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ABSTRACT 

Time-series method has become of interest in damage detection, particularly 

for automated and continuous structural health monitoring. In comparison to the 

commonly used method based on modal data, time-series method offers a 

straightforward application due to having no requirement for modal analysis. Sensor 

clustering has been proven effective in improving the ability of time-series method to 

detect, locate and quantify damage. However, most of the applications rely on free 

vibration response that can be obtained directly by impact testing, which is difficult to 

practice for in-service structures, or indirectly by transforming the ambient vibration 

response. Therefore, a reliable method that allows direct utilisation of ambient 

vibration response for damage detection in structures without any data transformation 

is proposed in this study. The implementation of the proposed response-only method 

involves a three-stage procedure; (i) sensor clustering, (ii) time-series modelling and 

(iii) damage detection. Each sensor cluster is represented by a time-series model called 

nonlinear autoregressive with exogenous inputs (NARX) model, which is developed 

via artificial neural network (ANN) using undamaged acceleration data. The model is 

then utilised for predicting the damaged response and the difference between 

prediction errors is used to extract damage sensitive feature (DSF). The existence of 

uncertainties is addressed through setting up a damage threshold using several sets of 

undamaged data. The effectiveness of the method is demonstrated through a numerical 

slab model and experimental structures of reinforced concrete slabs and steel arches. 

It is found that the proposed structural damage detection approach based on NARX 

neural network is superior to linear ARX model as the approach is able to detect 

damage under ambient vibration. The results show that the highest predicted DSF 

corresponds to the location of damage and its value increases relatively with the 

severity of damage. Better damage detection is obtained when damage threshold is 

integrated into the proposed approach where the precision is increased by more than 

24%. Overall, the proposed method is proven applicable to identify the existence, 

location and relative severity of structural damage under ambient vibration. 
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ABSTRAK 

Pengesanan kerosakan pada struktur berasaskan kaedah siri masa telah menjadi 

tarikan terutamanya bagi pengawasan kesihatan struktur secara automatik dan 

berterusan. Berbanding kaedah yang biasa digunakan iaitu berdasarkan data modal, 

kaedah siri masa lebih mudah digunakan kerana tidak memerlukan analisis modal. 

Konsep penggugusan penderia telah terbukti berkesan dalam menambah baik 

kebolehan kaedah siri masa bagi mengesan kewujudan, lokasi dan tahap kerosakan 

struktur. Walau bagimanapun, penggunaannya bergantung kepada getaran bebas yang 

boleh diperolehi sama ada secara langsung melalui ujian hentaman yang sukar 

dilaksanakan pada struktur yang sedang beroperasi, atau secara tidak langsung melalui 

pengubahan data getaran ambien. Oleh itu, satu kaedah yang membolehkan 

penggunaan terus data getaran ambien untuk pengesanan kerosakan tanpa melibatkan 

pengubahan data telah dicadangkan dalam kajian ini. Perlaksanaan kaedah yang 

dicadangkan melibatkan tiga peringkat iaitu (i) penggugusan penderia, (ii) permodelan 

siri masa dan (iii) pengesanan kerosakan. Setiap gugusan penderia diwakili oleh satu 

model siri masa iaitu model tak lelurus auto mundur dengan input luar kawalan 

(NARX) yang dibina melalui rangkaian neural tiruan (ANN) menggunakan data 

pecutan struktur tidak rosak. Model ini kemudiannya digunakan untuk meramal data 

struktur yang telah rosak dan perbezaaan antara ralat ramalan digunakan untuk 

mengekstrak ciri sensitif kerosakan (DSF). Kewujudan ketidaktepatan diambil kira 

melalui penetapan satu ambang kerosakan menggunakan beberapa set data struktur 

tidak rosak. Keberkesanan kaedah pengesanan kerosakan ditunjukkan melalui satu 

model berangka bagi papak dan dua struktur ujikaji iaitu papak konkrit bertetulang dan 

gerbang keluli. Didapati bahawa kaedah pengesanan kerosakan yang dicadangkan 

iaitu berdasarkan rangkaian neural NARX adalah lebih baik berbanding model lelurus 

ARX kerana ia dapat mengesan kerosakan di bawah getaran ambien. Hasil kajian 

menunjukkan bahawa DSF yang paling tinggi sepadan dengan lokasi kerosakan dan 

nilainya bertambah secara relatif dengan tahap kerosakan struktur. Pengesanan 

kerosakan yang lebih baik diperolehi apabila ambang kerosakan digabung dengan 

kaedah yang dicadangkan dengan ketepatannya meningkat lebih daripada 24%. Secara 

keseluruhannya, kaedah yang dicadangkan terbukti dapat digunakan untuk mengenal 

pasti kewujudan, lokasi dan tahap relatif kerosakan struktur di bawah getaran ambien. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Introduction 

Civil engineering infrastructures such as bridges, buildings and many others 

play important roles in providing essential welfare for society. However, the resistance 

of the in-service infrastructures deteriorates with time, owing to many factors such as 

exposure to harsh environment, long-term fatigue and natural hazard i.e. earthquakes 

and storms. These factors accumulate local and global damage such as crack, 

corrosion, material disintegration and many others that will cost more for repair works 

or at worst, can cause catastrophic structural failure that involves severe economic and 

human life losses. Incidences due to loss of structural integrity can be found 

worldwide. For example, the collapse of the I-35W bridge over the Mississippi River 

in Minneapolis, Minnesota, on 01 August 2007, in which the National Transportation 

Safety Board reported that failure of gusset plates U10W initiated the collapse (Liao 

and Okazaki, 2009). Warning signs in the form of out-of-plane displacements went 

undetected (Li and Hao, 2016), causing injury to 145 people and the death of 13 others. 

The incident exposes the weakness of visual inspection and indicates that a more 

sophisticated early detection of damage through a Structural Health Monitoring 

(SHM) system is important for ensuring the reliability and safety of infrastructure. 

1.2 Background of study 

For decades, structural integrity has been maintained by means of manual 

visual inspection and non-destructive test (NDT) such as ultrasonic waves, magnetic 

field, radio-frequency, eddy-current, thermal field etc. Although NDTs have been 

applied widely, such methods are regarded as local method as the vicinity of the 

damage is generally required. These local assessments are usually performed 
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periodically and therefore, structural conditions in between the inspection intervals 

cannot be obtained. In addition, the results of these techniques are dependent on human 

expertise, hence prone to human error and lead to subjective conclusion.  

Researchers have long sought for a better solution to the problems concerned 

and proposed a method to assess structural condition as a whole with no requirement 

for prior information of the suspected damaged region. The method is referred to as 

global method, called SHM system. The system is formed by a sophisticated 

technology, incorporating sensing devices with advanced data collection and 

processing as well as damage detection algorithm. With SHM system, structural 

monitoring and evaluation can be performed in real-time under regular operation, 

hence improving structural safety and reliability, prolonging the life of structure, 

reducing downtime and reducing maintenance cost (Mufti et al., 2005).  

Damage is defined as changes of physical properties of a structural system, 

including material property, geometry and boundary conditions (Farrar et al., 2001). 

A key element in SHM is damage detection which usually makes use of vibration 

properties to identify damage. Damage identification can be further classified into four 

levels: (I) detection of damage presence, (II) damage localisation, (III) damage 

quantification, and (IV) estimation of remaining service life. In recent years, vibration-

based damage detection has been intensively developed by researchers and practitioner 

in the SHM field to identify damage presence, location and severity. The theory behind 

vibration-based damage detection is that vibration parameters are the functions of the 

physical properties of structures such as mass and stiffness. Therefore, the presence of 

damage will change the behaviour of structural vibration properties and by examining 

the change, damage information can be obtained.  

The methods of vibration-based damage detection can be divided into three 

categories depending on the type of vibration parameters, which are modal-based, 

frequency-based and time-series based damage detection methods. As for the first 

category, damage detection is made based on modal parameters such as natural 

frequencies and mode shapes which require extraction from measured vibration data. 

Therefore, the reliability of damage identification is likely dependent on the accuracy 
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of the extracted parameters. Furthermore, there are some arguments on the suitability 

of modal data in damage detection. For instance, modal data is not sensitive to local 

damage and minor damage because damage is a local phenomenon, while modal data 

is a structural global feature (Alvandi and Cremona, 2006; Worden et al., 2008). This 

limitation can be overcome by using higher modes where the modes correspond more 

to local changes, but measuring high vibration modes is more difficult in real practice, 

especially for large and heavy structures under ambient excitation, which are usually 

low in frequency (Mei and Gül, 2015). In contrast, frequency response function (FRF) 

which falls in the frequency-based method provides more information as compared to 

modal domain, but its prime drawback is the requirement for the accurate known input 

(Deraemaeker and Preumont, 2006), hence limiting its practicability for the in-service 

structures as the excitation under operation conditions is generally difficult to measure. 

Moreover, the conversion from time-domain to frequency-domain data discards some 

information contained in the measured response (Lei et al., 2019). On the other hand, 

the method based on time-domain performs damage detection through direct analysis 

of the measured time-series response. Therefore, the implementation of this category 

of method is relatively more feasible for automation of the SHM system since it is 

simpler, faster and can avoid the innate errors of modal extraction. As a result, it seems 

to be very beneficial to apply the time-series approach for damage detection in this 

study. 

1.3 Research problem statement 

As mentioned earlier, the common method used in vibration-based damage 

detection is based on modal-domain data that is insensitive to minor damage and time-

consuming due to dependency on the modal feature extraction. An alternative has been 

initiated to avoid the modal extraction via time-series analysis. Although the 

applications of time-series approaches have revealed great potential at damage 

detection due to its simplicity (no requirement of finite element (FE) model) and 

straightforward properties (without modal extraction), most of them are up to Level II 

damage identification only. In this regard, the concept of sensor clustering introduced 

by Gul and Catbas (2011b) seems promising as the method resulted in good sensitivity 
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baseline condition is referred to the initially undamaged structure, thus the method will 

be able to identify all the future damages after the construction. When the data of the 

newly constructed structure is not available, the existing structure can also be taken as 

the baseline, provided it is assured that the structure is damage-free. The baseline 

condition used in this study is referred to the healthy structure which is in its 

undamaged state. To show the superiority of the proposed approach based on NARX 

neural network, the applicability of linear ARX model is investigated numerically to 

detect damage under both impact excitation and ambient vibration. Then, the 

feasibility of the proposed approach based on NARX neural network is further 

demonstrated through numerical and experimental examples. Due to the large scope 

of the research, field work is not conducted in this study.  

In the development of NARX neural network, series-parallel NARX neural 

network with one hidden layer architecture is utilised. The structure of the NARX 

network is comprised of tan-sigmoid transfer functions in the hidden layer and a linear 

transfer function in the output layer (Rai and Upadhyay, 2017). The number of hidden 

neurons as well as the orders of input and output are selected through trial and error 

approach. For network training process, backpropagation learning algorithm with 

Levenberg–Marquardt learning function is used (Sheremetov et al., 2014). These 

network configurations are used throughout the numerical study as well as 

experimental study.  

In numerical study, a continuous two-span concrete slab is employed in 

Chapter 4. The slab is modelled using the Structural Dynamics Toolbox (SDT) 

(Balmes et al., 2009) which is run on the Matlab platform with presumed physical and 

material properties. Damage in many studies (Roy et al., 2015; Abdeljaber and Avci, 

2016; Rahami et al., 2018; Azim and Gul, 2019) has been represented as a stiffness 

reduction, particularly Young’s modulus (𝐸) value (Wickramasinghe et al., 2016; 

Clementi et al., 2017; Umar et al., 2018; Hellgren et al., 2020). Although stiffness 

reduction may not represent precisely all damage types in civil engineering, it is 

applicable to damage due to bolt loosening, corrosion and cracking (Sun and 

Büyüköztürk, 2015). Therefore, damage in the numerical example is modelled by 

reducing the 𝐸 value of selected segments. In the consideration of noise as presented 
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in section 4.6, the original simulated acceleration responses are contaminated with 

white gaussian noise in the form of signal-to-noise ratio (SNR) (Krishnasamy et al., 

2018). The effects of sampling frequency, sampling duration, reduced number of 

sensors and measurement noise on the ability of the proposed approach to detect 

damage in the numerical slab model are investigated.  

In experimental study, ambient vibration test is conducted on two types of 

experimental structures, which are reinforced concrete slab and semi-circular steel 

arch. The purpose of having two different experimental models is to examine the 

effectiveness of the proposed method to detect damage in different types of structure. 

To create damage cases, notch-type damage and saw cut damage are simulated for slab 

and arch structures, respectively. The recorded uniaxial acceleration responses are 

used for the verification of the proposed approach for damage detection.  

1.7 Thesis outline 

This thesis consists of six chapters and has been organised as follows: 

Chapter 1 presents the background of the study area, the problem statements, 

the research objectives, the significance of study, the research scope and limitations, 

the outline of the thesis.  

Chapter 2 presents the review of existing literature related to SHM, the basic 

theory of vibration-based damage detection as well as various damage detection 

methods which are further categorised according to the type of vibration parameters. 

The advantages and disadvantages of each method are discussed in the chapter. The 

applications of ANN for vibration-based damage detection are also reviewed. 

Chapter 3 describes the research methodology and theoretical background of 

this study. The proposed time-series approach is explained in this chapter through a 

three-stage procedure: sensor clustering, time-series modelling and damage detection. 

The design of linear ARX model and NARX neural network are further detailed in the 
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stage of time-series modelling. The process to determine damage threshold is also 

included in the chapter. 

Chapter 4 demonstrates the application of the NARX neural network with 

sensor clustering in damage detection under ambient vibration using a numerical 

model. To show the superiority of the NARX neural network, the performance of 

linear ARX model in identifying damage under impact excitation and ambient 

vibration are also presented. Sensitivity studies on the effect of sampling frequency, 

sampling duration and a smaller number of sensors to the damage detectability of the 

proposed method are conducted. Besides, this chapter also addresses the effect of 

uncertainties in the vibration data, in which damage threshold is determined and then 

incorporated with the proposed NARX neural network.  

Chapter 5 provides the details of experimental models, vibration testing 

procedures and damage scenarios. The implementation of the proposed NARX neural 

network is demonstrated using the measured experimental data. Also, the final damage 

detection results by incorporating damage threshold for each experimental structure 

are presented.  

 Chapter 6 concludes the study by highlighting the foremost findings of the 

study according to the research objectives and suggests some recommendations for 

future work related to the subject of this study.  
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