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ABSTRACT. Optical modes allow for the transmission of data by propagating light in a singular coherent form along the 

channel. By constructing a special waveguide structure, a unique mode may be formed in a plane perpendicular to the 

transmission axis. This paper elucidates on the design of a waveguide to generate unique vortex modes and analyses the 

properties of the generated modes. 
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INTRODUCTION 

In view of the capacity limits of multimode fiber in the advent of tremendous data growth, various dimensions 

for multiplexing and modulating data have been commercially deployed in the intensity, phase, wavelength and 

time dimensions.  The rate at which data can be transmitted down optical fibers is approaching a limit due to 

nonlinear optical effects [1].  Having almost exhausted available degrees of freedom to multiplex data, the 

possibility of leveraging on spatial modes to enhance data capacity is now being explored [2].   

Modes refer to the transverse modes of electromagnetic waves that exist in a waveguide which consist of 

single-mode fiber and the multi-mode fiber. The single-mode fiber only permits one mode to flow into a single 

channel that normally travels at a long-distance as well as consisting a large bandwidth. Its core is smaller in 

diameter compared to multi-mode fiber. As a contrast to single-mode fiber, multi-mode fiber permits numerous 

numbers of modes to pass through it that travels at a short distance and carry a small bandwidth.  Various mode 

generation approaches have been developed in recent years,  comprising spatial encryption [3-7], algorithm 

equalization [8-11], photonic crystal fibers [12-14] and laser cavity designs [15-16].  

Optical angular momentum has garnered considerable attention for providing another degree of freedom and 

increasing the transmission capacity, whereby the photons are given a well-defined twist or helicity.  Chen Ji et 

al. (2018) proposed a single-layer metasurface constructed using resonant and geometric phase cells for generating 

vortex beams with different OAM modes and polarizations carried at two distinctive bands [17]. Bozinovic et al. 

(2013) discuss the findings on the propagation of OAM modes in rectangular multimode waveguides [18].  Due 

to the multimode interference effect, OAM mode input forms a self-image image at certain propagation distances. 

As OAM modes can be decomposed as the superposition of a pair of quarter-wave phase-shifted even and odd 

modes, their symmetry properties lead to two different self-imaging categories – forming the OAM-maintaining 
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and the field-splitting self-images.  Ma et al. (2015) utilizes the multimode interference theory to demonstrate 

OAM mode generation using rectangular waveguides propagating several modes with symmetry in two 
orthogonal transverse directions [19].    

Laser light with a Laguerre-Gaussian amplitude distribution is found to form a well-defined OAM [20].  An 

astigmatic optical system may be used to transform a high-order Laguerre-Gaussian mode into a high-order 

Hermite-Gaussian mode reversibly.  The experiment proposed to measure the mechanical torque induced by the 

transfer of OAM associated with such a transformation.  Zhang et al. (2015) studied the coupling characteristics 

of OAM modes routing in a ring fiber based directional coupler [21]. The OAM mode propagates along a ring 

fiber coupler into its corresponding HE even and odd modes using beam propagation method. The general 

description of OAM modes in a ring fiber based coupler provides useful information for further study of fiber 
components using OAM modes.   More recently, Tandjè et al. (2019) designed a ring-core PCF to support four 

different groups of OAM using a circular ring core around a cladding comprising air holes organized in a first 

circular ring surrounded by hexagonal rings [22].  In this paper, vortex modes are formed from the transverse 

refractive index variation of an optical fiber.  The mode generation principles and simulations are discussed in the 

next section. 

METHODOLOGY 

Modes are uniquely formed patterns that are influenced by factors attributed to the design process. Unique 

modes are generated by altering the parameters of the transmitter component. These modes are modified in such 

a way as the phase values correspond to the particular angle around the axis. This property makes up the 

description of an optical vortex. The topological charge is indicated by the number of helical surfaces of the 

propagating wavefront. The manipulation of this factor is employed to produce a desired number of modes. 

 

The optical vortex phase plate is a unique optic that comprised entirely of spiral or helical phase steps to 

control the phase of the transmitted beam. The winding "staircase" surface structure is demonstrated in Fig. 1. 

 

 
FIGURE 1. Winding "Staircase" surface profile of the diffractive vortex phase plate. 

 
The total etching depth from the top to bottom of the "staircase" is a function of the substrate's optical index 

and design wavelength. Generally, this depth is of the same order of magnitude as the design wavelength. 

Therefore, each vortex phase plate is wavelength specific.  

 

The topological charge, denoted in the literature as m, refers to the number of 2π cycles (i.e. "staircases") 
etched around 360° turn of the diffractive surface. In Fig. 2 below, the surface profiles are illustrated for vortex 

lenses with m=2, m=3, and m=4.  The effect of a higher topological charge is an increase in the angular momentum 

of the vortex beam by a factor of m. An increase in the number of phase cycles within the phase profile may also 

be observed. 

 

A modal coupler waveguide is designed from an optical fiber using the bmp2ind tool as seen in Fig. 3. The 

bmp2ind tool converts the phase gradation of a mode into the refractive index distribution of the mode.  
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FIGURE 2. Surface profiles for Vortex lenses with m=2, m=3 and m=4. 

 

 

 
FIGURE 3. Executing the bmp2ind tool 

 

 

FIGURE 4. Saving the modal phase distribution as a 345 by 275-pixel image. 

 
After obtaining the modal amplitude and phase distribution results from OptSim, the data is then saved as a 

.bmp file with a specific resolution value as shown in Fig. 4. Saving as a 345 by 275 pixel .bmp image produces 

distribution values of the mode at a 1:1 height to width ratio when cropped using an image editing tool as seen in 

Fig. 5. 

The amplitude and phase properties of multiple modes are summed in a mathematical function and are then 

run through the fast Fourier transform function by MATLAB. The resulting variable produced is a complex array. 

The real values of the array represent the amplitude whereas the imaginary values represent the phase. The real 
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and imaginary values could be viewed by the abs and angle MATLAB function to view the amplitude and phase 

values respectively. 

The angle function selects only the imaginary values of the data within the array whereas the abs function 

displays only the real values. The imaginary values are the component used to obtain the refractive index. The 

subplot function which is typically used with the imagesc function plots an arrangement of determined elements 

for displaying multiple values at once. The dlmwrite function exports the values within the arrays to an external 

text file. There are number of elements that must be specified within the dlmwrite function such as file name, data 

precision, data arrangements, and variable to be exported. 

 

 

Figure 5: Cropping the results from the axes and palette. 

The final step to obtaining the resulting modes from the waveguide is by the mode solver tool in BeamProp. 

The mode solver tool could be executed by double clicking the input plane and configuring the input wave 

properties and the types of data to be analyzed. The solver must be in full vector and complex mode to obtain the 

phase values within the modes as shown in Fig. 6. 

 

Figure 6: Solving for modes using beam propagation  
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RESULTS AND DISCUSSION 

Running the simulation yields the amplitude and phase values, as shown in Fig. 7. The phase was cropped to 

a 235 by 235 pixel values of 256 bmp image format and would then be converted using the bmp2ind tool to 

convert it to its equivalent refractive index distribution. 

 

The obtained refractive index distribution is then inserted into the waveguide design software BeamPROP to 

be simulated. The layout of the design is shown in Fig. 8. Note that the grid values are not plotted in scale to each 

axis value. The propagation direction is denoted by the direction of the arrow. 

 

Alternatively, the individual vortex order modes could be multiplexed by the fast Fourier transform function 

via MATLAB. The individual modes are simulated using OptSim. The simulated data is then cropped and 

imported into MATLAB. The color of each pixel represents the values distributed. Henceforth, grayscale is greatly 

preferred due to the representability of the immediate color values. The data is then processed and exported into 
a text file which consists of the values of each cell in a specific order. The text file is then transferred to the user 

defined refractive index profile tool. 

 

 

 
(a)       (b) 

FIGURE 7. (a) Amplitude and (b) phase of multiplexed vortex order 5 and 10 

 

 

          

(a)         (b) 

FIGURE 8. (a) Waveguide design by OptSim (b) Waveguide design by BeamProp. 

 

Topologically, the input and output planes of the waveguide are perfectly flat. The mode generation relies upon 

the refractive index distribution that was inserted in the waveguide as depicted in Fig. 9.  

 

020059-5



 
 

Figure 9: Refractive index distribution applied onto the waveguide. 

The waveguide in Figure 8 is then simulated to obtain the mode via OptSim. The resulting mode obtained is 

illustrated in Figure 10. The design has been optimized by altering the propagation distance to obtain a mode most 

equivalent to the original mode. 

 

 

Figure 10: Modal phase of converted multiplexed phase values of vortex order 5 and 10 

The waveguide performance can be measured by the eye diagram and bit error rate. This process is conducted by 

passing a beam of data at 9GHz across the waveguide.  The wide eye opening shows satisfactory transmission. 

 

 

Figure 11: Eye diagram of the simulated waveguide 

The bit-error-rate (BER) results are shown in Figure 12. The results of the minimum and maximum BER values 

are tabulated in Table 1. The BER analysis was conducted with a pseudorandom binary sequence at 9GHz. It can 

be deduced that the waveguide has a satisfactory data transmission rate as supported by the low BER values. 
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Figure 12: Bit error rate of the simulated waveguide 

 

 

Table 1: BER Values from the pseudorandom source 

Minimum BER 2.657 x 10 -17 

Maximum BER 2.953 x 10 -16 

Average BER 8.076 x 10 -17 

 

CONCLUSION 

The fabrication of the waveguide requires a high degree of accuracy in the modulation of the refractive index 

towards achieving sufficient modal purity.  The challenge is more apparent at higher vortex order values which 

have more intricate transverse modal distributions.  Vortex mode transmission is foreseeable in realizing a 

sustainable optical network which may accommodate various data streams in Internet-of-Things applications.  
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