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 Telecommunication networks are vulnerable towards single or simultaneous 
nodes/links failures, which may lead to the disruption of network areas.  
The failures may cause performance degradation, reduced quality of services, 
reduced nodes/links survivability, stability, and reliability. Therefore, it is 
important to measure and enhance the network robustness, via the use of 
robustness metrics. This paper gives an overview of several robustness 
metrics that are commonly used for optical networks, from the structural, 
centrality and functional perspectives. Keywords: 
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1. INTRODUCTION  

The study based on robustness is carried out to provide significant insight into the potential damage 

towards optical network and to support the future communication needs. Robustness is the ability to maintain 
performance under adverse conditions [1], making it possible to sustain the network efficiency and reliability 

without performance degradation against the effect of random failures [2] or predicted failures [3]. 

Robustness also provides a qualitative estimation of reliability when analyses are performed in standard 

conditions [4]. Robustness metrics are methods or approach to measure and indicate the network 

performance under certain conditions such as uncertainty, expected conditions or range of scenarios [5].  

It is important to have a good understanding of robustness and expressing it quantitatively. Under specific 

scenarios, robustness metrics can represent various network parameters, though there might be other 

variations that would not be captured by such approach [6]. Network robustness has drawn many attentions 

in recent years where the failure of many real-world network causes economic losses in the past [7]. Network 

robustness can be defined and measured in many ways [8, 9], and there are many ways to achieve 

communication networks robustness, e.g., by planning the network based on users’ requirements, the network 
physical and logical designs, network configurations, hardware installations and ongoing maintenance. 

Optical networks serve as the backbone infrastructure for modern telecommunication networks 

where it offers to solve many problems in terms of network performance and quality of services and provides 

enormous data transmission capacities for various important services. Optical networks exchange terabytes of 

information in a second, thus offer high bandwidth [10]. By providing high data rates, any failure in  

the optical networks can cause loss of data which in turn will cause revenue loss and loss of sensitive 

information [11]. There are many network components of which their failure can cause the failure of node or 

link connection such as switches, optical fibers, and network transceivers. It is of utmost importance that the 

robustness and survivability is considered as an important aspect of role in ensuring that our optical networks 
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are as reliable as possible, to mitigate the failure of network services in various failure scenarios [12].  

Thus, defining reliable network is vital against any network failures especially for those networks supporting 

mission critical services [13, 14]. An optical network consists of a number of nodes and fiber links, and some 

network nodes may be more vital in ensuring network connectivity and acceptable level of network services, 

compared to other network nodes. Hence, suitable metrics are needed to evaluate the robustness [7] of these 

nodes and fiber links. In this paper, we review several robustness metrics that are often used in the context of 

optical networks. Section 2 discusses works that are related to this paper, Section 3 describes the network 

robustness, Section 4 describes various types of robustness metrics, and Section 5 concludes the paper. 
 

 

2. RELATED WORKS 

Unwanted network failures can cause loss of significant amount for voice and data traffic [15]. 

Especially when new technologies are being developed, new concerns were also raised [16]. For example, 

when the network environment become more vulnerable, network operators must respond correspondingly  

“to maintain the network survivability from any failure risks in the future. The scientific communities 

believed that optical networks are highly exposed to massive failures and disruptions, mainly caused  

by natural disasters or human intervention [3, 17]. Researchers have studied how to provide network 

protections without degrading the network performance. However, whether these measures can properly 

evaluate the network robustness and which aspects of network robustness these measures can evaluate are 

still an open question [7]. 
Robustness metrics can be defined as classical metrics and contemporary metrics [18, 19].  

Both classical and contemporary approach are useful for analyzing network connectivity under node/link 

removals. Heuristic algorithms were proposed in [20] for optimizing four robustness metrics, namely  

the algebraic connectivity, the effective resistance, the average edge betweenness, and efficiency in order to 

study the robust growth through generalized meshes. Three categories of robustness metrics were discussed 

in [1, 21], namely the structural, centrality and dynamic/functional metrics. Structural metrics is based on 

graph theory, centrality metrics is based on node/link importance and functional metric is related to  

the quality of services in the established connections [1, 18, 22]. Robust networks can be identified by 

relating to metrics used under simulated failure scenarios [18]. These (multiple) failures can be either static 

or dynamic [1, 22]. Static failures are one-off, affecting one or more elements at any given moment, while 

dynamic failures have a temporal dimension and can further be classified as targeted, epidemic or cascading 
multiple failures [1, 22]. The temporal evolution in telecommunication network and its connectivity have 

rapidly increase over time which introduce large size of disturbance and failures. There are four (4) real 

backbone over temporal sequence of nodal interactions studied in [23] with twenty metrics to measure  

the robustness and the trends. 

Vulnerabilities are defined as the weakness in any network that can be exposed to being attacked or 

harmed. Vulnerabilities cause low reliability performance requirements, massive disruptions of services, 

security breaches or attacks, high data transfer rate but with poor configurations, low quality of services, poor 

disaster-resilience and survivability. Defending networks against vulnerabilities provides network 

survivability, where survivability can be defined as the ability of maintaining a tolerable quality of service 

and meet essential requirements when network failures occur [13, 24, 25]. There are two common approaches 

in ensuring network survivability, which are protection and restoration [24, 26]. Protection involves reserving 
backup resources before any failure can take place [26], while restoration utilizes unoccupied network 

resources are not pre-reserved to overcome failures [26]. Resilience in networks (ResiliNets) [27] merge 

several strategies, disciplines and principles to enhance network survivability and resiliency. ResiliNets 

axioms provide systematic resilience and comprises a strategy named D2R2+DR mainly used in inner control 

loop for a system to rapidly adapt to challenges and attacks maintaining an acceptable service level, and in 

outer control loop for longer term system evolution.  

 
 

3. ROBUSTNESS METRICS 

A common problem in addressing network robustness is what aspect or method should be 

considered for improving the network robustness. Different metric leads to different notion of robustness 

notion, since the main purpose of these different metrics is to assert alternative understanding of network 

robustness. Robustness metrics are used for stability, where the measured quality not necessarily be affected 

by changing conditions [28]. We consider that robustness metrics can be divided into three main categories, 
namely structural metrics, centrality metrics and functional metrics.  
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3.1.  Structural metrics 

Structural metrics are the most well-known metrics which focus on classical graph analysis and 

properties. They explain the network stability, vulnerability of network, absence of network or even 

reliability of the network when some links or nodes are removed from the network topology [1]. To identify 

the robustness of networks, the measures should be sensitive to changes in networks. The node degree 

describes the number of neighbours a node has. Moreover, the links that on average connected to the node is 

known as average nodal degree. The bigger the average nodal degree, the network is said to become more 

robust. [22]. More connections can be established when the average nodal degree is said to be robust but can 

lead to a great number of failures if a node with a high nodal degree fails. Node degree also has limited 

measurements for network robustness since it depends on how the nodal degree is spread over the graph [29].  
The edge connectivity of a network is the number of edges whose removal disconnects the network. 

A k-edge-connected graph suffers disconnection only after k or more edges are removed. A MILP shielding 

method was proposed in [30] for critical links between geographical or general failure models to increase  

the edge connectivity of node pair. The proposed method is used to minimize the shielding cost and 

guarantee the source-destination pair connection. Another approach is to equip the network and its nodes 

with some methods to rearrange the network resources and services on a partially damaged network to 

mitigate disasters. [27] introduced swarm intelligence distributed algorithms, that focus on the devices’ 

ability to recover network roles such as gateway or relay, automatically selects its roles, to maximize the end-

to-end performance. 

Algebraic connectivity is defined as the measure of breaking to network into different network 

components. If higher number of link or node failures can be survived before the network becomes 
disconnected, there is a higher chance that network is more robust [1, 31]. [32] proposed survivability based 

on algebraic connectivity for analyzing network cost and traffic loss. The proposed approach is analysed on 

three different schemes with different ratios, namely unprotected, shared path protection and 1+1 protected, 

leading to reduced traffic loss and improved robustness in topological features [31].  

Reliability Polynomials (G) stated in [30] are based on the notion of graph connectivity to define  

the network robustness. The authors explained that all-terminal reliability has always a polynomial, thus it is 

easier to measure efficiently certain areas for all-terminal reliability. Every all-terminal reliability has its own 

roots and bounded. The authors proposed that node reliability of any connected graph has nonreal root, 

unbounded and the closure of the collection of node roots is the whole networks which node reliability 

identify the difference of the real root of node reliability and all-terminal reliability. 

In [33] proposed a metric called the Minimum Total Failure Removals (MTFR) to quantify  

the network robustness by defining a single failure can cause a failure to all nodes as a Total Failure.  
The author discussed the failures from the removal of nodes and edges in the networks as Node-MTFR and 

Edge-MTFR respectively which disrupted the interdependency between power grid and communication 

networks. The results using the proposed metric are said to be interdependent if the state of network A 

dependent on the state of network B and vice versa. The result of unidirectional dependencies can be solved 

in polynomial time. However, the bidirectional dependencies result in failing the network communications. 

Path diversity metrics and enhanced analytical resilience network describe in [34] to measure 

network resilience with unpredictable environment. The authors explained a path diversity features to assess 

vulnerability by measuring similarities for links and nodes using graph. The path diversity features aim to 

determine the aggregation of path diversities from a selected set of paths with a given node pair. Lastly,  

the authors geographical diversity through predicted distances between node pairs is crucial to measure the 

parameter to model area-based challenges. In [35] addressed the vulnerability level of geographical networks 
to natural disasters or human-made disasters. The authors proposed a Worse-Case Cut metric in bipartite 

graph by modelling the physical topology in which links and nodes are geographically located on a plane.  

The result of the disaster shown in a vertical line in a bipartite graph by discarding all the intersected links. 

Mixed Integer Linear Programming (MILP) model is created to determine the Worse-Case cut that 

intersected the links, and lower bound model is created to find the worst-case cut in a bipartite graph. 

Physical topology design of optical networks is said to be NP-hard problem and normally solved by 

using heuristics or metaheuristics method. In order to improve network performance [36] and cost,  

the authors [37] presented p-Gabriel graphs heuristics-based with three different physical topologies of 

backbone networks. The authors chose to use Barabási-Albert (BA) method to create the networks since BA 

is weak against attacks in node but robust in random node failures. The proposed methods with the scenarios 

are correspond with the defined failure strategies which are Random removal and Degree-based removal. 

After a node is removed, the size of the largest connected component of the remaining network is calculated. 
The results explained that p-Gabriel produced robust networks in BA method. Symmetry ratio metric as 

discussed in [38] is to identify the robustness of network against targeted attack on nodes. The metric 

introduced is to define that the normal and abnormal circumstances are treated as less or more to the attacker.  
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3.2.  Centrality metrics 

Centrality Metrics are defined to classify which properties in the network can be central or 

important. Furthermore, centrality metrics assist in differentiate information very quick, prevent failures and 

defending any breakdown in the network [1, 22]. These metrics are also explained that the centralization of 

network as a measure of how much central node is in relation among other nodes. The main element of a 

network is centralization. The centralization is to identify differences between the centrality of the most 

central node and other nodes. In general, if the network has more nodes with similar centrality values,  

the network is more vulnerable when the centrality metrics are used in order to select the best centrality [22].  
Betweenness centrality is a measure that is linked to the number of paths and flow in the network 

[39]. A specified node will get the shortest paths after they are counted while travelling. A connected node 

with small number of other nodes is then said to be has a high betweenness centrality. Previous research 

believed that the nodes are act as bridges between groups of other nodes has high betweenness centrality [1]. 

When a link that connected to a node with the highest betweenness centrality is removed, it will interrupt  

the flow of the topologies or graph or reroute it through a longer direction. This is where the betweenness 

centrality metrics are addressed to evaluate the changes in and therefore be used to identify the critical 

locations that may directly, or indirectly connected to the high betweenness values. The neighbourhood of the 

bridges between the nodes that have high betweenness values may also disrupted if any link is removed or 

break [28, 39]. [23] studied the Chilean Internet Backbone after the disaster hits the Chile. The authors 

proposed an efficient in determining the right place to add links in the network to prevent any single node or 

link failure, which is indirectly enhance the network robustness. The metrics used are edge betweenness 
centrality, the number of links cut sets and node Wiener impact (NWI) which applied in biconnected 

backbone networks. Therefore, the authors have proposed Variable Neighborhood Search Meta-Heuristic to 

add extra links until it reaches network robustness. 

In [33] proposed random-walk betweenness centrality. In general, the random-walk betweenness of 

a vertex i is equal to the number of times that a random walk starting at s and ending at t passes through i 

along the way, averaged over all s and t. This is suitable for a network because until it finds its target, the 

information will move about randomly. However, it also includes many paths that are not optimal. Therefore, 

we can consider the random-walk betweenness and the shortest-path betweenness are two different methods 

that have their own advantages. One with the idea of not knowing where it is going while the other have  

the capabilities of knowing precisely its target. They can be useful in some real-world situations while others, 

can still be utilized but not significantly. Moreover, it may be beneficial to compare the prediction of  
the measures to differentiate them better in the recent cases as we need to explore more about the mode of 

information propagation in the network to produce a substantial assessment about them both. 

Closeness centrality is also having the same criteria as betweenness centrality, which is linked with 

the number of paths. The centrality of the node is determined by how near a node is to the other nodes.  

Some previous research defined closeness centrality is to measure the mean distance from the node to all 

other nodes [6]. To be exact, it is based on the closest distance or path between a specified node and all other 

nodes [1]. The most important in closeness centrality is which node is close to all the other nodes when 

certain conditions are required in the network which is much faster than other non-close nodes [1, 39]. 

Discriminative Closeness centrality [35] as addressed by the authors explained the shortest paths 

length in the graph between different vertices. The paper discussed not only on a general term of addressing 

the discriminative closeness centrality, but the paper explained distance-based network indices which include 
discriminative closeness, discriminative path length, average discriminative eccentricity and discriminative 

vertex connectivity. The authors used random and exact algorithms to proposed and analyse the metric’s 

indices. Moreover, the authors measure the proposed metrics with real-world applications by link prediction 

to indicate the likelihood of the vertices. The results using random algorithm produced a very precise 

estimation value of average discriminative path length and average discriminative eccentricity.  

In Degree centrality, a node may be alone, but mostly a node has neighbours surrounding it which is 

vital for measurement of its centrality. It is the simplest measure for centrality of the node and identified by 

the number of neighbours connected to a node. Previous research believed that the node is to become  

the most significant if the degree is very high. However, if a node with high nodal degree is failed, 

consequently it might affect the overall network connections [1]. A redundancy network is presented in [37] 

to maintain the survivability of the networks against the large-scale failures which may result in connectivity 

issues of any nodes of the networks. The redundancy is use for backup resources which by mean to improve 
fault tolerance whenever the primary resources is unavailable due to the disaster. Another similar approach 

but with new method is presented in [40] to identify ways in reducing the network failures. The method 

applied immunization strategies to determine the total number of affected connections. Two methods are 

presented by using heuristic-based link prioritization; one is built in betweenness centrality concept and 

another is link criticality to improve the network resilience. 
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3.3.  Functionality metrics 

Availability is associated with reliable network that the probability of network operations or 

network services will be ready at any time [25] since network traffic and communication in optical networks 

deal with high data transfer rate have complex network infrastructure [30]. Path Geodiversity considered in 

[41] is to enhance the Availability in the network services and believed to be disaster resilient. The authors 

discussed the value of Distance (D) has related to geodiversity, which assumes that a disjoint pair or routing 

paths is defined for each source-destination pair of nodes, and must be separated by a minimum distance, D. 

The authors addressed the problem using arc-based formulation in non-linear programming model and 

proposed Integer Liner Programming (ILP) model heuristic-based with the replacement of non-linear 

limitations. Two networks are used to evaluate the results. The first network is set to a realistic network 
design test and second network is used in large-scale DWDM networks. Therefore, the solutions to improve 

the performance are defined between the non-ILP based heuristic and ILP based heuristic. Next, [42] studied 

the relationship between fragility of existing Internet and the notion of maximum flow reliability. The study 

focused on availability of connections with the existing simultaneous nodes and link failures and proposed 

path diversification metrics to instantly apply on the both node pairs in improving network resilience.  

The proposed algorithm is choosing the best subset of available paths to reduce failures and maximally 

diverse the connection. The authors concluded the proposed metrics are correlated to both graph theories and 

survivability of networks. 

The average two-terminal reliability (ATTR) [43, 44] is defined as the probability on connectivity 

that focuses on a node pair which are randomly selected. ATTR is the number of node pairs in every 

connected component divided by the total number of node pairs in the network. ATTR also gives the fraction 
of node pairs that are connected to each other. At failure scenarios, the higher the average two-terminal 

reliability is, the higher the robustness is [1]. Failure Rate (FR) is vary over time as it is defined as  

the number of failures encountered and predicted for a network component by a total number of components’ 

operating time [14]. Mean Time To Repair (MTTR) is described as the time required to recover and 

maintenance repair for the failures. It mainly involves repairing hardware devices [45]. Mean Time Between 

Failures (MTBF) is the mean time expected between failures, measured in hours. For constant failure rate 

systems, MTBF is the inverse of the Failure Rate. The failure rate of MTBF should be as low as possible, 

especially for mission critical systems [14, 45]. Mean Time to Failure (MTTF) is the mean time expected 

before the first failure of a network component. It is meant to be the mean over a long period of time and 

many units. MTTF is non-repairable system in measuring reliability [14, 45]. Failure in Time (FIT) is another 

way of reporting MTBF. It produces a report that show a total number of expected failures per billion hours 

of operation for a network component. 
Functional metrics which are also known as Dynamic Metrics [1] are used to measure the network 

performance which produce varies response to failure during the simulation or real-time network events. 

Moreover, functional metrics are more focus on the Quality of Service (QoS) parameters (e.g., packet loss, 

throughput, jitter, delay) of the successful connections. Quantitative robustness metrics are defined  

that determined the number of blocked connections [19, 29]. It is analysed how an impairment of any 

possible situations such as in static random, static target, dynamic epidemical, or dynamic periodical can 

affect the established connections. This metric helps to determine the number of blocked connections in 

every time step they are analysed [29]. To differentiate the topologies that may not have the same number of 

connections that should have been established in the same time step, this metrics will play its role in each 

time step to identify the blocked connections. In [29] the metrics analysed on how an impairment of any 

possible situations such as in static random, static target, dynamic epidemical, or dynamic periodical can 
affect the established connections. To differentiate the topologies, this metric will play its role in obtaining 

the normalized values of average shortest path length, where normalizing the values will correspond  

the magnitude of increase or decrease of the average shortest path length. 

In [27] reviewed problems on large-scale failures in backbone networks with a time varying 

probabilistic model. The probabilistic model is to determine the survivability of the network and prevent 

disruption effect. In [42] proposed a scheme to provide protection method from any impact of disaster, 

estimates the probability of failure, and reroute the traffic if the traffic has potential to fail. In [46] has 

proposed polynomial-time algorithms in order to detect all the spatially-close segments [47] or different 

fibers due to high risk in simultaneously failing of network connections. The research mainly focuses on  

the closeness of each node and link. The authors have also proposed exact algorithm also can be used to 

identify small number spatially-close fibers groups and measure network robustness. Additionally,  

the authors [3] taking the importance of geographical information of nodes and links which also consists of 
the notion of time and a risk profile of the area in embedded network. In [24] proposed reliability-sustainable 

survivability (RSS) scheme to recover any disrupted services or even no failure in post-disasters event but 

 the reliability decreases beyond expected threshold. The scheme uses a heuristic algorithm and mixed integer 
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linear programming (MILP) model to conduct routing and distribution of resources respectively. Each link  

is organized in bidirectional with allocated with bandwidth capacity on every direction. Meanwhile node  

is given full wavelength conversion capability. A connection for a node pair is organized with a single path 

with different scenarios, some will experience wavelengths before a disaster and disrupt the communication 

between the node pair. RSS is believed to achieve performance satisfaction in providing reliable connection 

and recover any required traffic flow and prevent connection loss. 

Preventive Rerouting Threshold [7] is to enhance the protection models and promote adaptability in 

providing efficiency of the network communications. The authors addressed that any path has a high failure 
probability than the value of PRT will cause a problem to any other path that has lower PRT value. 

Therefore, the authors suggested the PRT to provide rerouting of the available path that has the least 

probability value in failure. The proposed metric helps to reduce huge potential damage on the path since  

the rerouting helps to indicate the impacted area that will cause failure. In [39] has further discussed on the 

PRT and provide self-adapting rerouting parameters by deploying average failure probability from lowest to 

highest failure rate in various scenarios. The network topologies are studied under the Multiprotocol  

Label Switching (MPLS) [48] networks and with four different locations. The adaptabilities in using PRT 

increase the efficiency of network and reduced the number of failure connections compared without using 

PRT. The PRT has provide the self-adaptive protection in selecting the best path by rerouting against  

the failure areas. 

Preprovisioning reserves dedicated-link-protected wavelengths on each of the link for future 

connection. [23] proposed preprovisioning algorithm to define complexity when the traffic increases and 
more connections soon to arrive. The algorithm exploited the use of three metrics in order to provide 

protection and backup reprovisioning. The metrics used in this paper are Connection Setup Time (ST), 

Protection Switching Time (PST) and lastly Availability. The use of ST in this paper was to segregate  

the primary path and one or more paths that are assigned to be the backup paths should receive a request to 

initiate connection. PST is used to switch from primary path to any backup path if any node or link from  

the primary path is failed. The authors proposed Excess Capacity (EC) method to improve the PST and 

availability to reserve capacity and reduce the connection ST with mixed-protection schemes and the results 

show availability performance is better than PST and ST from preprovisioning for any network capacity.  

Re-provisioning provide recovery method for post-disaster event since the optical networks are exposed with 

multiple failures and large-scale threats. In [47] discussed that there are two important elements need to be 

considered in guarantee the network connectivity and maximizing traffic flow. [49] uses three disaster  
re-provisioning schemes that focus on connection rerouting and block degradation of bandwidth. The three 

re-provisioning schemes are no-degradation provisioning (NDR), degradation-as-needed re-provisioning 

(DAN) and fairness-aware degradation re-provisioning (FAD). The mixed integer linear program (MILP) is 

used for these three-disaster scheme applied on two mesh topologies. The authors considered three 

performance measures to investigate the network survivability, i.e.; the connection loss ratio (CLR), traffic 

loss ratio (TLR) and fairness factor (FF). Results show that DAN and FAD achieved optimal CLR 

performance without rerouting but CLR improved with the use of NDR scheme and rerouting method.  

The three re-provision schemes can increase the TLR performance on FF with rerouting method on  

the available connections. 

In [36] explained risk is the expected value of undesirable result from any event. The author proposed 

Disaster Risk-Aware Provisioning (D-RAP) to improve the Service Level Agreement (SLA) in minimizing penalty 
paid made by the network operator to the customers in case of disaster. The Risk defined as R to identify the 

elements that contributes the risk analysis and state the Disaster Risk-Aware Provisioning with Integer Linear 

Programming approach for 1+1 dedicated protection. The paper has also discussed the probability of a disaster that 

are disaster-dependent in order to measure the probability level of the damage. The authors used NSFNet topology 

and assumed fiber links are close to highways with the US seismic hazard map. The connections are provisioned 

over link-disjoint primary and backup path with 1+1 protection. In [30] studied the network survivability in static 

network planning. The authors used Disaster Risk-Aware Provisioning to reduce from the state has existing 

failures into the state of no failure case. The probabilistic risk model is introduced to define loss or penalty based 

on given set of possible disasters, in which focus only the physical locations of the network devices and the 

distances of defined disaster. Number of protection path can also be extended to more than two [50]. 

 

 

4. CONCLUSION 

In this paper had discussed the importance of robustness in optical networks, especially in 

improving reliability and survivability of the network. This paper has discussed the overview of  

the robustness metrics in optical networks which mainly focus on structural, centrality and functional metrics. 

Various robustness metrics can be developed in the future in the context of optical networks. 
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