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Abstract. In this paper, a new class of nonconvex nonsmooth multiobjective programming prob-
lems with both inequality and equality constraints defined in a real Banach space is considered.
Under the nondifferentiable vectorial (Φ,ρ)w-invexity notion introduced in the paper, optimality
conditions and duality results in Mond-Weir sense are established for the considered nonsmooth
vector optimization problem. It turns out that the results developed here under (Φ,ρ)w-invexity
are applicable for a larger class of nonconvex nondifferentiable multiobjective programming
problems than under several generalized convexity notions existing in the literature.
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1. INTRODUCTION

The term multiobjective programming (or vector optimization) is used to denote
a type of optimization problems where two or more objectives are to be minimized
subject to certain constraints. Investigation on sufficiency of (weak) Pareto optimality
and duality has been one of the most attraction topics in the theory of multi-objective
problems. This is a consequence of the fact that vector optimization problems are
useful mathematical models of most real-life problems in economics, physics, mech-
anics, decision making, game theory, engineering, optimal control, etc. It is well
known that the concept of convexity and its various generalizations play an important
role in deriving sufficient optimality conditions and duality results for multiobjective
programming problems. In recent years, therefore, multiobjective programming has
grown remarkably in different directions in the settings of optimality conditions and
duality theory. It has been enriched by the applications of various types of general-
izations of convexity theory, with and without differentiability assumptions (see, for
example, [1, 2, 4, 5, 7, 8, 11, 13–16, 18, 20, 21] and others).

The aim of the present work is to introduce a new concept of nondifferentiable
generalized invexity notion and to use it to prove optimality and duality results for
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a new class of nonsmooth multiobjective programming problems defined in a real
Banach space. By taking the motivation from Antczak and Stasiak [6] and Stefanescu
and Stefanescu [22], we introduce the concept of nondifferentiable (Φ,ρ)w-invexity
for a nonsmooth multiobjective programming problem in which every component
of functions involved is a locally Lipschitz function. However, the central purpose
of this paper is to discuss application of the introduced vectorial nondifferentiable
(Φ,ρ)w-invexity notion in proving the optimality results for a new class of non-
convex nondifferentiable multiobjective programming problems. Namely, we prove
Karush-Kuhn-Tucker necessary optimality conditions for a (weak) Pareto optimal
solution in the considered nondifferentiable multiobjective programming problem in
which constraint functions are (Φ,ρ)w-invex. Sufficiency of these necessary optimal-
ity conditions for both weak Pareto and Pareto solutions is established for the class of
constrained vector optimization problems with nondifferentiable (Φ,ρ)w-invex func-
tions, not necessarily, with respect to the same ρ. Further, under (Φ,ρ)w-invexity hy-
potheses, several duality results are established between the considered nonsmooth
multiobjective programming problem and its nondifferentiable vector dual problem
in the sense of Mond-Weir. The optimality results proved in the paper are illustrated
by an example of a nonconvex nonsmooth vector optimization problem involving
nondifferentiable (Φ,ρ)w-invex functions.

2. PRELIMINARIES

Throughout this paper, we use the following conventions for vectors x =
(x1,x2, ...,xn)

T , y = (y1,y2, ...,yn)
T in the Euclidean space Rn:

(i) x = y if and only if xi = yi for all i = 1,2, ...,n;
(ii) x > y if and only if xi > yi for all i = 1,2, ...,n;

(iii) x= y if and only if xi = yi for all i = 1,2, ...,n;
(iv) x≥ y if and only if x= y and x 6= y.

In this section, we provide some definitions and some results that we shall use in the
sequel. Throughout this paper, we denote a real Banach space by X , the (continuous)
dual of X by X∗, and the value of the function ξ in X∗ at v ∈ X by 〈ξ,v〉.

Definition 1 ([9]). The Clarke generalized directional derivative of a locally Lipschitz
function f : X → R at x ∈ X in the direction v ∈ X , denoted by f 0 (x;v), is given by

f 0(x;v) = limsup
y→x
λ↓0

f (y+λv)− f (y)
λ

.

Definition 2 ([9]). The Clarke generalized subgradient of a locally Lipschitz func-
tion f : X → R at x ∈ X , denoted by ∂ f (x), is defined as follows

∂ f (x) =
{

ξ ∈ X∗ : f 0(x;v)≥ 〈ξ,v〉 for all v ∈ X
}
.

Let S be a nonempty convex subset of X .
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Definition 3. The function Φ : S→ R is said to be quasi-convex if, for each α ∈ R,
the level set {x ∈ S : Φ(x)5 α} is convex, or equivalently, if Φ(λy+(1−λ)x) 5
max{Φ(y) ,Φ(x)} for every y,x ∈ S and λ ∈ [0,1].

A stronger property is also considered as follows:

Definition 4. The function Φ : S→ R is said to be strictly quasi-convex if it is
quasi-convex and Φ(λy+(1−λ)x) < 0, whenever Φ(y) < 0, Φ(x) 5 0 and λ ∈
(0,1).

Proposition 1. If Φ : S → R is a strictly quasi-convex function and there are
x1, ...,xk ∈ S such that Φ

(
xi
)
5 0, i = 1, ...,k and Φ

(
xi∗
)
< 0 for at least one i∗ ∈

{1, ....,k}, then Φ
(
∑

k
i=1 λixi

)
< 0 for every λ = (λ1, ...,λk)≥ 0 such that ∑

k
i=1 λi = 1

and λi∗ > 0.

In [22], Stefanescu and Stefanescu introduced the definition of a differentiable
(Φ,ρ)w-invex function. Now, in the natural way, we generalize this definition to the
nondifferentiable vectorial case.

Definition 5. Let f = ( f1, ..., fk) : X → Rk be defined on X , every its component
fi, i = 1, ...,k, be a locally Lipschitz function on X and u∈ X . If there exist a function
Φ : X × X × X∗× R→ R, where Φ(x,u,(·, ·)) is strictly quasi-convex on X∗× R,
Φ(x,u,(0,a))= 0 for all x ∈ X and each a ∈ R+ and ρ = (ρ1, ...,ρk) ∈ Rk, where ρi,
i = 1, ...,k, are real numbers such that the following inequalities

fi(x)− fi(u)=Φ(x,u,(ξi,ρi)) , i = 1, ...,k (>) (2.1)

hold for all x ∈ X (x 6= u) and each ξi ∈ ∂ fi (u), i = 1, ...,k, then f is said to be a
nonsmooth vector (Φ,ρ)w-invex at u on X . If inequalities (2.1) are satisfied at any
point u, then f is said to be a nonsmooth (strictly) vector (Φ,ρ)w-invex function on
X .

In order to define an analogous class of nondifferentiable vector (strictly) (Φ,ρ)w-
incave functions, the direction of the inequality in the definition of these functions
should be changed to the opposite one.

Remark 1. Let X ⊆ Rn and the functional Φ(x,u,(·, ·)) be convex on R× R.
From Definition 5, there are the following special cases:

a) If Φ(x,u,(ξi,ρi)) = 〈ξi,x−u〉, where ξi ∈ ∂ fi (u), i = 1, ...,k, then we obtain
the definition of a nondifferentiable convex function.

b) If Φ(x,u,(ξi,ρi)) = 〈ξi,η(x,u)〉 for a certain mapping η : X×X→Rn, where
ξi ∈ ∂ fi (u), i = 1, ...,k, then we obtain the definition of a locally Lipschitz
invex function (with respect to the function η) (see Lee [16] and Kim and
Schaible [14] in a nonsmooth vectorial case).

c) If Φ(x,u,(ξi,ρi)) =
1

bi(x,u)
〈ξi,η(x,u)〉, where bi : X × X → R+\{0} and

η : X ×X → Rn, then we obtain the definition of a nondifferentiable b-invex
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function (with respect to the function η) (see, Li et al. [17] in a nondifferen-
tiable scalar case).

d) If Φ(x,u,(ξi,ρi)) = 〈ξi,x−u〉+ρi ‖x−u‖2, then (Φ,ρ)w-invexity reduces to
the definition of a nonsmooth ρ-convex function (see Zalmai [23]).

e) If Φ(x,u,(ξi,ρi)) = 〈ξi,η(x,u)〉 + ρi ‖θ(x,u)‖2 for a certain mapping
η : X ×X → Rn, where θ : X ×X → Rn, θ(x,u) 6= 0, whenever x 6= u, then
(Φ,ρ)w-invexity reduces to the definition of a nonsmooth ρ-invex function
(with respect to η and θ) introduced by Jeyakumar [12] in a scalar case.

f) If Φ(x,u,(ξi,ρi)) = αi (x,u)〈ξi,η(x,u)〉, where αi : X × X → R+\{0},
θ : X×X→Rn, θ(x,u) 6= 0, whenever x 6= u, then (Φ,ρ)w-invexity reduces to
the definition of a V -invex function (with respect to η) introduced by Jeyak-
umar and Mond [13] in a differentiable case and Mishra and Mukherjee [19]
in a nonsmooth case.

g) If Φ(x,u,(ξi,ρi)) = αi (x,u)〈ξi,η(x,u)〉+ρi ‖θ(x,u)‖2, where αi : X×X→
R+\{0}, θ : X×X → Rn, θ(x,u) 6= 0, whenever x 6= u, then (Φ,ρ)w-invexity
reduces to the definition of a nonsmooth V -ρ-invex function (with respect to
η and θ) introduced by Kuk et al. [15].

h) If Φ(x,u,(ξi,ρi)) = F (x,u,ξi), where F (x,u, ·) is a sublinear functional with
respect to the third component, then the definition of a (Φ,ρ)w-invex function
reduces to the definition F-convexity introduced by Hanson and Mond [10].

i) If Φ(x,u,(ξi,ρi)) = F (x,u,ξi) + ρid2 (x,u), where F (x,u, ·) is a sublinear
functional with respect to the third component and d : X×X→R is a pseudo-
metric on X , then the definition of a (Φ,ρ)w-invex function reduces to the
definition (F,ρ)-convexity introduced in a nondifferentiable case by Bhatia
and Jain [8] .

j) If the functional Φ(x,u,(·, ·)) is convex on X∗×R, then we obtain the defin-
ition of a nondifferentiable (Φ,ρ)-invex function (see Antczak and Stasiak
[6] in a scalar case).

3. OPTIMALITY UNDER NONSMOOTH (Φ,ρ)w-INVEXITY

In the paper, we consider the following nonsmooth vector optimization problem:

f (x) := ( f1(x), ..., fk(x))→V -min

subject to g j(x)5 0, j ∈ J = {1, ...m} ,
ht (x) = 0, t ∈ T = {1, ...,q} ,

x ∈ X ,

(VP)

where fi : X → R, i ∈ I = {1, ...,k}, g j : X → R, j ∈ J, and ht : X → R, t ∈ T are
locally Lipschitz functions on X . For the purpose of simplifying our presentation,
we will next introduce some notations which will be used frequently throughout this
paper. Let D :=

{
x ∈ X : g j(x)5 0, j ∈ J, ht (x) = 0, t ∈ T

}
be the set of all feasible
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solutions in problem (VP), and J (x) be a set of active inequality constraints at point
x ∈ D, that is, J (x) =

{
j ∈ J : g j (x) = 0

}
.

Definition 6. A feasible point x is said to be a weak Pareto solution (weakly ef-
ficient solution, weak minimum) for (VP) if and only if there exists no other x ∈ D
such that f (x)< f (x).

Definition 7. A feasible point x is said to be a Pareto solution (efficient solution)
for (VP) if and only if there exists no other x ∈ D such that f (x)≤ f (x).

Theorem 1 (Generalized F. John necessary optimality conditions, [9]). Let x ∈ D
be a (weakly) efficient solution of the considered nonsmooth multiobjective program-
ming problem (VP). Then, there exist λ ∈ Rk, µ ∈ Rm and ϑ ∈ Rq such that

0 ∈
k

∑
i=1

λi∂ fi(x)+
m

∑
j=1

µ j∂g j(x)+
q

∑
t=1

ϑt∂ht(x), (3.1)

µ jg j(x) = 0, j ∈ J, (3.2)(
λ,µ
)
≥ 0. (3.3)

Now, we prove the so-called Generalized Karush-Kuhn-Tucker necessary optim-
ality conditions for a nonsmooth vector optimization problem with locally Lipschitz
(Φ,ρ)w-invex constraint functions.

Theorem 2 (Generalized Karush-Kuhn-Tucker necessary optimality conditions).
Let x ∈ D be a (weakly) efficient solution of the considered multiobjective program-
ming problem (VP) and Generalized F. John necessary optimality conditions (3.1)-
(3.3) be satisfied at x with Lagrange multipliers λ ∈ Rk, µ ∈ Rm and ϑ ∈ Rq. Fur-
ther, assume that there exists a feasible solution x̃ such that g j (x̃)< 0, j ∈ J (x) and,
moreover, g j, j ∈ J (x), is locally Lipschitz

(
Φ,ρg j

)w-invex at x on D, ht , t ∈ T+ (x) :={
t ∈ T : ϑt > 0

}
, is locally Lipschitz (Φ,ρht )

w-invex at x on D −ht , t ∈ T− (x) :={
t ∈ T : ϑt < 0

}
, is locally Lipschitz (Φ,ρht )

w-invex at x on D and ∑
m
j=1 µ jρg j +

∑t∈T+(x) ϑtρ
+
ht
−∑t∈T−(x) ϑtρ

−
ht
= 0. Then λ 6= 0.

Proof. Let x ∈ D be an efficient (weakly efficient) solution of the considered mul-
tiobjective programming problem (VP). Then, the necessary optimality conditions of
F. John type (3.1)-(3.3) are fulfilled with the Lagrange multipliers λ ∈ Rk, µ ∈ Rm and
ϑ ∈ Rq (see, for example, [9]). We prove that λ 6= 0. Suppose, contrary to the result,
that λ = 0. Hence, as it follows from the necessary optimality conditions of F. John
type (3.3), we have

(
λ,µ
)
≥ 0. Since λ = 0, the above relation implies that µ 6= 0.

Using λ = 0 together with the necessary optimality conditions of F. John type (3.1),
we get

0 ∈
m

∑
j=1

µ j∂g j(x)+
q

∑
t=1

ϑt∂ht(x). (3.4)
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By (3.4), there exist ζ j ∈ ∂g j (x), j ∈ J and ςt ∈ ∂ht (x), t ∈ T such that

0 =
m

∑
j=1

µ jζ j +
q

∑
t=1

ϑtςt . (3.5)

Since µ 6= 0, we have that A = ∑
m
j=1 µ j +∑t∈T+(x) ϑt−∑t∈T−(x) ϑt > 0. Let us denote

β̂ j =
µ j

∑
m
j=1 µ j +∑t∈T+(x) ϑt −∑t∈T−(x) ϑt

, j ∈ J (x) , (3.6)

γ̂
+
t =

ϑt

∑
m
j=1 µ j +∑t∈T+(x) ϑt −∑t∈T−(x) ϑt

, t ∈ T+ (x) , (3.7)

γ̂
−
t =

−ϑt

∑
m
j=1 µ j +∑t∈T+(x) ϑt −∑t∈T−(x) ϑt

, t ∈ T− (x) . (3.8)

By (3.6)-(3.8), it follows that β =
(

β̂1, ..., β̂m

)
≥ 0, 0 5 β̂ j 5 1, j ∈ J (x),

05 γ̂
+
t 5 1, t ∈ T+ (x), 05 γ̂

−
t 5 1, t ∈ T− (x), and, moreover, ∑ j∈J(x) β̂ j+∑t∈T+(x) γ̂

+
t

+∑t∈T−(x) γ̂
−
t = 1. By assumption, g j, j ∈ J (x), is

(
Φ,ρg j

)w-invex at x on D, ht ,

t ∈ T+ (x) :=
{

t ∈ T : ϑt > 0
}

, is locally Lipschitz
(

Φ,ρ+
ht

)w
-invex at x on D, −ht ,

t ∈ T− (x) :=
{

t ∈ T : ϑt < 0
}

, is locally Lipschitz
(

Φ,ρ−ht

)w
-invex at x on D. Fur-

ther, as it follows from the assumption, there exists x̃ ∈ D such that g j (x̃) < 0,
j ∈ J (x). Hence, by Definition 5, it follows that the following inequalities

g j(x̃)−g j(x)=Φ
(
x̃,x,

(
ζ j,ρg j

))
, j ∈ J (x) , (3.9)

ht(x̃)−ht(x)=Φ

(
x̃,x,

(
ςt ,ρ

+
ht

))
, t ∈ T+ (x) , (3.10)

−ht(x̃)+ht(x)=Φ

(
x̃,x,

(
−ςt ,ρ

−
ht

))
, t ∈ T− (x) . (3.11)

hold for each ξi ∈ ∂ fi (x), i ∈ I (x), ζ j ∈ ∂g j (x), j ∈ J (x), ςt ∈ ∂ht (x), t ∈ T+ (x)∪
T− (x). Combining g j (x̃)< 0, j ∈ J (x) and (3.9), we get

Φ
(
x̃,x,

(
ζ j,ρg j

))
< 0, j ∈ J (x) . (3.12)

By x̃ ∈ D, x ∈ D, inequalities (3.10) and (3.11) yield, respectively

Φ

(
x̃,x,

(
ςt ,ρ

+
ht

))
5 0, t ∈ T+ (x) , (3.13)

Φ

(
x̃,x,

(
−ςt ,ρ

−
ht

))
5 0, t ∈ T− (x) . (3.14)

By Definition 5, we have that Φ(x̃,x,(·, ·)) is a strictly quasi-convex function on Rn+1.
Since (3.12)-(3.14) are satisfied, by Proposition 1, it follows that

Φ

(
x̃,x,

(
∑

j∈J(x)
β̂ jζ j + ∑

t∈T+(x)
γ̂
+
t ςt + ∑

t∈T−(x)
γ̂
−
t (−ςt) , (3.15)
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∑
j∈J(x)

β̂ jρg j + ∑
t∈T+(x)

γ̂
+
t ρ

+
ht
+ ∑

t∈T−(x)
γ̂
−
t ρ
−
ht

))
< 0.

Taking into account (3.6)-(3.8) and Lagrange multipliers equal to 0 in (3.15), we get

Φ

(
x̃,x,

1
A

(
m

∑
j=1

µ jζ j +
q

∑
t=1

ϑtςt ,
m

∑
j=1

µ jρg j + ∑
t∈T+(x)

ϑtρ
+
ht
− ∑

t∈T−(x)
ϑtρ
−
ht

))
< 0.

(3.16)
By the necessary optimality condition of F. John type (3.1), it follows that

Φ

(
x̃,x,

1
A

(
0,

m

∑
j=1

µ jρg j + ∑
t∈T+(x)

ϑtρ
+
ht
− ∑

t∈T−(x)
ϑtρ
−
ht

))
< 0. (3.17)

By assumption, ∑
m
j=1 µ jρg j +∑t∈T+(x) ϑtρ

+
ht
−∑t∈T−(x) ϑtρ

−
ht
= 0. Thus, by Definition

5, the following inequality

Φ

(
x̃,x,

1
A

(
0,

m

∑
j=1

µ jρg j + ∑
t∈T+(x)

ϑtρ
+
ht
− ∑

t∈T−(x)
ϑtρ
−
ht

))
= 0

holds, contradicts (3.17). This means that λ 6= 0. If ∑
k
i=1 λi 6= 1, then it is sufficient

to normalize the Lagrange multipliers λi, i ∈ I. This completes the proof of this
theorem. �

Remark 2. Theorem 2 can also be proved if hypotheses that each function ht ,
t ∈ T+ (x) :=

{
t ∈ T : ϑt > 0

}
, is locally Lipschitz (Φ,ρht )

w-invex at x on D and each
function −ht , t ∈ T− (x) :=

{
t ∈ T : ϑt < 0

}
, is locally Lipschitz (Φ,ρht )

w-invex at
x on D are replaced by, in general, a weaker hypothesis that ∑

q
t=1 ϑtht is locally

Lipschitz (Φ,ρh)
w-invex at x on D.

Definition 8. The point
(

x,λ,µ,ϑ
)
∈ D×Rk×Rm×Rq is said to be a Karush-

Kuhn-Tucker point of the considered vector optimization problem (VP) if the neces-
sary optimality conditions (3.1)-(3.2) and, in place of (3.3), the conditions λ ≥ 0,
∑

k
i=1 λi = 1, µ= 0 are satisfied at x with Lagrange multipliers λ, µ and ϑ.

Now, we prove the sufficient optimality conditions for weak efficiency of a feas-
ible solution in the considered nonsmooth multiobjective programming problem (VP)
under nonsmooth (Φ,ρ)w-invexity.

Theorem 3. Let
(

x,λ,µ,ϑ
)
∈ D×Rk×Rm×Rq be a Karush-Kuhn-Tucker point

of the considered nonsmooth multiobjective programming problem (VP). Further, as-
sume that fi, i ∈ I, is locally Lipschitz (Φ,ρ fi)

w-invex at x on D, g j , j ∈ J (x), is loc-
ally Lipschitz

(
Φ,ρg j

)w-invex at x on D, ht , t ∈ T+ (x) :=
{

t ∈ T : ϑ > 0
}

, is locally

Lipschitz
(

Φ,ρ+
ht

)w
-invex at x on D, −ht , t ∈ T− (x) :=

{
t ∈ T : ϑ < 0

}
, is locally
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Lipschitz
(

Φ,ρ−ht

)w
-invex at x on D. If ∑

k
i=1 λiρ fi +∑ j∈J(x) µ jρg j +∑t∈T+(x) ϑtρ

+
ht
−

∑t∈T−(x) ϑtρ
−
ht
= 0, then x is a weak Pareto optimal solution of the problem (VP).

Proof. Suppose, contrary to the result, that x is not a weak Pareto optimal solution
of the problem (VP). Then, by Definition 6, there exists a feasible solution x̃ such that

f (x̃)< f (x) . (3.18)

By assumption,
(

x,λ,µ,ϑ
)
∈D×Rk×Rm×Rq is a Karush-Kuhn-Tucker point of the

considered nonsmooth multiobjective programming problem (VP). Then, by Defini-
tion 8, the necessary optimality conditions (3.1)-(3.2) hold with λ ≥ 0, ∑

k
i=1 λi = 1.

By (3.1), there exist ξi ∈ ∂ fi (x), i ∈ I, ζ j ∈ ∂g j (x), j ∈ J, ςt ∈ ∂ht (x), t ∈ T , such that

k

∑
i=1

λiξi + ∑
j∈J(x)

µ jζ j + ∑
t∈T+(x)

ϑtςt + ∑
t∈T−(x)

ϑtςt = 0. (3.19)

As it follows from Definition 5, the following inequality Φ(x̃,x,(0,a))= 0 holds for
each a= 0. Hence, by (3.19), hypothesis ∑i∈I(x) λiρ fi +∑ j∈J(x) µ jρg j +∑t∈T+(x) ϑtρ

+
ht
−

∑t∈T−(x) ϑtρ
−
ht
= 0 implies

Φ

(
x̃,x,

1
A

(
k

∑
i=1

λiξi + ∑
j∈J(x)

µ jζ j + ∑
t∈T+(x)

ϑtςt + ∑
t∈T−(x)

ϑtςt , (3.20)

k

∑
i=1

λiρ fi + ∑
j∈J(x)

µ jρg j + ∑
t∈T+(x)

ϑtρ
+
ht
− ∑

t∈T−(x)
ϑtρ
−
ht

))
= 0,

where

A =
k

∑
i=1

λi +
m

∑
j=1

µ j + ∑
t∈T+(x)

ϑt − ∑
t∈T−(x)

ϑt > 0. (3.21)

Let us denote

αi =
λi

A
, i ∈ I (x) , β j =

µ j

A
, j ∈ J (x) , (3.22)

γ
+
t =

ϑt

A
, t ∈ T+ (x) , γ

−
t =
−ϑt

A
, t ∈ T− (x) . (3.23)

Then, by λ ≥ 0, ∑
k
i=1 λi = 1, it follows that α := (α1, ...,αk) ≥ 0, 0 5 αi 5 1, i ∈ I,

0 < αi 5 1 for at least one i ∈ I, β =
(

β1, ...,βm

)
= 0, 05 β j 5 1, j ∈ J, 05 γ

+
t 5 1,

t ∈ T+ (x), 05 γ
−
t 5 1, t ∈ T− (x), and, moreover,

k

∑
i=1

αi + ∑
j∈J(x)

β j + ∑
t∈T+(x)

γ
+
t + ∑

t∈T−(x)
γ
−
t = 1. (3.24)
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Since fi, i∈ I, is locally Lipschitz (Φ,ρ fi)
w-invex at x on D, g j, j ∈ J (x), is (Φ,ρgi)

w-

invex at x on D, ht , t ∈ T+ (x) :=
{

t ∈ T : ϑ > 0
}

, is locally Lipschitz
(

Φ,ρ+
ht

)w
-

invex at x on D, −ht , t ∈ T− (x) :=
{

t ∈ T : ϑ < 0
}

, is locally Lipschitz
(

Φ,ρ−ht

)w
-

invex at x on D, by Definition 5, it follows that the following inequalities

fi(x̃)− fi(x)=Φ(x̃,x,(ξi,ρ fi)) , i ∈ I, (3.25)

g j(x̃)−g j(x)=Φ
(
x̃,x,

(
ζ j,ρg j

))
, j ∈ J (x) , (3.26)

ht(x̃)−ht(x)=Φ

(
x̃,x,

(
ςt ,ρ

+
ht

))
, t ∈ T+ (x) , (3.27)

−ht(x̃)+ht(x)=Φ

(
x̃,x,

(
−ςt ,ρ

−
ht

))
, t ∈ T− (x) (3.28)

hold for each ξi ∈ ∂ fi (x), i∈ I, ζ j ∈ ∂g j (x), j ∈ J (x), ςt ∈ ∂ht (x), t ∈ T+ (x)∪T− (x),
respectively. By (3.18), inequality (3.25) implies

Φ(x̃,x,(ξi,ρ fi))< 0, i ∈ I. (3.29)

By x̃ ∈ D, x ∈ D, inequalities (3.26)-(3.28) yield, respectively,

Φ
(
x̃,x,

(
ζ j,ρg j

))
5 0, j ∈ J (x) , (3.30)

Φ

(
x̃,x,

(
ςt ,ρ

+
ht

))
5 0, t ∈ T+ (x) , (3.31)

Φ

(
x̃,x,

(
−ςt ,ρ

−
ht

))
5 0, t ∈ T− (x) . (3.32)

As it follows from Definition 5, Φ(x̃,x, ·) is a strictly quasi-convex function on Rn+1.
Since (3.24) is satisfied, by inequalities (3.29)-(3.32), Proposition 1 implies

Φ

(
x̃,x,

(
∑

i∈I(x)
αiξi + ∑

j∈J(x)
β jζ j + ∑

t∈T+(x)
γ
+
t ςt + ∑

t∈T−(x)
γ
−
t (−ςt) , (3.33)

∑
i∈I(x)

αiρ fi + ∑
j∈J(x)

β jρg j + ∑
t∈T+(x)

γ
+
t ρ

+
ht
+ ∑

t∈T−(x)
γ
−
t ρ
−
ht

))
< 0.

Taking into account (3.22)-(3.23) in (3.33), we obtain that the following inequality

Φ

(
x̃,x ,

1
A

(
k

∑
i=1

λiξi + ∑
j∈J(x)

µ jζ j + ∑
t∈T+(x)

ϑtςt + ∑
t∈T−(x)

ϑtςt ,

∑
i∈I(x)

λiρ fi + ∑
j∈J(x)

µ jρg j + ∑
t∈T+(x)

ϑtρ
+
ht
− ∑

t∈T−(x)
ϑtρ
−
ht

))
< 0

holds, contradicting (3.20). This means that x is a weakly efficient solution of (VP)
and completes the proof of this theorem. �
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In order to prove the sufficient optimality conditions for a Pareto optimal solution
of the nonsmooth multiobjective programming problem (VP) with nonsmooth (Φ,ρ)-
invex functions, some stronger hypotheses should be assumed.

Theorem 4. Let
(

x,λ,µ,ϑ
)
∈ D×Rk×Rm×Rq be a Karush-Kuhn-Tucker point

of the considered nonsmooth multiobjective programming problem (VP). Further, as-
sume that any one of the following hypotheses is satisfied:

i) the objective function fi, i ∈ I, is locally Lipschitz strictly (Φ,ρ fi)
w-invex at x

on D, the constraint function g j , j ∈ J (x), is locally Lipschitz
(
Φ,ρg j

)w-invex

at x on D, ht , t ∈ T+ (x) :=
{

t ∈ T : ϑt > 0
}

, is locally Lipschitz
(

Φ,ρ+
ht

)w
-

invex at x on D, −ht , t ∈ T− (x) :=
{

t ∈ T : ϑt < 0
}

, is locally Lipschitz(
Φ,ρ−ht

)w
-invex at x on D and, moreover, ∑

k
i=1 λiρ fi + ∑ j∈J(x) µ jρg j+

∑t∈T+(x) ϑtρ
+
ht
−∑t∈T−(x) ϑtρ

−
ht
= 0,

ii) the Lagrange multipliers λi > 0, i ∈ I, the objective function fi, i ∈ I, is loc-
ally Lipschitz (Φ,ρ fi)

w-invex at x on D, the constraint function g j , j ∈ J (x),
is locally Lipschitz

(
Φ,ρg j

)
-invex at x on D, ht , t ∈T+ (x) :=

{
t ∈ T : ϑt > 0

}
,

is locally Lipschitz
(

Φ,ρ+
ht

)w
-invex at x on D, −ht , t ∈ T− (x) :={

t ∈ T : ϑt < 0
}

, is locally Lipschitz
(

Φ,ρ−ht

)w
-invex at x on D and

∑
k
i=1 λiρ fi +∑ j∈J(x) µ jρg j +∑t∈T+(x) ϑtρ

+
ht
−∑t∈T−(x) ϑtρ

−
ht
= 0.

Then x is an efficient solution of the problem (VP).

Proof. The proof of this theorem is similar to the proof of Theorem 3. �

In order to illustrate the sufficient optimality results established in this section, we
consider the following example of a nondifferentiable multiobjective programming
problem with (Φ,ρ)w-invex functions, not necessarily, with respect to the same ρ.

Example 1. Consider the following nondifferentiable multiobjective programming
problem defined as follows

f (x) =
(
arctan(|x1|)+ arctan(|x2|) ,x2

1 + x2
2 + arctan(|x1x2|)

)
→V -min

g(x) = |x1|+ |x2|−2arctan(|x1x2|)5 0, (VP1)

X = R2.

It is not difficult to see that D =
{
(x1,x2) ∈ R2 : |x1|+ |x2|−2arctan(|x1x2|)5 0

}
and x = (0,0) is such a feasible point at which the Generalized Karush-Kuhn-Tucker
necessary optimality conditions are satisfied. It can be established, by Definition 5,
that the objective function fi, i = 1,2, is locally Lipschitz strictly (Φ,ρ fi)

w-invex at x
on D and the constraint function g is (Φ,ρg)

w-invex at x on D, where
Φ(x,x,(ς,ρ)) = arctan(ς1 |x1|)+ arctan(ς2 |x2|)+ arctan(ρ)(arctan |x1x2|− arctan |x1x2|)
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ρ f1 = 0, ρ f2 = tan(1) , ρg = tan(−2),

and ς ∈ ∂k(x), where k denotes f1 or f2 or g, respectively, and ρ is equal to ρ f1 , ρ f2

or ρg, respectively.
Since all hypotheses of Theorem 4 are satisfied, x is an efficient solution of the con-

sidered nonsmooth multiobjective programming problem. Note that we are not in a
position to prove efficiency of x in the considered nonconvex nonsmooth multiobject-
ive programming problem (VP1) under other generalized convexity notions existing
in the literature, that is, invexity [14,16], b-invexity [17], F-convexity [10], r-invexity
[3], V -invexity [13], G-invexity [4], V -r-invexity [5], univexity [18]. This follows
from the fact that not every stationary point of the functions constituting problem
(VP1) is a global minimum of such a function. Whereas one of the main property of
the concepts generalized convexity notions mentioned above is that a stationary point
of every function belonging to the aforesaid classes of generalized convex functions
is its global minimizer. Further, we can’t use also the sufficient optimality conditions
under nondifferentiable (Φ,ρ)-invexity since the functional Φ(x,x, ·) is not convex
for all x ∈ D as it follows from the definition of this concept of generalized con-
vexity (see [6]). As it follows even from this example, the introduced concept of
nondifferentiable (Φ,ρ)w-invexity is useful to prove the sufficiency of Generalized
Karush-Kuhn-Tucker necessary optimality conditions for a larger class of nonconvex
nondifferentiable vector optimization problems in comparison to other generalized
convexity notions, earlier defined in the literature.

4. MOND-WEIR DUALITY

In this section, for the considered nonsmooth multiobjective programming prob-
lem (VP), we define a vector dual problem in the Mond-Weir sense. Then, we prove
several duality results between the primal multiobjective programming problem and
its Mond-Weir dual problem under (Φ,ρ)w-invexity hypotheses.

Now, for the considered nonsmooth multiobjective programming problem (VP),
we state the following vector Mond-Weir dual problems as follows:

f (y)→V -max

s.t. 0 ∈ ∑
k
i=1 λi∂ fi(y)+∑

m
j=1 µ j∂g j(y)+∑

q
t=1 ϑt∂ht(y),

∑
m
j=1 µ jg j(y)= 0, ∑

q
t=1 ϑtht(y)= 0,

λ ∈ Rk, λ≥ 0, ∑
k
i=1 λi = 1, µ ∈ Rm, µ= 0, ϑ ∈ Rq.

(VD)

We denote by Ω the set of all feasible solutions in the vector Mond-Weir dual problem
(VD) and, moreover, let Y be the projection of the set Ω on X , that is,
Y = {y ∈ X : (y,λ,µ,ϑ) ∈Ω}.
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Theorem 5 (Weak duality). Let x and (y,λ,µ,ϑ) be any feasible solutions for
the problems (VP) and (VD), respectively. Further, assume that fi, i ∈ I, is loc-
ally Lipschitz (Φ,ρ f )

w-invex at y on D∪Y , ∑
m
j=1 µ jg j is locally Lipschitz (Φ,ρg)

w-
invex at y on D∪Y , ∑

q
t=1 ϑtht is locally Lipschitz (Φ,ρh)

w-invex at y on D∪Y . If
∑

k
i=1 λiρ fi +ρg +ρh = 0, then f (x)≮ f (y).

Proof. We proceed by contradiction. Suppose, contrary to the result, that there
exist x ∈ D and (y,λ,µ,ϑ) ∈Ω such that

f (x)< f (y) . (4.1)

By assumption, fi, i ∈ I, is locally Lipschitz (Φ,ρ f )
w-invex at y on D∪Y . Hence, by

Definition 5, the following inequalities

fi(z)− fi(y)=Φ(z,y,(ξi,ρ fi)) , i ∈ I (4.2)

hold for all z ∈ D∪Y and for each ξi ∈ ∂ fi(y). Therefore, they are also satisfied for
z = x ∈ D. Thus, inequalities (4.2) yield

fi(x)− fi(y)=Φ(x,y,(ξi,ρ fi)) , i ∈ I. (4.3)

Combining (4.1) and (4.3), we have

Φ(x,y,(ξi,ρ fi))< 0, i ∈ I. (4.4)

By assumptions, ∑
m
j=1 µ jg j is locally Lipschitz (Φ,ρg)

w-invex at y on D∪Y , ∑
q
t=1 ϑtht

is locally Lipschitz (Φ,ρh)
w-invex at y on D∪Y . Hence, by Definition 5, the follow-

ing inequalities
m

∑
j=1

µ jg j(x)−
m

∑
j=1

µ jg j(y)=Φ

(
x,y,

(
m

∑
j=1

µ jζ j,ρg

))
, (4.5)

q

∑
t=1

ϑtht(x)−
q

∑
t=1

ϑtht(y)=Φ

(
x,y,

(
q

∑
t=1

ϑtςt ,ρh

))
(4.6)

hold for each ζ j ∈ ∂g j(y), j ∈ J and ςt ∈ ∂ht (y), t ∈ T , respectively. By x ∈ D and
(y,λ,µ,ϑ) ∈Ω, (4.5) and (4.6) yield, respectively,

Φ

(
x,y,

(
m

∑
j=1

µ jζ j,ρg

))
5 0, (4.7)

Φ

(
x,y,

(
q

∑
t=1

ϑtςt ,ρh

))
5 0. (4.8)

By Definition 5, Φ(x,y, ·) is strictly quasi-convex on Rn+1. Then, by Proposition 1,
inequalities (4.4), (4.7) and (4.8) imply

Φ

(
x,y,

(
k

∑
i=1

λi

3
ξi +

1
3

m

∑
j=1

µ jζ j +
1
3

q

∑
t=1

ϑtςt , (4.9)
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k

∑
i=1

λi

3
ρ fi +

1
3

ρg +
1
3

ρh

))
< 0.

Thus, (4.9) gives

Φ

(
x,y,

1
3

(
k

∑
i=1

λiξi +
m

∑
j=1

µ jζ j +
q

∑
t=1

ϑtςt ,
k

∑
i=1

λiρ fi +ρg +ρh

))
< 0. (4.10)

Using (y,λ,µ,ϑ) ∈Ω again, the first constraint of dual problem (VD) gives

Φ

(
x,y,

1
3

(
0 ,

k

∑
i=1

λiρ fi +ρg +ρh

))
< 0. (4.11)

By Definition 5, it follows that Φ(x,y,(0,a)) = 0 for any a ∈ R+. Therefore, hypo-
thesis ∑

k
i=1 λiρ fi +ρg +ρht = 0 implies that the following inequality

Φ

(
x,y,

1
3

(
0 ,

k

∑
i=1

λiρ fi +ρg +ρh

))
= 0

holds, contradicting (4.11). Hence, the proof of this theorem is completed. �

If a stronger (Φ,ρ f )
w-invexity assumption is imposed on the objective functions

constituting considered vector optimization problems, then the following stronger
result can be established.

Theorem 6 (Weak duality). Let x and (y,λ,µ,ϑ) be feasible solutions for the
problems (VP) and (VD), respectively. Further, assume that fi, i ∈ I, is locally
Lipschitz strictly (Φ,ρ f )

w-invex at y on D∪Y , ∑
m
j=1 µ jg j is locally Lipschitz (Φ,ρg)

w-
invex at y on D∪Y , ∑

q
t=1 ϑtht is locally Lipschitz (Φ,ρh)

w-invex at y on D∪Y . If
∑

k
i=1 λiρ fi +ρg +ρh = 0, then f (x)� f (y).

Theorem 7 (Strong duality). Let x be a weak Pareto solution (a Pareto solution)
of the primal multiobjective programming (VP) and all hypotheses of Theorem 2 be
satisfied at x. Then there exist λ∈Rk, µ∈Rm and ϑ∈Rq such that

(
x,λ,µ,ϑ

)
is feas-

ible in (VD) and the objective functions of (VP) and (VD) are equal at these points.
Further, if all hypotheses of the weak duality theorem (Theorem 5) are satisfied, then(

x,λ,µ,ϑ
)

is a weakly efficient solution of a maximum type in (VD). If λ > 0 and all

hypotheses of the weak duality theorem (Theorem 6) are satisfied, then
(

x,λ,µ,ϑ
)

is
an efficient solution of a maximum type for the vector Mond-Weir dual problem (VD).

Proof. By assumption, x ∈D is a weak Pareto optimal solution (a Pareto solution)
of the problem (VP) and the constraint qualification is satisfied at x. Then there
exist the Lagrange multipliers λ ∈ Rk, µ ∈ Rm and ϑ ∈ Rq such that the Karush-
Kuhn-Tucker necessary optimality conditions (3.3)-(3.5) are satisfied at x. Thus, the
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feasibility of
(

x,λ,µ,ϑ
)

in (VD) follows from these necessary optimality conditions
and, moreover, x ∈ D. Therefore, the objective functions of the problems (VP) and
(VD) are equal at x and

(
x,λ,µ,ϑ

)
. Hence, weakly efficiency of a maximum type

of
(

x,λ,µ,ϑ
)

for (VD) follows directly from weak duality (Theorem 5), whereas

efficiency of a maximum type of
(

x,λ,µ,ϑ
)

follows from Theorem 6. �

Theorem 8 (Converse duality). Let
(

y,λ,µ,ϑ
)

be an efficient solution of a max-
imum type (a weakly efficient solution of a maximum type) for the vector mixed dual
problem (VD) such that y ∈ D. Further, assume that fi, i ∈ I, is (locally Lipschitz
(Φ,ρ f )

w-invex) locally Lipschitz strictly (Φ,ρ f )
w-invex at y on D∪Y , ∑

m
j=1 µ jg j is

locally Lipschitz (Φ,ρg)
w-invex at y on D∪Y , ∑

q
t=1 ϑtht is locally Lipschitz (Φ,ρh)

w-
invex at y on D∪Y . If ∑

k
i=1 λiρ fi + ρg + ρh = 0. Then y is an efficient solution

(a weakly efficient solution) of the considered multiobjective programming problem
(VP).

Proof. The proof of the theorem follows directly from weak duality (Theorem 5
or Theorem 6, respectively). �

5. CONCLUSIONS

In the paper, a new class of nonconvex nonsmooth multiobjective programming
problems is considered in which every component of functions involved is locally
Lipschitz (Φ,ρ)w-invex. Hence, the sufficient optimality conditions for weak effi-
ciency and efficiency and duality results in the sense of Mond-Weir have been estab-
lished for the considered nonconvex nonsmooth multiobjective programming prob-
lem under the concept of nondifferentiable (Φ,ρ)w-invexity introduced in the paper.
Note that the definition of nondifferentiable (Φ,ρ)w-invexity unifies many general-
ized convex notions earlier introduced in the literature (see Remark 1). In order to il-
lustrate the results established in the paper, some example of a nonconvex nonsmooth
multiobjective programming problem with nondifferentiable (Φ,ρ)w-invex functions
has been presented. It is interesting that not all functions constituting the considered
nonsmooth vector optimization problem have the fundamental property of the most
classes of generalized convex functions, namely that a stationary point of such a
function is also its global minimum. Thus, we have also shown that many gener-
alized convexity notions existing in the literature (that is, invexity [14], b-invexity
[17], F-convexity [10], univexity [18], r-invexity [3], V -invexity [19], V -r-invexity
[5], G-invexity [4]) may fail in proving the sufficiency of the Karush-Kuhn-Tucker
necessary optimality conditions and Mond-Weir duality results for the considered
nonconvex nonsmooth vector optimization problem. Thus, the concept of nondif-
ferentiable (Φ,ρ)w-invexity extend the class of nonconvex nonsmooth multiobjective
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programming problems for which it is possible to prove the sufficiency of the Gener-
alized Karush-Kuhn-Tucker necessary optimality conditions and several duality the-
orems in the sense of Mond-Weir in comparison to similarly results proved under
other generalized convexity notions.
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