =
T (xx2) ∪ T (x1x3). ut

5 Concluding remarks

In this paper, we solved Problem 1 in the case where the input is a tight graph.
For general inputs, a constant factor approximation can be given, as follows.

Let us recall the global rigidity pinning problem. In this problem, the goal is
to anchor a minimum set of points of a framework such that the resulting frame-
work is globally rigid. In the generic case, pinning can be modelled by adding
a complete graph on the anchored vertices to the graph (see [6]). Moreover, in-
stead of a complete graph we can add any globally rigid graph on the anchored
vertex set, for example the square graph of a cycle. (A square of a graph arises
by connecting all pairs of vertices which has distance at most 2 in the original
graph). Notice that the square graph of the cycle on the vertex set V consists
of 2|V | edges. This way one can see that a constant approximation to the global
rigidity pinning problem gives a constant approximation to the global rigidity
augmentation problem and vice versa. Fekete and Jordán [6] investigated the
global rigidity pinning problem and gave a constant approximation algorithm
to it. This implies that there exists a polynomial time constant approximation
algorithm to Problem 1 (and it has an approximation ratio at most 4 times more
than that of the pinning problem).

For tight input graphs, we can solve the global rigidity pinning problem
optimally as follows. It can be shown easily that we must pin at least one vertex
from each atom. On the other hand, a complete graph on a transversal of A∗
indeed augments G to a globally rigid graph as it contains also the optimal
edge set given by Theorem 4. Thus one vertex from each atom pins the graph
optimally. (When G is 3-connected, we may apply the method of [18, Section 8]
directly.)
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