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Abstract. In the present work our main objective is to determine the radii of k− starlikeness of
order α of the some normalized Struve and Lommel functions of the first kind. Furthermore it has
been shown that the obtained radii satisfy some functional equations. The main key tool of our
proofs are the Mittag-Leffler expansions of the Struve and Lommel functions of the first kind and
minimum principle for harmonic functions. Also we take advantage of some basic inequalities
in the complex analysis.
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1. INTRODUCTION

It is well-known that there are numerous connections between geometric function
theory and special functions. Due to these close relationships many authors stud-
ied on some geometric properties of special functions like Bessel, Struve, Lommel,
Wright and Mittag-Leffler functions. Especially, the authors in the papers [3–5,7,14–
16, 19] have investigated univalence, starlikeness, convexity and close-to convexity
of the above mentioned functions. Actually, the beginning of these studies is based
on the papers [6,12,21] written by Brown, Kreyszig and Todd and Wilf, respectively.
Also the authors who studied the geometric properties of special functions have used
some properties of zeros of the mentioned special functions. For comprehensive
information about the zeros of these functions, we refer to the studies [17, 18, 20].
Motivated by the earlier investigations on this field our main goal is to determine
the radii of k-starlikeness of the normalized Struve and Lommel functions of the first
kind. Morever, we show that our obtained radii are the smallest positive roots of some
functional equations. Also, for some special values of k and α we obtain some earlier
results given by [1–3].

Now we would like to remind some basic concepts in geometric function theory.
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Let Dr be the open disk {z ∈ C : |z| < r} with radius r > 0 and D1 = D. Let A
denote the class of analytic functions f : Dr→ C,

f (z) = z+ ∑
n≥2

anzn,

which satisfies the normalization conditions f (0) = f ′(0)−1 = 0. By S we mean the
class of functions belonging to A which are univalent in Dr. The class of k-starlike
functions of order α is denoted by ST (k,α), where k ≥ 0 and 0≤ α < 1. This class
of functions was introduced by Kanas and Wiśniowska [10, 11] which generalizes
the class of uniformly convex functions introduced by Goodman in [8]. On the other
hand, Kanas and Srivastava defined a linear operator and determined some conditions
on the parameters for which this linear operator maps the classes of starlike and
univalent functions onto the classes k−uniformly convex functions and k−starlike
functions in [9]. Very recently, Srivastava gave comprehensive information about the
usages of q−analysis in geometric function theory of complex analysis in his survey-
cum-expository article [13]. Srivastava’s work in particular inspired us to prepare this
paper.

Analytic characterization of the class k-starlike functions of order α is

ST (k,α) =
{

f ∈ S : ℜ

(
z f ′(z)
f (z)

)
> k
∣∣∣∣z f ′(z)

f (z)
−1
∣∣∣∣+α,k ≥ 0,0≤ α < 1,z ∈ D

}
.

Also, the real number

r( f ) = sup

{
r > 0 : ℜ

(
z f ′(z)
f (z)

)
> k
∣∣∣∣z f ′(z)

f (z)
−1
∣∣∣∣+α for all z ∈ D

}
is called the radius of k−starlikeness of order α of the function f .

The Struve and Lommel functions are defined as the infinite series

Hν(z) = ∑
n≥0

(−1)n

Γ
(
n+ 3

2

)
Γ
(
n+ν+ 3

2

) ( z
2

)2n+ν+1
, −ν− 3

2
/∈ N,

and

sµ,ν(z) =
(z)µ+1

(µ−ν+1)(µ+ν+1) ∑
n≥0

(−1)n

(µ−ν+3
2 )n(

µ+ν+3
2 )n

( z
2

)2n
,

1
2
(−µ±ν−3) /∈ N,

where z,µ,ν ∈ C. Also, we know that the Struve and Lommel functions are the
solutions of the inhomogeneous Bessel differential equations

zw′′(z)+ zw′(z)+(z2−ν
2)w(z) =

4
( z

2

)ν+1

√
πΓ
(
ν+ 1

2

)
and

zw′′(z)+ zw′(z)+(z2−ν
2)w(z) = zµ+1,

respectively. One can find comprehensive information about these functions in [20].
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Since the functions Hν and sµ,ν do not belong to the class A , first we consider the
following six normalized forms:

uν(z) =
(√

π2ν
Γ

(
ν+

3
2

)
Hν(z)

) 1
ν+1

, ν 6=−1, (1.1)

vν(z) =
√

π2νz−ν
Γ

(
ν+

3
2

)
Hν(z), (1.2)

wν(z) =
√

π2νz
1−ν

2 Γ

(
ν+

3
2

)
Hν(
√

z), (1.3)

fµ(z) =
(

µ(µ+1)sµ− 1
2 ,

1
2
(z)
) 1

µ+ 1
2 , µ ∈

(
−1

2
,1
)
, µ 6= 0, (1.4)

gµ(z) = µ(µ+1)z−µ+ 1
2 sµ− 1

2 ,
1
2
(z) (1.5)

and
hµ(z) = µ(µ+1)z

3−2µ
4 sµ− 1

2 ,
1
2
(
√

z). (1.6)

As a consequence, all functions considered above belong to the analytic functions
class A .

2. MAIN RESULTS

Our first main result is related to the normalized Struve functions as follows.

Theorem 1. Let |ν| ≤ 1
2 , 0≤ α < 1 and k ≥ 0. Then, the following assertions are

true:
i. The radius ru is the radius of k−starlikeness of order α of the normalized

Struve function z 7→ uν and it is the smallest positive root of the equation

r(1+ k)H′ν(r)− (k+α)(ν+1)Hν(r) = 0 (2.1)

in (0,hν,1), where hν,1 is the first positive zero of Struve function Hν.
ii. The radius rv is the radius of k−starlikeness of order α of the normalized

Struve function z 7→ vν and it is the smallest positive root of the equation

r(1+ k)H′ν(r)− [ν(1+ k)+(k+α)]Hν(r) = 0 (2.2)

in (0,hν,1).
iii. The radius rw is the radius of k−starlikeness of order α of the normalized

Struve function z 7→ wν and it is the smallest positive root of the equation

(1+ k)
√

rH′ν(
√

r)+(1−ν− k−νk−2α)Hν(
√

r) = 0 (2.3)

in (0,h2
ν,1).
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Proof. We know that the zeros of the functions Hν(z) and H′ν(z) are real and
simple when |ν| ≤ 1

2 , (see [4, 17]). Also the zeros of the function Hν(z) and its
derivative interlace when |ν| ≤ 1

2 , according to [4]. In addition, it is known from [4]
that the Struve function Hν(z) has the following infinite product representation:

√
π2νz−ν−1

Γ

(
ν+

3
2

)
Hν(z) = ∏

n≥1

(
1− z2

h2
ν,n

)
, (2.4)

where hν,n denotes n−th positive zero of the Struve function Hν. Using this product
representation one can easily see that

zu′ν(z)
uν(z)

= 1− 2
ν+1 ∑

n≥1

z2

h2
ν,n− z2 , (2.5)

zv′ν(z)
vν(z)

= 1−2 ∑
n≥1

z2

h2
ν,n− z2 (2.6)

and
zw′ν(z)
wν(z)

= 1−∑
n≥1

z
h2

ν,n− z
. (2.7)

On the other hand, it is known from [19] that the inequality

ℜ

(
z

θ− z

)
≤ |z|

θ−|z|
(2.8)

holds true for z ∈ C and θ ∈ R such that |z| < θ. Now, by using inequality (2.8) in
(2.5), (2.6) and (2.7), respectively, we get

ℜ

(
zu′ν(z)
uν(z)

)
= ℜ

(
1− 2

ν+1 ∑
n≥1

z2

h2
ν,n− z2

)

≥ 1− 2
ν+1 ∑

n≥1

|z|2

h2
ν,n−|z|

2 (2.9)

=
|z|u′ν(|z|)

uν(|z|)
,

ℜ

(
zv′ν(z)
vν(z)

)
= ℜ

(
1−2 ∑

n≥1

z2

h2
ν,n− z2

)
≥ 1−2 ∑

n≥1

|z|2

h2
ν,n−|z|

2 =
|z|v′ν(|z|)

vν(|z|)
(2.10)

and

ℜ

(
zw′ν(z)
wν(z)

)
= ℜ

(
1−∑

n≥1

z
h2

ν,n− z

)
≥ 1−∑

n≥1

|z|
h2

ν,n−|z|
=
|z|w′ν(|z|)

wν(|z|)
. (2.11)

Also, from the reverse triangle inequality

|z1− z2| | ≥ ||z1|− |z2||
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we have∣∣∣∣zu′ν(z)
uν(z)

−1
∣∣∣∣=
∣∣∣∣∣− 2

ν+1 ∑
n≥1

z2

h2
ν,n− z2

∣∣∣∣∣≤ 2
ν+1 ∑

n≥1

|z|2

h2
ν,n−|z|

2 = 1− |z|u
′
ν(|z|)

uν(|z|)
,

(2.12)∣∣∣∣zv′ν(z)
vν(z)

−1
∣∣∣∣=
∣∣∣∣∣−2 ∑

n≥1

z2

h2
ν,n− z2

∣∣∣∣∣≤ 2 ∑
n≥1

|z|2

h2
ν,n−|z|

2 = 1− |z|v
′
ν(|z|)

vν(|z|)
(2.13)

and ∣∣∣∣zw′ν(z)
wν(z)

−1
∣∣∣∣=
∣∣∣∣∣−∑

n≥1

z
h2

ν,n− z

∣∣∣∣∣≤ ∑
n≥1

|z|
h2

ν,n−|z|
= 1− |z|w

′
ν(|z|)

wν(|z|)
. (2.14)

As a result of the above inequalities, one can easily obtain that

ℜ

(
zu′ν(z)
uν(z)

)
− k
∣∣∣∣zu′ν(z)

uν(z)
−1
∣∣∣∣−α≥ (1+ k)

|z|u′ν(|z|)
uν(|z|)

− (k+α), (2.15)

ℜ

(
zv′ν(z)
vν(z)

)
− k
∣∣∣∣zv′ν(z)

vν(z)
−1
∣∣∣∣−α≥ (1+ k)

|z|v′ν(|z|)
vν(|z|)

− (k+α), (2.16)

and

ℜ

(
zw′ν(z)
wν(z)

)
− k
∣∣∣∣zw′ν(z)

wν(z)
−1
∣∣∣∣−α≥ (1+ k)

|z|w′ν(|z|)
wν(|z|)

− (k+α). (2.17)

It is important to emphasize here that the equalities in the last three inequalities hold
true for z = |z| = r. If we consider the minimum principle for harmonic functions in
the inequalities (2.15), (2.16) and (2.17), then we can say that these inequalities are
valid if and only if |z|< ru, |z|< rv and |z|< rw, where ru, rv and rw are the smallest
positive roots of the following equations

(1+ k)
ru′ν(r)
uν(r)

− (k+α) = 0,

(1+ k)
rv′ν(r)
vν(r)

− (k+α) = 0

and

(1+ k)
rw′ν(r)
wν(r)

− (k+α) = 0,

respectively. Taking into account the definitions of the functions uν, vν and wν, it
can be easily seen that the last three equations are equivalent to (2.1), (2.2) and (2.3),
respectively. Now, we would like to show that equation (2.1) has an unique root on
the interval (0,hν,1). To show this, let us consider the function Ψν : (0,hν,1) 7→ R,

Ψν(r) = (1+ k)
ru′ν(r)
uν(r)

− (k+α) = (1+ k)

(
1− 2

ν+1 ∑
n≥1

r2

h2
ν,n− r2

)
− (k+α).
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The function r 7→Ψν(r) is strictly decreasing since

Ψ
′
ν(r) =−

4r(1+ k)
ν+1 ∑

n≥1

h2
ν,n(

h2
ν,n− r2

)2 < 0.

Morever, we have

lim
r↘0

(1+ k)

(
1− 2

ν+1 ∑
n≥1

r2

h2
ν,n− r2

)
− (k+α) = 1−α > 0

and

lim
r↗hν,1

(1+ k)

(
1− 2

ν+1 ∑
n≥1

r2

h2
ν,n− r2

)
− (k+α) =−∞.

As a result of these limit relations, we can say that equation (2.1) has an unique root
in (0,hν,1). Similarly, it can be shown that equations (2.2) and (2.3) have a root in
(0,hν,1) and (0,h2

ν,1), respectively. �

The following main result is regarding the normalized Lommel functions of the
first kind.

Theorem 2. The following assertions are true:

i. Let µ∈ (−1
2 ,1) and µ 6= 0. Then, the radius r f is the radius of k−starlikeness

of order α of the normalized Lommel function z 7→ fµ and it is the smallest
positive root of the equation

r(1+ k)s′µ− 1
2 ,

1
2
(r)− (k+α)(µ+

1
2
)sµ− 1

2 ,
1
2
(r) = 0 (2.18)

in (0, lµ,1), where lµ,1 is the first positive zero of Lommel function sµ− 1
2 ,

1
2
.

ii. Let µ ∈ (−1,1) and µ 6= 0. Then, the radius rg is the radius of k−starlikeness
of order α of the normalized Lommel function z 7→ gµ and it is the smallest
positive root of the equation

r(1+ k)s′µ− 1
2 ,

1
2
(r)+

(
(1+ k)(

1
2
−µ)− (k+α)

)
sµ− 1

2 ,
1
2
(r) = 0 (2.19)

in (0, lµ,1).
iii. Let µ ∈ (−1,1) and µ 6= 0. Then, the radius rh is the radius of k−starlikeness

of order α of the normalized Lommel function z 7→ hµ and it is the smallest
positive root of the equation

2
√

r(1+ k)s′µ− 1
2 ,

1
2
(
√

r)+((1+ k)(3−2µ)−4(k+α))sµ− 1
2 ,

1
2
(
√

r) = 0 (2.20)

in (0, l2
µ,1).
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Proof. It is known from [4, 18] that the Lommel function sµ− 1
2 ,

1
2

and its derivative
s′

µ− 1
2 ,

1
2

have only real and simple zeros when µ ∈ (−1,1) and µ 6= 0. Morever, the

zeros of the Lommel function sµ− 1
2 ,

1
2

and its derivative s′
µ− 1

2 ,
1
2

interlace under the
same conditions, according to [4]. Also, the Lommel function sµ− 1

2 ,
1
2

can be written
as the product (see [4])

sµ− 1
2 ,

1
2
(z) =

zµ+ 1
2

µ(µ+1) ∏
n≥1

(
1− z2

l2
µ,n

)
, (2.21)

where lµ,n denotes n−th positive zero of the Lommel function sµ− 1
2 ,

1
2
. Using equality

(2.21), it can be easily seen that

z f ′µ(z)
fµ(z)

= 1− 2
1+ µ

2
∑
n≥1

z2

l2
µ,n− z2 , (2.22)

zg′µ(z)
gµ(z)

= 1−2 ∑
n≥1

z2

l2
µ,n− z2 (2.23)

and
zh′µ(z)
hµ(z)

= 1−∑
n≥1

z
l2
µ,n− z

. (2.24)

Now, if we consider inequality (2.8) in the equalities (2.22), (2.23) and (2.24), re-
spectively, then we have that

ℜ

(
z f ′µ(z)
fµ(z)

)
= ℜ

(
1− 2

1+ µ
2

∑
n≥1

z2

l2
µ,n− z2

)

≥ 1− 2
1+ µ

2
∑
n≥1

|z|2

l2
µ,n−|z|

2 (2.25)

=
|z| f ′µ(|z|)

fµ(|z|)
,

ℜ

(
zg′µ(z)
gµ(z)

)
= ℜ

(
1−2 ∑

n≥1

z2

l2
µ,n− z2

)
≥ 1−2 ∑

n≥1

|z|2

l2
µ,n−|z|

2 =
|z|g′µ(|z|)

gν(|z|)
(2.26)

and

ℜ

(
zh′µ(z)
hµ(z)

)
= ℜ

(
1−∑

n≥1

z
l2
ν,n− z

)
≥ 1−∑

n≥1

|z|
l2
µ,n−|z|

=
|z|h′µ(|z|)

hµ(|z|)
. (2.27)

By using the reverse triangle inequality again we can write that∣∣∣∣z f ′µ(z)
fµ(z)

−1
∣∣∣∣=
∣∣∣∣∣− 2

1+ µ
2

∑
n≥1

z2

l2
µ,n− z2

∣∣∣∣∣≤ 2
1+ µ

2
∑
n≥1

|z|2

l2
µ,n−|z|

2 = 1−
|z| f ′µ(|z|)

fµ(|z|)
, (2.28)
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gµ(z)

−1
∣∣∣∣=
∣∣∣∣∣−2 ∑

n≥1

z2

l2
µ,n− z2

∣∣∣∣∣≤ 2 ∑
n≥1

|z|2

l2
µ,n−|z|

2 = 1−
|z|g′µ(|z|)

gµ(|z|)
(2.29)

and ∣∣∣∣zh′µ(z)
hµ(z)

−1
∣∣∣∣=
∣∣∣∣∣−∑

n≥1

z
l2
µ,n− z

∣∣∣∣∣≤ ∑
n≥1

|z|
l2
µ,n−|z|

= 1−
|z|h′µ(|z|)

hµ(|z|)
. (2.30)

As consequences of the above inequalities, it can be easily obtained that

ℜ

(
z f ′µ(z)
fµ(z)

)
− k
∣∣∣∣z f ′µ(z)

fµ(z)
−1
∣∣∣∣−α≥ (1+ k)

|z| f ′µ(|z|)
fµ(|z|)

− (k+α), (2.31)

ℜ

(
zg′µ(z)
gµ(z)

)
− k
∣∣∣∣zg′µ(z)

gµ(z)
−1
∣∣∣∣−α≥ (1+ k)

|z|g′µ(|z|)
gµ(|z|)

− (k+α) (2.32)

and

ℜ

(
zh′µ(z)
hµ(z)

)
− k
∣∣∣∣zh′µ(z)

hµ(z)
−1
∣∣∣∣−α≥ (1+ k)

|z|h′µ(|z|)
hµ(|z|)

− (k+α). (2.33)

It is worth mentioning that the equalities in the inequalities (2.31), (2.32) and
(2.33) hold true for z = |z| = r. Also, if we consider the minimum principle for har-
monic functions in these inequalities, then we can say that these inequalities are valid
if and only if |z|< r f , |z|< rg and |z|< rh, where r f , rg and rh are the smallest positive
roots of the following equations

(1+ k)
r f ′µ(r)
fµ(r)

− (k+α) = 0,

(1+ k)
rg′µ(r)
gµ(r)

− (k+α) = 0

and

(1+ k)
rh′µ(r)
hµ(r)

− (k+α) = 0,

respectively. Taking into account the definitions of the functions fµ, gµ and hµ, it can
be easily seen that the last three equations are equivalent to (2.18), (2.19) and (2.20),
respectively. In addition, we can easily show that equations (2.18) and (2.19) have
one root in the interval (0, lµ,1), while equation (2.20) has a root in (0, l2

µ,1). Because
the proof of these assertions are similar to the proof of the previous theorem, details
are omitted. �

Remark 1. For k = 0 and k = α = 0, Theorem 1 and Theorem 2 reduce to some
earlier results given by [1–3], respectively.
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Now, we would like present some applications regarding our main results. For this,
we consider the following relationships between Struve and elementary trigonometric
functions:

H− 1
2
(z) =

√
2
πz

sinz and H 1
2
(z) =

√
2
πz

(1− cosz).

Using these relationships for ν =−1
2 and ν = 1

2 , we have

u 1
2
(z) =

(
2(1− cosz)√

z

) 2
3

, v 1
2
(z) =

2(1− cosz)
z

, w 1
2
(z) = 2(1− cos

√
z)

and

u− 1
2
(z) =

sin2 z
z

, v− 1
2
(z) = sinz, w− 1

2
(z) =

√
zsin
√

z.

Corollary 1. The following statements are true.

i. The radius of k−starlikeness of order α of the function u 1
2
(z) =

(
2(1−cosz)√

z

) 2
3

is the smallest positive root of the equation

2(1+ k)r sinr+(1+4k+3α)(cosr−1) = 0

in
(

0,h 1
2 ,1

)
.

ii. The radius of k−starlikeness of order α of the function v 1
2
(z) = 2(1−cosz)

z is
the smallest positive root of the equation

(1+ k)r sinr+(1+2k+α)(cosr−1) = 0

in
(

0,h 1
2 ,1

)
.

iii. The radius of k−starlikeness of order α of the function w 1
2
(z) = 2(1−cos

√
z)

is the smallest positive root of the equation

(1+ k)
√

r sin
√

r+2(k+α)(cos
√

r−1) = 0

in
(

0,h2
1
2 ,1

)
.

iv. The radius of k−starlikeness of order α of the function u− 1
2
(z) = sin2 z

z is the
smallest positive root of the equation

2(1+ k)r cosr− (1+2k+α)sinr = 0

in
(

0,h− 1
2 ,1

)
.

v. The radius of k−starlikeness of order α of the function v− 1
2
(z) = sinz is the

smallest positive root of the equation

(1+ k)r cosr− (k+α)sinr = 0

in
(

0,h− 1
2 ,1

)
.
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vi. The radius of k−starlikeness of order α of the function w− 1
2
(z) =

√
zsin
√

z
is the smallest positive root of the equation

(1+ k)
√

r cos
√

r− (k+2α−1)sin
√

r = 0

in
(

0,h2
− 1

2 ,1

)
.

Now, by taking k = α = 0 in Corollary 1 we get the following result.

Corollary 2. The following assertions are true.

i. The radius of starlikeness of the function u 1
2
(z) =

(
2(1−cosz)√

z

) 2
3

is r ∼= 2.7865
and it is the smallest positive root of the equation 2r sinr+ cosr−1 = 0.

ii. The radius of starlikeness of the function v 1
2
(z) = 2(1−cosz)

z is r ∼= 2.33112
and it is the smallest positive root of the equation 2r sinr+2cosr−1 = 0.

iii. The radius of starlikeness of the function w 1
2
(z) = 2(1−cos

√
z) is r∼= 9.8696

and it is the smallest positive root of the equation
√

r sin
√

r = 0.
iv. The radius of starlikeness of the function u− 1

2
(z) = sin2 z

z is r ∼= 1.16556 and
it is the smallest positive root of the equation 2r cosr− sinr = 0.

v. The radius of starlikeness of the function v− 1
2
(z) = sinz is r ∼= 1.5708 and it

is the smallest positive root of the equation r cosr = 0.
vi. The radius of starlikeness of the function w− 1

2
(z) =

√
zsin
√

z is r ∼= 4.11586
and it is the smallest positive root of the equation

√
r cos
√

r+ sin
√

r = 0.
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