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ON THE PRIME GRAPH OF A FINITE GROUP
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Abstract. Let G be a finite group. We define the prime graph Γ(G) of G as follows: The vertices
of Γ(G) are the primes dividing the order of G and two distinct vertices p, q are joined by
an edge, denoted by p ∼ q, if there is an element in G of order pq. We denote by π(G), the
set of all prime divisors of |G|. The degree deg(p) of a vertex p of Γ(G) is the number of
edges incident with p. If π(G) = {p1, p2, ..., pk} where p1 < p2 < ... < pk, then we define
D(G) = (deg(p1),deg(p2), ...,deg(pk)), which is called the degree pattern of G. Given a finite
group M, if the number of non-isomorphic groups G such that |G| = |M| and D(G) = D(M) is
equal to r, then M is called r-fold OD-characterizable. Also a 1-fold OD-characterizable group
is simply called OD-characterizable. In this paper we give some results on characterization of
finite groups by prime graphs and OD-characterizability of finite groups. In particular we apply
our results to show that the simple groups G2(7), B3(5), A11, and A19 are OD-characterizable.
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1. INTRODUCTION

Throughout this paper, groups under consideration are finite. For any group G, we
denote by π(G) the set of prime divisors of |G|. We denote the set of elements of G
by πe(G). We associate to πe(G) a graph called prime graph of G, denoted by Γ(G).
The vertex set of this graph is π(G) and two distinct vertices p, q are joined by an
edge, denote by p∼ q, if pq ∈ πe(G). The connected components of Γ(G) is denoted
by π1, π2, ..., πt(G), where t(G) is the number of connected components of Γ(G). If
the order of G is even, the notation is chosen so that 2 ∈ π1. Clearly the order of G
can be expressed as the product of m1, m2, ..., mt(G), where π(mi) = πi, 1≤ i≤ t(G).

The degree deg(p) of a vertex p of Γ(G) is the number of edges incident with p.
If π(G) = {p1, p2, ..., pk} with p1 < p2 < ... < pk, then we define

D(G) = (deg(p1),deg(p2), ...,deg(pk)),

which is called the degree pattern of G. Given a finite group M, if the number of non-
isomorphic groups G such that |G|= |M| and D(G) = D(M) is equal to r, then M is
called r-fold OD-characterizable. Also a 1-fold OD-characterizable group is simply
called OD-characterizable.
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We call a directed graph strongly connected if there is a directed path from each
vertex in the graph to every other vertex. Given an integer a and a positive integer
n with (a,n) = 1, the multiplicative order of a modulo n is the smallest positive in-
teger k such that ak ≡ 1(modn). We denote the order of a modulo n by Ordn(a).
It is easy to see that if al ≡ 1(modn), then Ordn(a)

∣∣l. Let G be a finite group with
|G|= p1

α1 p2
α2 ...pk

αk , where p1 < p2 < ... < pk are prime numbers. We define a dir-
ected graph γ(G) as follows: the vertex set is π(G) and two distinct vertices pi, p j are
joined by an edge, denote by pi∼ p j, whenever pi� p j in Γ(G) and Ordp j

α j (pi)>αi.
The problem of OD-characterizability of simple groups was raised in [2] for the

first time. Then many researchers paid attention to characterize finite simple groups
by orders and degree patterns of their prime graphs, to mention a few references we
will quote [8] and [7].

In this paper we consider the prime graph of a finite group G and prove results
which will be used to prove the OD-characterizability of the simple groups G2(7),
B3(5), A11, and A19. Of course there are many other simple groups whose OD-
characterizability can be proved using the results of this paper.

If m and l are natural numbers and p is a prime number, the notation pm ‖ n means
that pm

∣∣n and pm+1 - n. For a prime number r and a positive integer n, nr denotes the
r-part of n, i.e. type nr is a power of r and n = mnr, where (m,r) = 1.

2. PRELIMINARIES

Lemma 1. Let a > 1 and n be natural numbers and r be a prime number. If
2 6= rn ‖ a−1, then rn+1 ‖ (ar−1).

Proof. See [3], 3.2. �

Lemma 2. Let pi and p j be two distinct prime numbers, p j 6= 2, Ordp j(pi) = m
and p j ‖ pi

m−1, then Ordp jd (pi) = mp j
d−1, where d is a positive integer.

Proof. By Lemma 1 and induction on t we see that

p j
t ‖ pi

mp j
t−1−1, (2.1)

where t is an arbitrary natural number. Now we prove the lemma by induction on d.
If d = 1, then clearly the lemma holds.

Suppose that Ordp jk(pi) = mp j
k−1. Set s = Ordp jk+1(pi). Thus p j

k+1
∣∣pi

s−1 and
so p j

k
∣∣pi

s− 1. Hence mp j
k−1

∣∣s, because Ordp jk(pi) = mp j
k−1. On the other hand

by (2.1) we have p j
k+1

∣∣pi
mp j

k −1 and since Ordp jk+1(pi) = s, s
∣∣mp j

k. It follows that
mp j

k−1
∣∣ s

∣∣mp j
k. This means that s = mp j

k−1 or s = mp j
k. If s = mp j

k−1, then we
have p j

k+1
∣∣pi

mp j
k−1−1. But by (2.1) p j

k ‖ pi
mp j

k−1−1. This contradiction shows that
Ordp jk+1(pi) = s = mp j

k. Therefore Ordp j k+1(pi) = mp j
k and the lemma is proved.

�
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Lemma 3. Let G be a finite group with t(G) ≥ 2. If N�G is a πi-group, then
(∏

t(G)
j=1, j 6=i m j)

∣∣|N|−1.

Proof. See Lemma 8 of [1]. �

Lemma 4. Let G be a finite group with |G|= p1
α1 p2

α2 ...pn
αn , p1 < p2 < ... < pn

where pi is a prime number, 1 ≤ i ≤ n. Also assume that M is an arbitrary normal
subgroup of G. Then the following holds:

1) If pi, p j ∈ π(G) and pi ∼ p j in γ(G), then pi
∣∣|M| implies that p j

∣∣|M|, where
pi, p j are distinct prime numbers.

2) Let pi, p j ∈ π(M), pi � p j in Γ(G) and p j
α j -∏αi

k=1(pi
αi− pi

k−1).

If [∏αi
k=1(pi

αi− pi
k−1)]p j

∣∣p j
α j , then p j

α j

[∏
αi
k=1(pi

αi−pik−1)]p j

∣∣|M|.
3) If pi, p j ∈ π(M), pi � p j in Γ(G) and Ordp jd (pi) > αi for some integer

1≤ d ≤ α j, then p j
α j+1−d

∣∣|M|.
Proof. 1) Since pi ∼ p j in γ(G), we conclude that pi � p j in Γ(G) and Ordp j

α j (pi)

> αi. We suppose that pi
∣∣|M|. By Frattini argument NG(Mpi)M = G, where Mpi is

a Sylow pi-subgroup of M. If p j - |M|, then since p j
α j
∣∣|G|, we have p j

α j
∣∣|NG(Mpi)|

and so NG(Mpi) has a subgroup, say L of order p j
α j . Mpi �NG(Mpi) implies that

LMpi ≤ NG(Mpi). On the other hand there is an positive integer β ≤ αi such that
|LMpi |= p j

α j pi
β and since pi � p j in Γ(G), the prime graph of LMpi is not connec-

ted. Also Mpi � LMpi . Thus p j
α j
∣∣pi

β− 1 by Lemma 3. Hence Ordp j
α j (pi)

∣∣β. In
particular we have Ordp j

α j (pi)≤ αi and this is a contradiction and so p j
∣∣|M|.

2) We have NG(Mpi)M = G. Thus p j
α j

|NG(Mpi )|p j

∣∣|M|. Moreover if N is a minimal

normal subgroup of NG(Mpi) such that N ≤ Mpi , then N is isomorphic to a direct
product of cyclic groups Zpi . Assume that N is isomorphic to a direct product of

r cyclic group Zpi . (N ∼= Zpi × ...×Zpi). Since NG(Mpi )

CNG(Mpi )
(N) ↪→ Aut(N), we have

|NG(Mpi )|
|CNG(Mpi )

(N)|
∣∣|Aut(N)| = |Aut(Zpi

r)| = |Glr(pi)| = ∏
r
k=1(pi

r − pi
k−1). This implies

that |NG(Mpi)|
∣∣|CNG(Mpi )

(N)|∏r
k=1(pi

r − pi
k−1). But since pi � p j in Γ(G), p j -

CNG(Mpi )
(N)|. (Note that N is a pi-group).

Thus |NG(Mpi)|p j

∣∣[∏r
k=1(pi

r− pi
k−1)]p j . Also since r ≤ αi,

[
r

∏
k=1

(pi
r− pi

k−1)]p j

∣∣[ αi

∏
k=1

(pi
αi− pi

k−1)]p j .

Therefore |NG(Mpi)|p j

∣∣[∏αi
k=1(pi

αi− pi
k−1)]p j .
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Now from NG(Mpi)M = G, we conclude that |G|= |NG(Mpi)M|=
|NG(Mpi )||M|
|NG(Mpi )∩M| and

so |G|
∣∣|NG(Mpi)||M|. Thus p j

α j = |G|p j

∣∣|NG(Mpi)|p j |M|p j and since

|NG(Mpi)|p j

∣∣[ αi

∏
k=1

(pi
αi− pi

k−1)]p j , p j
α j
∣∣[ αi

∏
k=1

(pi
αi− pi

k−1)]p j |M|p j .

By assumption [∏
αi
k=1(pi

αi− pi
k−1)]p j

∣∣p j
α j and so p j

α j

[∏
αi
k=1(pi

αi−pik−1)]p j

∣∣|M|p j

∣∣|M|.
3) We will prove that p j

d - |NG(Mpi)|.
If p j

d
∣∣|NG(Mpi)|, then NG(Mpi) has a subgroup, say J of order p j

d .
Since Mpi � JMpi and the prime graph of JMpi is not connected (pi � p j in Γ(G))

by Lemma 3, we have p j
d
∣∣pi

e − 1 for a positive integer e ≤ αi. It means that
pi

e ≡ 1(mod p j
d). It follows that Ordp jd (pi) ≤ αi, which is a contradiction. Thus

p j
d - |NG(Mpi)| and so |NG(Mpi)|p j

∣∣p j
d−1. But since NG(Mpi)M = G, we conclude

that |G|
∣∣|NG(Mpi)||M|, which implies that p j

α j = |G|p j

∣∣|NG(Mpi)|p j |M|p j |p j
d−1|M|p j

and so p j
α j+1−d = p j

α j−(d−1)
∣∣|M|. The proof is completed. �

3. CHARACTERIZATION OF FINITE GROUPS BY PRIME GRAPH AND ORDER OF
THE GROUP

Theorem 1. Let G be a finite group with |G| = p1
α1 p2

α2 ...pn
αn , p1 < p2 < · · · <

pn where pi is a prime number, 1 ≤ i ≤ n. If the directed graph γ(G) is strongly
connected, then the following assertions hold.

1) There is a simple group S such that S�G≤ Aut(S) and π(S) = π(G). Also if
pi � p j in Γ(G), then pi � p j in Γ(S) too and if pi ∼ p j in Γ(G), then pi ∼ p j
in Γ(Aut(S)) too.

2) Let pi, p j ∈ π(G), pi � p j in Γ(G) and p j
α j -∏αi

k=1(pi
αi− pi

k−1).

If [∏αi
k=1(pi

αi− pi
k−1)]p j

∣∣p j
α j , then p j

α j

[∏
αi
k=1(pi

αi−pik−1)]p j

∣∣|S|.
3) If pi, p j ∈ π(G), pi � p j in Γ(G) and for some integer 1 ≤ d ≤ α j,

Ordp jd (pi)> αi, then p j
α j+1−d

∣∣|S|.
Proof. Assume that L is a minimal normal subgroup of G. Thus L 6= 1 and so there

is a prime number pi ∈ π(G) such that pi
∣∣|L|. Since γ(G) is strongly connected, for

all p j ∈ π(G) there exists a directed path from pi to p j. So by Lemma 4 and induction
on the length of path we can easily see that p j

∣∣|L| for all p j ∈ π(G). Therefore π(L) =
π(G) and since γ(G) is strongly connected, clearly Γc(G) is connected, where Γc(G)
denotes the complement of the graph Γ(G). Now if L is a direct product of more than
one isomorphic simple groups, then since π(L) = π(G), Γ(G) is a complete graph
and so Γ(G)c is not connected, a contradiction. Hence L is a simple group. On the
other hand if for some q ∈ π(G), q

∣∣|CG(L)|, then q∼ t in Γ(G) for all t ∈ π(G)−{q}
and so Γc(G) is not connected, which is contradiction. Thus CG(L) = 1 and since
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G
CG(L)

↪→ Aut(L), we conclude that G ↪→ Aut(L). So the proof of Part 1 is completed.
We conclude Part 2 and 3 of the Theorem from Lemma 4. �

Theorem 2. Let G be a finite group, |G|= p1
α1 p2

α2 ...pn
αn , where p1 < p2 < · · ·<

pn and pi is a prime number, 1≤ i≤ n. If γ1 is a strongly connected directed subgraph
of the graph γ(G) and V1 is the vertex set of γ1, then the following assertions hold.

1) There is a simple group S such that S� G
Oπ(G)−V1 (G) ≤ Aut(S), V1 ⊆ π(S) ⊆

π(G) and if pi, p j ∈ V1 and pi � p j in Γ(G), then pi � p j in Γ(S) and if
pi∼ p j in Γ(G), then pi∼ p j in Γ(Aut(S)) (Oπ(G)−V1(G) is the largest normal
subgroup N with π(N) = π(G)−V1 ).

2) Let pi, p j ∈V1, pi � p j in Γ(G) and p j
α j -∏αi

k=1(pi
αi− pi

k−1).

If [∏αi
k=1(pi

αi− pi
k−1)]p j

∣∣p j
α j , then p j

α j

[∏
αi
k=1(pi

αi−pik−1)]p j

∣∣|S|.
3) If pi, p j ∈ V1 and pi � p j in Γ(G) and for some integer 1 ≤ d ≤ α j,

Ordp jd (pi)> αi, then p j
α j+1−d

∣∣|S|.
Proof. Set L = Oπ(G)−V1(G) and Ḡ = G

L . Suppose that S is a minimal normal
subgroup of Ḡ. Thus for a normal subgroup of G, say M1, we have S = M1

L , where
L ≤ M1. It is obvious that there is a prime number q ∈ V1, such that q

∣∣|M1|. But
there exists a path between q and t for all t ∈ V1−{q}. Therefore by Lemma 4 and
induction on length we see that V1 ⊆ π(M1). It follows that V1 ⊆ π(S)⊆ π(G). Since
γ1 is a strongly connected subgraph of γ(G), for all pi ∈V1, there exists p j ∈V1 such
that pi � p j in Γ(G) and so S is not a direct product of more than one isomorphic
simple groups. Hence S is a simple group. Now we prove that CḠ(S) = 1. Assume
that CḠ(S) 6= 1. Thus there is a subgroup of G, say K such that CḠ(S) =

K
L , L 6= K. It

follows that there is a prime number r ∈ V1 such that r
∣∣|K|. It means that r

∣∣|CḠ(S)|.
Moreover since V1 ⊆ π(S), we conclude that r ∼ t in Γ(Ḡ) for all t ∈ V1−{r}. It is
easy to see that r ∼ t in Γ(G) for all t ∈V1−{r} and so r � t in γ(G), in particular in
γ1 for all t ∈ V1−{r}, but this is a contradiction with γ1 being a strongly connected
graph and thus CḠ(S) = 1. Hence S� Ḡ = Ḡ

1 = Ḡ
CḠ(S)

≤ Aut(S).
Now we assume that pi, p j ∈ V1 and pi � p j in Γ(G) and p j

α j - ∏
αi
k=1(pi

αi −
pi

k−1). Also suppose that [∏αi
k=1(pi

αi − pi
k−1)]p j

∣∣p j
α j . By using Part 2 of Lemma 4

for M1�G, we conclude that p j
α j

[∏
αi
k=1(pi

αi−pik−1)]p j

∣∣|M1| and since p j ∈ V1, p j - |L| and

so p j
α j

[∏
αi
k=1(pi

αi−pik−1)]p j

∣∣|M1
L |= |S|, thus the proof of Part 2 is completed.

Similar arguments prove Part 3.
If pi, p j ∈ V1, pi ∼ p j in Γ(S), then clearly pi ∼ p j in Γ(Ḡ) and so in Γ(G).

Thus if pi � p j in Γ(G), then pi � p j in Γ(S). Also if pi, p j ∈ V1 and pi ∼ p j in
Γ(G), then there is an element g ∈ G, such that gpi p j = 1 and o(g) = pi p j. Thus
gpi p j ∈ L. Since o(g) = pi p j - |L|, g 6∈ L. If gpi ∈ L, then since π(L) ⊆ π(G)−V1
and pi, p j ∈V1, we conclude that there is a positive integer m such that (pi p j,m) = 1
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and (gpi)m = gpim = 1. This implies that pi p j
∣∣pim, because o(g) = pi p j, thus p j

∣∣m, a
contradiction. Therefore gpi 6∈ L. Similarly gp j 6∈ L and so o(gL)= pi p j. Thus pi∼ p j
in Γ(Ḡ). But since Ḡ≤ Aut(S), pi ∼ p j in Γ(Aut(S)) and the proof is completed. �

4. OD-CHARACTERIZABILITY OF FINITE GROUPS

Let G be a finite group and |G| = p1
α1 p2

α2 ...pn
αn , where p1 < p2 < · · · < pn and

pi is a prime number, 1 ≤ i ≤ n. For i = 1,2, ...,n, set R(pi) = |{p j ∈ π(G)|pi 6= p j,
Ordp j

α j (pi)> αi and Ordpi
αi (p j)> α j}|. We have the following three propositions.

Proposition 1. Let G be a finite group with |G| = p1
α1 p2

α2 ...pn
αn , p1 < p2 <

· · · < pn, pi is a prime number, 1 ≤ i ≤ n. Assume that there is pm ∈ π(G) such that
deg(pm) = 0 in Γ(G) and R(pm) = n−1. Then the following assertions hold.

1) There is a simple group S such that S�G ≤ Aut(S), π(S) = π(G). Also we
have degΓ(S)(pi)≤ degΓ(G)(pi)≤ degΓ(Aut(S))(pi), 1≤ i≤ n.

2) If pl ∈ π(G), pl
αl - ∏

αm
k=1(pm

αm − pm
k−1) and [∏

αm
k=1(pm

αm − pm
k−1)]pl

∣∣pl
αl ,

then pl
αl

[∏
αm
k=1(pmαm−pmk−1)]pl

∣∣|S|.
3) If pl ∈ π(G), pm

αm - ∏
αl
k=1(pl

αl − pl
k−1) and [∏

αl
k=1(pl

αl − pl
k−1)]pm

∣∣pm
αm ,

then pm
αm

[∏
αl
k=1(pl

αl−pl
k−1)]pm

∣∣|S|.
4) If pl ∈ π(G) and Ordpl

d (pm) > αm for some integer 1 ≤ d ≤ αl , then
pl

αl+1−d
∣∣|S|.

5) If pl ∈ π(G) and Ordpmd (pl) > αl . for some integer 1 ≤ d ≤ αm, then
pm

αm+1−d
∣∣|S|.

Proof. By Theorem 1 it is sufficient to prove that γ(G) is strongly connected. Since
deg(pm)= 0 in Γ(G), pi� pm in Γ(G) for all i 6=m, 1≤ i≤ n and since R(pm)= n−1,
Ordpmαm (pi) > αi and Ordpi

αi (pm) > αm for all i 6= m, 1 ≤ i ≤ n. Hence there is a
directed edge from pi to pm and from pm to pi for all i 6= m, 1≤ i≤ n.

Now assume that pa, pb are two arbitrary vertices in γ(G). Then by above discus-
sion there is a directed edge from pa to pm and from pm to pa in γ(G). Also there is
a directed edge from pm to pb and from pb to pm. Thus there is a directed path from
pa to pb. Therefore γ(G) is strongly connected.

Since for all q ∈ π(G)−{pm}, q � pm in Γ(G), 2, 3, 4 and 5 are concluded from
Theorem 1 Part 2 and 3. �

Proposition 2. Let G be a finite group with |G|= p1
α1 p2

α2 ...pn
αn , p1 < p2 < · · ·<

pn, pi is a prime number, 1 ≤ i ≤ n. Assume that there exists pm ∈ π(G) such that
deg(pm) = 1 in Γ(G) and R(pm) = n−1. Then the following assertions hold.

1) There exists a simple group S and a prime number pr ∈ π(G)−{pm} such
that S� G

Opr (G) ≤ Aut(S) and π(G)−{pr} ⊆ π(S) ⊆ π(G). (Opr(G) is the
largest normal subgroup N of G with π(N) = {pr}).
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2) a) If ps ∈ π(G) and deg(ps) = n−1 in Γ(G), then there is a simple group
S such that S� G

Ops (G) ≤ Aut(S) and π(G)−{ps} ⊆ π(S)⊆ π(G).

b) If pt ∈ π(G) − {ps, pm}, pt
αt - ∏

αm
k=1(pm

αm − pm
k−1) and

[∏
αm
k=1(pm

αm− pm
k−1)]pt

∣∣pt
αt , then pt

αt

[∏
αm
k=1(pmαm−pmk−1)]pt

∣∣|S|.
c) If pt ∈ π(G) − {ps, pm}, pm

αm - ∏
αt
k=1(pt

αt − pt
k−1) and

[∏
αt
k=1(pt

αt − pt
k−1)]pm

∣∣pm
αm , then pm

αm

[∏
αt
k=1(pt αt−pt k−1)]pm

∣∣|S|.
d) If pt ∈ π(G) − {ps, pm} and Ordpt d (pm) > αm for some integer

1≤ d ≤ αt , then pt
αt+1−d

∣∣|S|.
e) If pt ∈ π(G) − {ps, pm} and Ordpmd (pt) > αt for some integer

1≤ d ≤ αm, then pm
αm+1−d

∣∣|S|.
Proof. 1) By Theorem 2 it is sufficient to prove that γ(G) has a strongly connected

subgraph with n− 1 vertices. Since deg(pm) = 1 in Γ(G), there exists pr ∈ π(G)
such that pr ∼ pm in Γ(G). If pi is an arbitrary vertex of the directed graph γ(G) such
that pi 6= pr, pm, then since R(pm) = n− 1, we conclude that Ordpi

αi (pm) > αm and
Ordpmαm (pi) > αi. On the other hand pi � pm in Γ(G) and so there is an edge from
pi to pm and from pm to pi in γ(G).

Now if pa, pb are two arbitrary vertices of γ(G) such that pa, pb 6= pr, pm, then
there is an edge from pa to pm and from pm to pa, also from pb to pm and from
pm to pb in γ(G). Thus there is a path from pa to pb. Hence there is a strongly
connected subgraph of γ(G) such that its vertex set is equal to π(G)−{pr}. There-
fore by Theorem 2, there is a simple group S such that S� G

Opr (G) ≤ Aut(S) and
π(G)−{pr} ⊆ π(S)⊆ π(G).

2) Assume that there exists ps ∈ π(G) such that deg(ps) = n−1 in Γ(G). So ps is
joint to all vertices in Γ(G). In particular ps ∼ pm in Γ(G).

By similar argument as in Part 1 we can see that γ(G) has a strongly connected
subgraph such that its vertex set is equal to π(G)−{ps}. Thus by Theorem 2, there
is a simple group S such that S� G

Ops (G) ≤ Aut(S) and π(G)−{ps} ⊆ π(S) ⊆ π(G).
Also b, c, d, e are concluded from Theorem 2 Part 2 and 3. �

We define (m)∗ for all m ∈ Z by (m)∗ =

{
m for m > 0
0 for m≤ 0.

Proposition 3. Let G be a finite group with |G|= p1
α1 p2

α2 ...pn
αn , p1 < p2 < · · ·<

pn, pi is a prime number, 1≤ i≤ n. We set M = max{(R(pi)−deg(pi))
∗|1≤ i≤ n}

and m = min{(R(pi)−deg(pi))
∗|1≤ i≤ n}. If M+m≥ n−1, then there is a simple

group S such that S�G≤ Aut(S) and π(S) = π(G). Also degΓ(S)(q)≤ degΓ(G)(q)≤
degΓ(Aut(S))(q) for all q ∈ π(G).

Proof. By Theorem 1 it is sufficient to prove that γ(G) is strongly connected. So
assume that pd is an arbitrary vertex of γ(G). We define Ad and Bd as follows:

Ad = {pi ∈ π(G)|pi 6= pd , pi � pd in Γ(G)},
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Bd = {p j ∈ π(G)|p j 6= pd , Ordp j
α j (pd)> αd and Ordpd

αd (p j)> α j}.

Thus |Ad | = n− 1− deg(pd), |Bd | = R(pd), where deg(pd) is the degree of pd in
Γ(G).

Moreover Ad ∩Bd is equal to set of all vertices in γ(G) that are joined to pd and
also pd is joined to them by an edge. Since pd 6∈ Ad ∪Bd , Ad ∪Bd ⊆ π(G)−{pd}
and so |Ad ∪Bd | ≤ n−1. Therefore we have |Ad ∪Bd |= n−1−deg(pd)+R(pd)−
|Ad ∩Bd | ≤ n−1. Hence |Ad ∩Bd | ≥ R(pd)−deg(pd). Since |Ad ∩Bd | ≥ 0, we have
|Ad ∩Bd | ≥ (R(pd)−deg(pd))

∗.
But (R(pd)−deg(pd))

∗ ≥m, which implies that |Ad∩Bd | ≥m. Thus there exist m
vertices in γ(G) that are joined to pd and also pd is joined to them by an edge, where
pd is an arbitrary vertex of γ(G). Denote the set of all these m vertices by Ed .

Now we assume that pc ∈ π(G) and M = (R(pc)−deg(pc))
∗. Then by a similar

argument we see that there exist M vertices in γ(G) that are joined to pc and also pc
is joined to them by an edge. Denote the set of all these M vertices by Fc.

We will show that if pu ∈ π(G) is different from pc, then there is a directed path
from pu to pc and from pc to pu. Since pu 6= pc, pu � pc and pc � pu in γ(G). We
know that pu ∼ q and q ∼ pu in γ(G) for all q ∈ Eu. If Eu ∩ Fc = ∅, then since
{pu} ∪ Eu ∪ {pc} ∪ Fc ⊆ π(G), pu 6= pc, pu � pc and pc � pu in γ(G), we have
|{pu}∪Eu∪{pc}∪Fc|= 1+m+1+M ≤ n, which is a contradiction with assump-
tion, (M+m≥ n−1 ). Thus Eu∩Fc 6=∅. Suppose that pv ∈ Eu∩Fc. It follows that
pu ∼ pv, pv ∼ pu, pc ∼ pv and pv ∼ pc. Hence pu→ pv→ pc is a directed path from
pu to pc and pc→ pv→ pu is a directed path from pc to pu. So we proved that for all
pu ∈ π(G) there exists a directed path from pu to pc and there is a directed path from
pc to pu.

Now we assume that pa, pb are two arbitrary vertices of γ(G). Thus by the above
discussion there is a path from pc to pa and from pa to pc, also there is a path from
pc to pb and from pb to pc. Therefore there is a path from pa to pb and so γ(G) is
strongly connected and the proof is completed. �

5. APPLICATIONS

We give some examples of characterization of finite groups by prime graph and
OD-characterization of them.

We note that the following examples are proved in [4] and a few more papers. But
our proofs are based on Theorems 1 and 2 and Propositions 1, 2 and 3. The prime
graphs of all groups considered are obtained by [6].

Example 1. We consider the simple group C2(7). We know that |C2(7)| =
28 · 32 · 52 · 74 and 2 ∼ 3, 2 ∼ 7, 3 ∼ 7, 5 � 2, 5 � 7 and 5 � 3 in Γ(C2(7)). Since
Ord52(2)> 8, Ord52(3)> 2, Ord28(5)> 2, Ord32(5)> 2, we deduce that Eγ(C2(7)) ⊇
{(2,5),(5,2),(3,5),(5,3)}, where Eγ(C2(7)) is the edge set of γ(G). Hence there exists
a strongly connected subgraph of γ(C2(7)) that its vertex set is {2,3,5}.
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Now if G is a finite group with |G| = |C2(7)| and Γ(G) = Γ(C2(7)), then γ(G) =
γ(C2(7)) and so there exists a strongly connected subgraph of γ(G) that its vertex set
is {2,3,5}. Thus by Theorem 2 there is a simple group S such that S� G

O7(G) ≤ Aut(S)
and {2,3,5} ⊆ π(S) ⊆ π(G) = {2,3,5,7}. Since 3 � 5 in Γ(C2(7)) = Γ(G) and
Ord5(3) > 2 by Part 3 of Theorem 2, we conclude that 52+1−1 = 52

∣∣|S|. Similarly
since 2 � 5 in Γ(G) and Ord24(5) > 2, 28+1−4 = 25

∣∣|S|. Now by Table 4 of [5] we
see that S ∼= B2(7) or S ∼= C2(7) and since S ≤ G

O7(G) and |G|
|O7(G)|

∣∣|G| = |C2(7)|, we
conclude that O7(G) = 1 and G = S and so G∼= B2(7) or G∼=C2(7).

Hence if Γ(G) = Γ(C2(7)) and |G|= |C2(7)|, then G∼=C2(7) or G∼= B2(7).

Example 2. We consider the simple group B3(5). We know that |B3(5)| =
29 ·34 ·59 ·7 ·13 ·31 and 2∼ 3, 2∼ 5, 2∼ 13 2∼ 31, 3∼ 5, 3∼ 7, 3∼ 13 and 5∼ 13
in Γ(B3(5)) and 7� i, 31� j for i ∈ {2,5,13,31} and j ∈ {3,5,7,13} in Γ(G). We
have Ord31(3)> 4, Ord34(31)> 1, Ord7(31)> 1 , Ord31(7)> 1, Ord31(13)> 1 and
Ord13(31) > 1. Thus Eγ(B3(5)) ⊇ {(31,3),(3,31),(31,7),(7,31),(31,13),(13,31)},
where Eγ(B3(5)) is the edge set of γ(B3(5)). Therefore there exists a strongly con-
nected subgraph of γ(B3(5)) that its vertex set is {3,7,13,31}. Now if G is a fi-
nite group with |G| = |B3(5)| and Γ(G) = Γ(B3(5)), then γ(G) = γ(B3(5)) and so
there exists a strongly connected subgraph of γ(G) that its vertex set is {3,7,13,31}
Thus by Theorem 2, there is a simple group S such that S� G

O{2,5}(G) ≤ Aut(S) and
{3,7,13,31} ⊆ π(S)⊆ {2,3,5,7,13,31}. But since 3� 31 in Γ(G) = Γ(B3(5)) and
34 - 31−1 by Theorem 2 Part 2 we have 34

[31−1]3
= 33

∣∣|S| and so 33 ·7 ·13 ·31
∣∣|S|. Now

by Table 4 of [5], we conclude that S∼= B3(5) or S∼=C3(5). Thus O{2,5}(G) = 1 and
since |G|= |B3(5)|, we conclude that G∼= B3(5) or G∼=C3(5).

Hence if Γ(G) = Γ(B3(5)) and |G|= |B3(5)|, then G∼= B3(5) or G∼=C3(5).

Example 3. We consider the simple group A11. We know that |A11|= 27 ·34 ·52 ·
7 ·11. We can easily see that deg(11) = 0 in Γ(A11). Assume that G is a finite group
with D(G) = D(A11) and |G|= |A11|.

Since Ord11(2) > 7, Ord11(3) > 4, Ord11(5) > 2, Ord11(7) > 1, Ord27(11) > 1,
Ord34(11) > 1, Ord52(11) > 1 and Ord7(11) > 1, we conclude that R(11) = 4 and
since |π(G)|= 5 by Proposition 1 there is a simple group S such that S�G≤ Aut(S)
and π(S) = π(G) = {2,3,5,7,11}. Since 27 - 11− 1 = 10 and [10]2

∣∣27 by Part 2 of
Proposition 1 we have 27

[10]2
= 26

∣∣|S|. Similarly 34
∣∣|S|. Thus |S| = 2a · 34 · 5b · 7 · 11,

where 6≤ a≤ 7, 1≤ b≤ 2 and so by Table 4 of [5] S is isomorphic to A11 and since
S≤ G, |G|= |A11|, we conclude that G∼= A11.

Hence A11 is OD-characterizable.

Example 4. We consider the simple group A19. We know that |A19|= 215 ·38 ·53 ·
72 ·11 ·13 ·17 ·19. Obviously deg(19) = 0 in Γ(A19). Now assume that G is a finite
group with D(G) = D(A19) and |G|= |A19|.
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We have Ord19(2)> 15, Ord19(3)> 8, Ord19(5)> 3, Ord19(7)> 2, Ord19(11)>
1, Ord19(13) > 1, Ord19(17) > 1, Ord215(19) > 1, Ord38(19) > 1, Ord53(19) > 1,
Ord72(19) > 1, Ord11(19) > 1, Ord13(19) > 1 and Ord17(19) > 1, thus R(19) = 7
and since |π(G)| = 8 by Proposition 1 there is a simple group S such that S�G ≤
Aut(S) and π(S)= π(G)= {2,3,5,7,11,13,17,19}. Since 215 - 19−1= 18, [18]2

∣∣215

by Part 2 of Proposition 1 we have 215

[18]2
= 214

∣∣|S|. Similarly 38

[18]3
= 36

∣∣|S|, 53
∣∣|S| and

72
∣∣|S|. Thus |S|= 2a ·3b ·53 ·72 ·11 ·13 ·17 ·19, where 14≤ a≤ 15, 6≤ b≤ 8 and so

by Table 4 of [5] S∼= A19 and since S≤ G, |G|= |A19|, we conclude that G∼= A19.
Hence A19 is OD-characterizable.
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