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ABSTRACT 

In nature, Bacillus lehensis G1 utilizes extracellular cyclodextrin 

glucanotransferase (CGTase) to degrade starch into cyclodextrins (CDs).  This is 

followed by hydrolysis of CDs by intracellular maltogenic amylase (MAG1) into 

glucose, maltose and maltooligosaccharides (MOS).  The MOS are potential prebiotic 

for human consumption.  In industries, amylases are used to produce MOS from starch.  

However, the conversion of starch directly to MOS using MAG1 has several 

limitations such as low specificity towards starch compared to β-cyclodextrin (β-CD) 

and low productivity of MOS.  In order to overcome these drawbacks, two strategies 

involving optimization of reaction parameters using statistical method and synergism 

of enzyme mixture approach, were applied.  In this study, the optimization of 

enzymatic reaction parameters for enhanced MOS production by MAG1 using soluble 

starch as a substrate was performed.  In the first strategy, the effects of reaction 

parameters (enzyme loading, substrate loading, temperature, reaction time and pH) on 

MOS yield was investigated using one-factor-at-a-time (OFAT) method and 25-1 

fractional factorial design.  Based on the 25-1 fractional factorial design results, three 

parameters namely substrate loading, reaction time and pH were found to have a 

significant effect and was used in central composite design under response surface 

methodology (RSM).  The MOS production was successfully optimized by the RSM.  

Under the optimized conditions (0.25 % (w / v) of substrate loading, 0.5 h of reaction 

time and pH 7.45) by RSM, the MOS yield was 107.29 mg / g of substrate which was 

1.3-fold higher compared to the value after OFAT analysis which was only 84.87 mg 

/ g of substrate.  In the second strategy, the synergistic effect of MAG1 and CGTase 

for improving the MOS production process had also been studied using two different 

approaches which were asynchronous and synchronous methods.  For the 

asynchronous method, the cyclization and hydrolysis reaction of CGTase and MAG1, 

were carried out in two separated steps respectively.  Whereas, for the synchronous 

method, the two enzymes were added simultaneously and became a one-pot enzymatic 

reaction.  The results from the studies conducted show the capability of the 

synchronous method was capable to convert the soluble starch (1.5 % (w / v)) into 

MOS with higher yield than the asynchronous method.  The optimum conditions were 

obtained when MAG1 loading to CGTase loading in 3 U: 7 U ratio, with the reaction 

temperature of 40 ºC and pH 7.0.  Based on these optimum conditions, the total yield 

of MOS attained was 307.86 mg / g of substrate after 2 h, which was 2.1-fold higher 

than the asynchronous method (146.78 mg / g) and 2.9-fold higher compared to the 

reaction of MAG1 alone.  The used of CGTase and MAG1 synchronously enable the 

direct conversion of soluble starch to higher yield of MOS. 
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ABSTRAK 

Secara semulajadi, Bacillus lehensis G1 menggunakan enzim siklodekstrin 

glukanotransferase (CGTase) di luar sel untuk menukarkan kanji kepada siklodekstrin 

(CD).  Diikuti dengan hidrolisis CD oleh amilase maltogenik (MAG1) di dalam sel 

menjadi glukosa, maltosa dan maltooligosakarida (MOS).  MOS adalah prebiotik yang 

berpotensi untuk kegunaan manusia.  Didalam industri, amilase digunakan untuk 

menghasilkan MOS daripada kanji.  Walau bagaimanapun, penukaran kanji secara 

langsung kepada MOS menggunakan MAG1 mempunyai beberapa kekangan seperti 

pengkhususan yang rendah terhadap kanji berbanding β-siklodekstrin (β-CD) dan 

produktiviti MOS yang rendah.  Untuk mengatasi kelemahan ini, dua strategi yang 

melibatkan pengoptimuman pembolehubah tindakbalas dengan menggunakan kaedah 

statistik dan pendekatan sinergi campuran enzim, telah digunakan.  Dalam kajian ini, 

pengoptimuman terhadap pembolehubah tindakbalas enzimatik bagi meningkatkan 

penghasilan MOS oleh MAG1 dengan menggunakan kanji boleh larut sebagai substrat 

telah dilakukan.  Dalam strategi yang pertama, kesan pembolehubah tindakbalas 

(muatan enzim, muatan substrat, suhu, masa tindakbalas dan pH) terhadap penghasilan 

MOS telah dikaji menggunakan kaedah satu-faktor-pada-satu-masa (OFAT) dan reka 

bentuk pemfaktoran pecahan 25-1.  Berdasarkan kepada keputusan reka bentuk 

pemfaktoran pecahan 25-1, tiga pembolehubah iaitu muatan substrat, masa tindakbalas 

dan pH didapati mempunyai kesan yang ketara dan digunakan dalam reka bentuk 

komposit berpusat di bawah kaedah sambutan permukaan (RSM).  Penghasilan MOS 

berjaya dioptimumkan dengan RSM.  Di bawah keadaan yang dioptimakan (0.25 % 

(w / v) muatan substrat, 0.5 jam masa tindakbalas dan pH 7.45) oleh RSM, hasil MOS 

adalah 107.29 mg / g substrat yang mana 1.3 kali lebih tinggi berbanding dengan nilai 

selepas analisis OFAT iaitu hanya 84.87 mg / g substrat.  Dalam strategi yang kedua, 

kesan sinergistik MAG1 dan CGTase dalam memperbaiki proses penghasilan MOS 

juga telah dikaji dengan menggunakan dua pendekatan yang berbeza iaitu kaedah tidak 

serentak dan serentak.  Bagi kaedah tidak serentak, tindakbalas pensiklikan dan 

hidrolisis CGTase dan MAG1, masing-masing telah dijalankan dalam dua langkah 

berasingan.  Manakala, untuk kaedah serentak, kedua-dua enzim telah ditambah secara 

serentak dan menjadi tindakbalas enzimatik satu bekas.  Hasil daripada kajian yang 

telah dijalankan menunjukkan kemampuan kaedah serentak mampu menukarkan kanji 

boleh larut (1.5 % (w / v)) kepada MOS dengan hasil yang lebih tinggi daripada kaedah 

tidak serentak.  Keadaan optima diperolehi apabila muatan MAG1 kepada muatan 

CGTase dalam nisbah 3 U: 7 U, dengan suhu tindakbalas 40 ºC dan pH 7.0.  

Berdasarkan keadaan optima ini, hasil keseluruhan MOS yang dicapai adalah 307.86 

mg / g substrat selepas 2 jam, iaitu 2.1 kali ganda lebih tinggi daripada kaedah tidak 

serentak (146.78 mg / g) dan 2.9 kali ganda lebih tinggi berbanding tindakbalas oleh 

MAG1 sahaja.  Penggunaan CGTase dan MAG1 secara serentak membolehkan 

penukaran kanji boleh larut terus kepada hasil MOS yang lebih tinggi. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Background 

Starch is a polysaccharide that resulted from the photosynthesis process of 

green plants.  Starch is the most abundant form of storage in cereals, legumes and 

mainly tubers.  In the plant, the starch is stored within the cells as partially crystalline 

granules (Englyst et al., 2006).  According to Van Der Maarel et al. (2002), starch also 

can be used to produce glucose, maltose, dextrin, maltooligomer mixture and 

oligosaccharides, by chemically or enzymatically.  Nowadays, the use of enzymes for 

catalyzing various biochemical reactions is more preferable than chemical such as acid 

because it is safer and environmental-friendly.  Since the starch is naturally existed in 

a form of an insoluble starch granules, therefore, most of the research on starch 

degrading enzyme, has been conducted on gelatinized starch, which is starch granules 

was heating in water to produce starch solution (Taniguchi and Honnda, 2009). 

Glucan-1,4-α-maltohydrolase (EC 3.2.1.133) is usually known as maltogenic 

amylase.  It is an amylolytic enzyme from glycosyl hydrolase family 13 (GH 13).  It 

is one of the maltooligosaccharide- forming amylase (MFAse) enzyme used in the 

commercial production of maltose and novel oligosaccharides for food and 

pharmaceutical applications.  In addition to hydrolysis, maltogenic amylase also 

known to have transglycosylation ativity to produce sugar molecules with various 

lengths.  Maltogenic amylase exhibits broad substrates specificity toward 

cyclodextrins (CDs), starch and pullulan and favours CDs as a substrate (Kim et al., 

1999). 

 



 

2 

Oligosaccharides have potential benefits for human health and diverse 

applications in improving physicochemical properties of foods.  Conventionally, the 

oligosaccharides were synthesized using chemical such as acid.  However, later the 

use of enzymes for oligosaccharides production is more preferable than chemical 

because it is safer, environmental-friendly, low cost and give high yield.  Glycoside 

hydrolases and glycosyltransferases have been used, but glycoside hydrolase enzymes 

are favoured due to cheap and easy-to-get saccharides, such as starch as their 

substrates.  

However, excessive hydrolysis could be one of the drawback resulting in low 

yield of oligosaccharides.  The control of the reaction condition will affect the reaction 

and product yield.  Furthermore, less substrate specificity of starch would also results 

in the low yield of oligosaccharides.  Over a decade, interest in oligosaccharides is 

growing and research are being carried out to improve the production of 

oligosaccharides.  The development for synergism of enzyme mixture is an alternative 

for enhancing the production of oligosaccharides.  Previous findings such as Kuriki et 

al. (1993) and Lee et al. (2002a) have provided a guidance for improving the direct 

conversion of starch to achieve the objective of the current study.   

1.2 Problem Statement 

To date, numerous enzymes are being discovered and some are available 

commercially to degrade starch for producing oligosaccharides.  Thus, the use of 

enzymes is almost completely replace chemical techniques for synthesizing 

oligosaccharides in the industry.  Glycoside hydrolase enzyme is preferred to be 

employed over the glycosyltransferase enzyme.  However, the low production of 

maltooligosaccharides (MOS) by maltogenic amylase (MAG1) from starch is the 

major obstacle.  Various strategies have been employed to overcome the problem, 

including the control of thermodynamic equilibrium of the enzyme reaction by 

manipulating the range of parameters used in reaction mixture (Abdul Manas et al., 

2014).  However, no statistical study on the influence of reaction conditions for 

improving MOS production by maltogenic amylase has been reported to date.  Enzyme 
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mixture approach has also become a recently practice to improve the production of 

oligosaccharides (Li et al., 2017).  The substrate specificity of MAG1 towards CD 

compared to starch also can be a significant drawback for direct conversion of starch 

into MOS.  Therefore, the synergistic enzyme of MAG1 and cyclodextrin 

glucanotransferase (CGTase) is expected to enhanced the direct conversion or used of 

starch for MOS production.  

1.3 Research Objectives 

The objective of this research is to improve the production of MOS by MAG1 

from soluble starch via optimization of reaction parameters using statistical method 

and synergism of enzyme mixture approach. 

1.4 Scopes of the Study 

This study focusses on the improvement of the production of MOS by 

appropriate strategies.  Therefore, the following scopes were outlined to achieve the 

objective: 

(a) Expression of MAG1 and CGTase in Escherichia coli expression system and 

purification using AKTAprime plus purification system. 

(b) Determination of the significant ranges of reaction parameters (enzyme 

loading, substrate loading, reaction time, temperature and pH) on MOS 

production using a one-factor-at-a-time (OFAT) method and screening of the 

reaction conditions (enzyme loading, substrate loading, reaction time, 

temperature and pH) affecting MOS production by Fractional Factorial Design 

(FFD).  Optimization of the reaction conditions (substrate loading, reaction 

time and pH) by central composite design (CCD) towards the achievement of 

highest MOS yield. 



 

4 

(c) Screening of the reaction parameters (pH, substrate loading, CGTase loading 

and reaction time) on β-CD production through OFAT in the first step of the 

asynchronous method.  Screening of the reaction parameters (MAG1 loading 

and reaction time) on MOS production via OFAT in the second step of the 

asynchronous method.  Screening of the reaction parameters (temperature, 

MAG1: CGTase ratio, substrate loading and reaction time) on MOS production 

by OFAT in the synchronous method.   

 

1.5 Novelties of the Study 

The novelties of the study are as follows: 

1. The optimization of reaction conditions for the enhanced MOS yield by 

maltogenic amylase from Bacillus lehensis G1 using statistical tool has not 

been reported. 

2. To the best of our knowledge, this is the first report on direct conversion of 

starch using the synergistic action of maltogenic amylase and CGTase from B. 

lehensis G1 to improve the production of MOS.  
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APPENDIX A 

 

 

Medium and Buffers Preparation 

 

 

Medium Preparation for E. coli Culturing 

 

 

Luria-Bertani (LB) Medium/Agar 

Composition: 1 % (w/v) tryptone, 0.5 % yeast extract, 0.5 % NaCl and 1.5 % agar. 

 

For 1 liter LB medium/agar: 

1) The following ingredients were dissolved in 950 ml distilled water: 10 g 

tryptone, 5 g yeast extract, 5 g NaCl and 15 g agar.  For LB medium, agar 

was excluded. 

2) The pH of the solution was adjusted to 7.5 using 5 M NaOH solution.  

Distilled water was added to bring the volume to 1 liter. 

3) The solution was autoclaved for 15 min at 121 °C. 

4) When the solution has cooled to ~ 55 °C, antibiotic was added appropriately.  

For LB agar, the solution was poured into the petri dish and left to solidify.  

Plates were stored at 4 °C. 

 

 

Ampicillin Stock Solution 

Composition: 100 mg/ml ampicillin. 

 

For 10 ml ampicillin stock solution: 

1) The ampicillin powder was weighed to 1 g and dissolved in 10 ml distilled 

water. 

2) The solution was filtered using a sterile 0.2 μm nylon syringe filter and keep 

in a sterile vial. 

3) The solution was stored in – 20 °C and thawed prior to use. 
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IPTG Stock Solution 

Composition: 0.1 M IPTG. 

 

For 10 ml IPTG stock solution: 

1) The IPTG powder was weighed to 0.24 g and dissolved in 10 ml distilled 

water. 

2) The solution was filtered using a sterile 0.2 μm nylon syringe filter and keep 

in a sterile vial. 

3) The solution was stored in – 20 °C and thawed prior to use 
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Buffers for Molecular Works 

 

 

50X TAE Electrophoresis Buffer 

Composition: 2M Tris base, 50 mM EDTA 

 

For 1 liter 50X TAE electrophoresis buffer: 

1) The following ingredients were dissolved in distilled water: 242 g Tris base, 

57.1 ml glacial acetic acid and 100 ml 0.5 M EDTA (pH 8.0). 

2) Distilled water was added to bring the volume to 1 liter. 

3) The solution was diluted to 1X prior to use by mixing 20 ml of 50X TAE 

buffer with 980 ml distilled water. 

 

 

EDTA Solution 

Composition: 0.5 M EDTA (pH 8.0). 

 

For 500 ml EDTA solution: 

1) EDTA was weighed to 93.05 g and put into 350 ml distilled water. 

2) The solution was mixed vigorously using a magnetic stirrer and the pH was 

adjusted to 8.0 by titrating 5 M NaOH solution.   The EDTA powder will 

only soluble in solution when the pH reaches 8.0. 

3) Distilled water was added to bring the volume to 500 ml. 

 

 

RNAase A Stock Solution 

Composition: 10 mg/ml RNAase A. 

 

For 10 ml RNAase A stock solution: 

1) The RNAase A powder was weighed to 0.1 g and dissolved in 10 ml distilled 

water. 

2) The solution was filtered using a sterile 0.2 μm nylon syringe filter and keep 

in a sterile vial. 

3) The solution was stored in – 20 °C and thawed prior to use.  
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TE Buffer  

Composition: 10 mM Tris-HCl pH 8.0, 0.1 mM EDTA pH 8.0. 

The solution was autoclaved and stored at room temperature 

 

 

Lysozyme Stock Solution 

Composition: 50 mg/ml lysozyme. 

 

For 10 ml 50 mg/ml lysozyme: 

1) The lysozyme powder was weighed to 0.5 g and dissolved in 10 ml distilled 

water. 

2) The solution was filtered using a sterile 0.2 μm nylon syringe filter and keep 

in a sterile vial. 

3) The solution was stored in – 20 °C and thawed prior to use. 

 

 

Transformation and Storage Solution (TSS) 

Composition: 10% (w/v) polyethyleneglycol (PEG), 5% (v/v) dimethyl sulfoxide 

(DMSO), 50 mM MgCl2 

 

Preparation: 

1) The components were weighed and pipetted accordingly and dissolved in LB 

medium at final pH of 6.5. 

2) The solution was autoclaved and stored at 4 °C 
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Buffers for Protein Analysis 

 

 

50 mM Potassium Phosphate Buffer 

 

Table A1 Preparation of 100 ml of 50 mM potassium phosphate buffer at 25 °C 

pH Volume of 1 M 

K2HPO4 (ml) 

Volume of 1 M 

KH2PO4 (ml) 

Volume of distilled 

water (ml) 

6.0 8.5 91.5 100.0 

7.0 61.5 38.5 100.0 

8.0 94.0 6.0 100.0 

 

 

50 mM Glycine - NaOH Buffer  

 

For 100 ml preparation of 50 mM glycine-NaOH buffer. 

1) 0.38 g of glycine was weighed and dissolved in distilled water. 

2) The pH was titrated to desired pH (9.0 and 10.0) using 5 M NaOH. 

3) Distilled water was added to 100 ml. 

 

 

Binding Buffer/ Buffer A (Ni2+ Affinity Chromatography) 

Composition: 20 mM phosphate, 0.5 M NaCl, pH 7.4 

 

For 1 liter preparation of binding buffer: 

1) 3.12 g of NaH2PO4.2H2O and 29.22 g of NaCl was weighed. 

2) The powder was dissolved in distilled water by stirring. 

3) After the powder was completely dissolved, the pH was adjusted to 7.5 using 

5 M NaOH or 5 M HCl. 

4) Distilled water was added to 1 liter. 

5) The solution was degassed using vacuum filter prior to use for the protein 

purification. 
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Elution Buffer/ Buffer B (Ni2+ Affinity Chromatography) 

Composition: 20 mM phosphate, 0.5 M NaCl, 0.5 M imidazole, pH 7.4 

 

For 500 ml preparation of elution buffer: 

1) 1.56 g of NaH2PO4.2H2O, 14.62 g of NaCl and 17.02 g of imidazole was 

weighed. 

2) The powder was dissolved in distilled water by stirring. 

3) After the powder was completely dissolved, the pH was adjusted to 7.5 using 

5 M NaOH or 5 M HCl. 

4) Distilled water was added to 500 ml. 

5) The solution was degassed using vacuum filter prior to use for the protein 

purification. 

 

 

Polyacrylamide Stacking Gel (SDS-PAGE) 

Composition: 5% polyacrylamide in Tris-HCl pH 6.8. 

 

For 5 ml preparation of stacking gel: 

1) 0.83 ml of 30% acrylamide mix solution, 0.63 ml of 1.0 M Tris-HCl (pH 6.8) 

stock solution and 0.05 ml of 10% SDS stock solution was dissolved in 3.4 

ml distilled water. 

2) 0.05 ml of 10% ammonium persulfate and 0.005 ml TEMED were added 

prior to polymerization.   

 

 

Polyacrylamide Resolving Gel (SDS-PAGE) 

Composition: 12% polyacrylamide in Tris-HCl pH 8.8. 

 

For 15 ml preparation of resolving gel: 

1) 6.0 ml of 30% acrylamide mix solution, 3.8 ml of 1.5 M Tris-HCl (pH 8.8) 

stock solution and 0.15 ml of 10% SDS stock solution was dissolved in 4.9 

ml distilled water. 

2) 0.15 ml of 10% ammonium persulfate and 0.006 ml TEMED were added 

prior to polymerization. 
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Polycrylamide Mix Stock Solution  

Composition: 30% (w/v) Acrylamide, 0.8 (w/v) Bis-acrylamide 

 

 

Ammonium Persulfate Stock Solution  

Composition: 10% ammonium persulfate.   

 

For 2 ml preparation of ammonium persulfate stock solution:   

1) 0.2 g ammonium persulfate was weighed and dissolved in 2 ml distilled 

water. 

2) The solution was kept in 4 °C.   

Note: Stable for months in a capped tube in refrigerator. 

 

 

5X Tris-glycine Electrophoresis Buffer (SDS-PAGE) 

 

For 1 liter preparation of 5X Tris-glycine electrophoresis buffer: 

1) 15.1 g of Tris-base, 72.0 g of glycine and 5.0 g of SDS were weighed. 

2) The powder mixture was dissolved in 1 liter distilled water. 

3) The solution was diluted to 1X before use. 

 

 

2X SDS – Gel Loading Buffer (SDS-PAGE) 

Composition: 100 mM Tris-HCl (pH 6.8), 4% SDS, 0.2% bromophenol blue, 20% 

glycerol, 200 mM DTT 

 

For 50 ml preparation of 2X SDS – gel loading buffer: 

1) 0.6055 g of tris base, 2 g of SDS and 0.1 g bromophenol blue were weighed. 

2) 10 ml glycerol was pipetted and all components were dissolved in distilled 

water. 

3) The pH was adjusted to 6.8 and distilled water was added to 50 ml. 

4) DTT was freshly added to final concentration prior to loading the protein 

sample. 
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Staining Solution A 

Composition: 50% ethanol, 10% acetic acid. 

 

For 500 ml preparation of staining solution A: 

1) 263 ml of 95% ethanol and 50 ml of acetic acid glacial were measured and 

dissolved in distilled water. 

2) Distilled water was added to 500 ml. 

 

 

Staining Solution B  

Composition: 5% ethanol, 7.5% acetic acid. 

 

For 500 ml preparation of staining solution B: 

1) 26.3 ml of 95% ethanol and 37.5 ml of acetic acid glacial were measured and 

dissolved in distilled water. 

2) Distilled water was added to 500 ml. 

 

 

Coomassie Blue Solution 

Composition: 0.25% coomassie blue 

 

For 50 ml preparation of coomassie blue solution: 

1) 0.125 g coomassie blue was weighed and dissolved in 50 ml ethanol. 

2) The solution was kept in a dark bottle at room temperature. 
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Gel Filtration Buffer 

Composition: 50mM NaH2PO4, 0.15 M NaCl, pH 7.4 

 

For 1 liter preparation of gel filtration buffer. 

1) 6.90 g of NaH2PO4.H2O and 8.77 g of NaCl were weighed and dissolved in 

distilled water. 

2) The pH was adjusted to 7.5 using 5 M NaOH or 5 M HCl. 

3) Distilled water was added to 1 liter. 

4) The solution was degassed using vacuum filter prior to use for the protein 

purification.   

 

 

DNS Reagent 

 

For 500 ml preparation of DNS reagent: 

1) 5 g dinitrosalicylic acid was weighed and dissolved in 300 ml distilled water 

in a tin foil-covered beaker. 

2) 8 g NaOH was weighed and gradually added into the DNS solution and 

stirred to dissolve.   

3) 150 g Rochelle salt (sodium potassium tartarate) was weighed and slowly 

added into the mixture solution and stirred until dissolved at temperature 

between 40-100 °C.   

4) Distilled water was added to 500 ml and the solution was kept in a dark bottle 

at room temperature. 
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APPENDIX B 

 

 

Example of Experimental Data Calculation 

 

 

Maltogenic Amylase Activity Calculation (DNS Assay) 

 

 

One unit (U) of enzyme activity is defined as the amount of enzyme required to 

produce 1 μmol maltose per min under the optimum conditions. 

 

Unit activity per volume enzyme (U/ml) was calculated using the equation below: 

 

 

assayenzyme

controlenzyme
DFDF

mlmaltosemolA

AA
mlU 






1.0min10/575
/,Activity

,575,575

  

 

 

 

Where,   

A575, enzyme : the absorbance of assay with the enzyme read at 575 nm 

A575, control : the absorbance of assay without the enzyme read at 575 nm 

A575/ µmol maltose : standard curve equation of maltose 

10 min  : incubation time 

0.1 ml  : volume of the enzyme used in the assay 

DFenzyme : dilution factor of the enzyme used for the assay 

DFassay  : dilution factor of the enzyme in the assay 
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Where,  x = sample 

  x = mean sample 

  n = number of sample  

 

An example of activity calculation is shown below: 

 

Given, 

A575, enzyme   = 0.136, 0.117, 0.115 (triplicate readings)   

A575, control   = 0.000, 0.000, 0.000 (triplicate readings) 

A575/µmol maltose = 0.6028 (from the standard curve) 

DFenzyme   = 100 

DFassay   = 5 (0.1 ml enzyme in 0.5 ml assay volume) 

 

 

Therefore, 

mlU
ml

/81.1125100
1.0min106028.0

000.0136.0
Activity 1 




   

 

mlU
ml

/05.975100
1.0min106028.0

000.0117.0
Activity 2 




  

 

mlU
ml

/39.955100
1.0min106028.0

000.0115.0
Activity 3 




  

 

mlU /75.101
3

39.9505.9781.112
Activity mean 


  

 

     
85.7

3

75.10139.95

3

75.10105.97

3

75.10181.112
deviationStandard

222










  

 

 

Enzyme activity = 101.75 ± 7.85 U/ml 
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Cyclodextrin Glucanotransferase Activity Calculation 

 

 

A= (%OD decrease × Yp× Df ×103) / (MW× ti) 

 

 

Where, 

A   = Enzyme activity (U/ml or μmol/ml) of protein sample 

%OD decrease = [(ODcontrol−ODsample)/ ODcontrol] × 100% 

Yp  = mg of β-CD equivalent to 100% OD decrease of the standard curve  

Df   = Dilution factor 

MW   = Molecular weight of β-CD, 1135 

ti  = Time of incubation 

 

 

Example of calculation: 

 

 

% OD decrease: 

OD550 for control (in triplicate) = (1.438+1.424+1.438)/3 = 1.433 

OD550 for sample (in triplicate) = (1.225+1.226+1.205)/3 = 1.219 

Hence, % OD decrease = [(1.433−1.219)/1.433] × 100% = 14.9% 

 

Yp: 

When y = 100, y = 66.712x + 6.8336 (refer Figure E1) 

100 = 66.712x + 6.8336 

x = 1.4 

Hence, Yp = 1.4 

 

Df: 

Sample taken for assay = 100 μl 

Hence, Df = 10 
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MW of β-CD = 1135 g/mol 

ti = 10 min 

 

 

Therefore, CGTase activity of the sample is: 

 

A = [(14.9)(1.4)(10)(103)]/[(1135)(10)] 

    = 18.4 U/ml 
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Protein Concentration Calculation (Bradford Assay) 

 

 

Protein concentration was calculated using the equation below: 

 

 

DF
BSAmlmgA

A
mlmg 

1

595

595

/
/,ionconcentratProtein

  

 

 

 

Where,  A595 = the absorbance of Bradford assay read at 575 nm 

A595/mg ml-1 BSA = standard curve equation of BSA 

DF = dilution factor of the protein 

 

 

An example of activity calculation is shown below: 

Given, 

A595   = 0.107, 0.132, 0.112 

A595/ mg ml-1 BSA = 0.2815 

DF   = 10 

 

Therefore, 

Protein concentration 1 mlmg /80.310
2815.0

107.0
ionconcentratProtein 1   

Protein concentration 2 mlmg /69.410
2815.0

132.0
ionconcentratProtein 2   

Protein concentration 3 mlmg /98.310
2815.0

112.0
ionconcentratProtein 3   

Protein concentration mean mlmg /16.4
3

98.369.480.3
ionconcentratProtein mean 


  

     
38.0

3

16.498.3

3

16.469.4

3

16.480.3
deviationStandard

222










  

 

Protein concentration = 4.16 ± 0.38 mg/ml 
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APPENDIX C 

 

 

Standard Curves 

 

 

DNS Assay 

 

 

Table C1 Absorbance at OD of 575 nm for maltose standards 

[Maltose], 

mM 

Maltose 

mass, µmol 

Absorbance, A575 

 

Average 

 

0 0 0 0 0 0 

1 0.5 0.228 0.223 0.227 0.226 

2 1.0 0.536 0.530 0.542 0.536 

3 1.5 0.849 0.868 0.884 0.867 

4 2.0 1.169 1.181 1.190 1.180 

5 2.5 1.538 1.496 1.539 1.524 

6 3.0 1.815 1.832 1.847 1.831 

7 3.5 2.109 2.117 2.137 2.121 

8 4.0 2.418 2.431 2.430 2.426 
 

 

 

 

Figure C1 The standard curve of absorbance, A575 versus maltose mass, 

µmol 
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CGTase Assay 

 

 

 

Figure C2 β-CD standard curve for the calculation of CGTase assay 
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Bradford Assay 

 

 

Table C3 Absorbance at OD of 595 nm for BSA standards 

[BSA], mg/ml Absorbance, A595 Average 

2.0 0.516 0.586 0.594 0.565 

1.4 0.403 0.407 0.426 0.412 

1.2 0.333 0.341 0.345 0.340 

1.0 0.171 0.283 0.294 0.249 

0.8 0.214 0.243 0.213 0.223 

0.6 0.172 0.168 0.183 0.174 

0.4 0.101 0.115 0.113 0.110 

0.2 0.057 0.057 0.051 0.055 
 

 

 

 

Figure C3 The standard curve of absorbance, A595 versus BSA 

concentration, mg/ml 
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APPENDIX D 

 

 

Example of Peaks from HPLC Analysis (Standard) 

 

 

 

Figure D1 Peaks from standard curve of glucose (M1), maltose (M2), 

maltotetraose (M4) and maltohexaose (M6) with concentration of 5 mg/ml 

 

 

 

Figure D2 Peaks from standard curve of maltotriose (M3), 

maltopentaose (M5) and maltoheptaose (M7) with concentration of 5 mg/ml 
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APPENDIX E 

 

 

Standard Operational Procedures for Instruments 

 

 

AKTA Prime 

 

 

1. Distilled water, binding buffer, elution buffer and 20% ethanol were prepared and 

degassed by vacuum filter using 0.2 μm nylon filter. 

2. The AKTAPrime and computer were switched on and the PrimeView program 

was opened. 

3. Both lines A and B were put in a bottle containing distilled water. 

4. The system was washed using distilled water by running the ‘System Wash’ 

program (Template >Application template>System wash method). 

5. After the system wash has finished, the flow rate was increased by using manual 

run (Manual run> Set flow rate 0.5 ml/min> Pressure limit 0.3 MPa> Start run). 

6. The column was connected to the system via wet connection (drop to drop).  

Connections were checked for any leakage. 

7. The flow rate was increased to 5 ml/min.  The column was washed by allowing 

five column volume of distilled water to flow.  The flow was end by pressing the 

‘End’ button. 

8. Line A was put into binding buffer and line B was put into elution buffer. 

9. The system was washed using buffer by running the ‘System Wash’ program. 

10. The column was equilibrated by allowing two column volume of binding buffer 

to flow using ‘Manual Run’.  The flow was end by pressing the ‘End’ button. 

11. The program for running the desired protein purification was selected and all 

parameters were set. 

12. The sample loop was connected to the system and the loop was washed using 

binding buffer. 
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13. The sample was filtered through a 0.2 μm nylon syringe filter and loaded into the 

sample loop.  Any bubbles in the syringe containing the samples were removed 

prior to sample loading. 

14. The fraction collectors were filled in with collection tubes.   

15. The appropriate method was run. 

16. After finish, both lines A and B were put in distilled water. 

17. The system was washed using distilled water by running the ‘System Wash’ 

method. 

18. The column was washed by allowing five column volume of distilled water to 

flow.  The flow was end by pressing the ‘End’ button. 

19. Steps 16 to 18 were repeated with 20% ethanol. 

20. The flow rate was set to 0.5 ml/min by ‘Manual Run’. 

21. The bottom part of the column was detached from the system followed by the 

top. 

22. The line was re-connected to the UV detector.  Hit End. 

23. The AKTAPrime and computer were switched off. 

 

Always set pressure limit to 0.3MPa to protect your column from damage. 
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High Performance Liquid Chromatography (Waters) 

 

 

1. Column and guard column were attached to the appropriate lines. 

2. Deionized water was degassed using vacuum filter and the probe was inserted 

 into the water. 

3. The degasser, pump and detector were switched on. 

4.   The computer was switched on and the Breeze software was opened. 

5.   The line for the flow of the mobile phase was set to 100%. 

6.   Pump prime was carried out using a syringe. 

7.   The pump valve was pushed to the right and pump purge was started. 

8.   Method was set by opening a new method in the Breeze software. 

9.   The system was equilibrated for a few seconds to recognize the new set  

 method. 

10. The flow rate was increased to 0.05 ml/min and pressure was observed.  After 

 the pressure was stable, the flow rate was increased gradually.  Connecting  

lines were checked for any leakage. 

11. When the flow rate reached half of the desired flow rate, the oven was 

 switched on. 

12. The flow rate was increased gradually until the desired flow rate was reached. 

13. After flow rate and temperature reached the set up conditions, detector was 

 purged until the reading was stable (until +0000 reading was shown on the  

detector’s screen). 

14. The detector was unpurged. 

15. The system was equilibrated until a stable baseline was achieved. 

16. After finished equilibration, standards and samples can be injected into the 

 column. 




