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ABSTRACT 

Tropical climate and post tectonic impact on the rock mass cause severe and deep 

weathering in complex rock formations. The uniqueness of tropical influence on the 

geoengineering properties of rock mass leads to significant effects on blast performance 

especially in the developmental stage. Different rock types such as limestone and granite 

exhibit different weathering effects which require special attention for classifying rock mass 

for blastability purpose. Rock mass classification systems have been implemented for last 

century for various applications to simplify complexity of rock mass. Several research studies 

have been carried out on rock mass and material properties for five classes of weathered rock- 

fresh, slightly, moderately, highly and completely weathered rock. There is wide variation in 

rock mass properties- heterogeneity and strength of weathered rocks in different weathering 

zones which cause environmental effects due to blasting. Several researchers have developed 

different techniques for prediction of air overpressure (AOp), peak particle velocity (PPV) and 

flyrock primarily for production blast. These techniques may not be suitable for prediction of 

blast performance in development benches in tropically weathered rock mass. In this research, 

blast monitoring program were carried out from a limestone quarry and two granite quarries. 

Due to different nature of properties, tropically weathered rock mass was classified as massive, 

blocky and fractured rock for simpler evaluation of development blast performance. 

Weathering Index (WI) is introduced based on porosity, water absorption and Point Load 

Index (PLI) strength properties of rock. Weathering index, porosity index, water absorption 

index and point load index ratio showed decreasing trend from massive to fractured tropically 

weathered rock. On the other hand, Block Weathering Index (BWI) was developed based on 

hypothetical values of exploration data and computational model. Ten blasting data sets were 

collected for analysis with blasting data varying from 105 to 166 per data set for AOp, PPV 

and flyrock. For granite, one data set each was analyzed for AOp and PPV and balance five 

data sets were analyzed for flyrock in granite by variation in input parameters. For prediction 

of blasting performance, varied techniques such as empirical equations, multivariable 

regression analysis (MVRA), hypothetical model, computational techniques (artificial 

intelligence-AI, machine learning- ML) and graphical charts. Measured values of blast 

performance was also compared with prediction techniques used by previous researchers. 

Blastability Index (BI), powder factor, WI are found suitable for prediction of all blast 

performance. Maximum charge per delay, distance of monitoring point are found to be critical 

factors for prediction of AOp and PPV. Stiffness ratio is found to be a crucial factor for flyrock 

especially during developmental blast. Empirical equations developed for prediction of PPV 

in fractured, blocky, and massive limestone showed R2 (0.82, 0.54, and 0.23) respectively 

confirming that there is an impact of weathering on blasting performance. Best fit equation 

was developed with multivariable regression analysis (MVRA) with measured blast 

performance values and input parameters. Prediction of flyrock for granite with MVRA for 

massive, blocky and fractured demonstrated R2 (0.8843, 0.86, 0.9782) respectively. WI and 

BWI were interchangeably used and results showed comparable results. For limestone, AOp 

analysed with model PSO-ANN showed R2(0.961); PPV evaluated with model FA-ANN 

produced R2 (0.966). For flyrock in granite with prediction model GWO-ANFIS showed R2 

(1) The same data set was analysed by replacing WI with BWI showed equivalent results. 

Model ANFIS produced R2 (1). It is found the best performing models were PSO-ANN for 

AOp, FA-ANN for PPV and GWO-ANFIS for flyrock. Prediction charts were developed for 

AOp, PPV and flyrock for simple in use by site personnel. Blastability index and weathering 

index showed variation with reclassified weathering zones – massive, blocky and fractured 

and they are useful input parameters for prediction of blast performance in tropically 

weathered rock.  

 



 

ABSTRAK 

Iklim tropika dan pengaruh tektonik lampau terhadap jasad batuan menghasilkan perubahan 

sifat geomekanik yang kompleks. Kesan daripada sifat-sifat geokejuruteraan ini menjadi pengaruh 

penting dalam kerja letupan batuan terutama dalam fasa pembinaan. Jenis batuan yang berbeza seperti 

batu kapur dan granit mempamerkan sifat yang berlainan serta memerlukan perhatian khusus 

terutamanya dalam pengelasan jasad batu untuk tujuan kerja letupan. Sistem pengelasan jasad batuan 

khusus bagi kerja letupan batuan terluluhawa tropika bertujuan memudahkan kerumitan penggunaannya 

bagi kerja letupan yang lebih selamat. Pengelasan sediaada terhadap status luluhawa batuan dibahagikan 

kepada zon segar, sedikit terluluhawa, sederhana, tinggi dan sepenuhnya boleh dikelaskan dengan lebih 

mudah untuk tujuan kerja letupan berdasarkan kepada sifat geomekanik batuan yang signifikan kepada 

tujuan kerja tersebut. Sifat jasad batuan yang tidak seragam dan luluhawa berbeza menyebabkan kesan 

kompleks terhadap hasil letupan terutama semasa kerja pembangunan. Pelbagai variasi pencirian batuan 

– kepelbagaian dan kekuatan batuan terluluhawa pada zon berbeza menyebabkan kesan alam sekitar 

disebabkan oleh letupan. Beberapa penyelidik telah membangunkan sistem ramalan letupan udara 

(AOp), halaju zarah puncak (PPV) dan batu liar terutamanya dalam letupan pengeluaran. Teknik-teknik 

ini mungkin tidak sesuai untuk ramalan prestasi letupan dalam keseluruhan spektrum batuan 

terluluhawa tropika. Dalam kajian ini, pemantauan letupan dijalankan di satu kuari batu kapur dan dua 

kuari granit. Oleh kerana sifat geokejuruteraan yang pelbagai dalam profil luluhawa, jasad batuan 

dikelaskan sebagai batuan masif, berbongkah dan batuan retak dalam penilaian dalam pembangunan 

prestasi letupan. Indeks Luluhawa (WI) diperkenal berdasarkan keliangan, penyerapan air dan indeks 

beban titik (PLI) batuan. Indeks Luluhawa, indeks keliangan, indeks penyerapan air dan indeks titik 

beban menunjukkan tren menurun daripada batuan masif ke batuan retak. Seterusnya Indeks Luluhawa 

Blok (BWI) dibina berdasarkan nilai hipotesis data eksplorasi dan model komputeran. Sepuluh set data 

letupan telah dikumpul untuk dianalisa dengan data letupan daripada 105 ke 166 per set data untuk 

AOp, PPV dan batu terbang. Untuk granit, setiap satu data dianalisa untuk AOp dan PPV dan lima set 

data dianalisa untuk batu terbang dengan input parameter yang pelbagai. Pelbagai teknik digunakan 

dalam meramal prestasi letupan seperti persamaan empirik, analisis regrasi pelbagai (MVRA), model 

hipotesis, teknik komputeran (AL, ML) dan carta grafik. Nilai yang diukur dalam prestasi letupan juga 

dibandingkan dengan teknik ramalan yang digunakan oleh penyelidik terdahulu. Indeks Peletupan (BI), 

faktor peledak dan Indeks Luluhawa didapati sesuai untuk meramalkan prestasi letupan. Caj maksimum 

bagi setiap detik dan jarak pemantauan dari sumber punca letupan adalah factor kritikal untuk ramalan 

AOp dan PPV. Nisbah kepejalan didapati sebagai faktor penting untuk meramalkan batu terbang 

terutamanya semasa pembangunan letupan. Persamaan empirik yang telah dibangun untuk ramalan PPV 

pada batu retak, bongkah dan batu kapur masif menunjukkan R2 (0.82, 0.54 dan 0.23) menunjukkan 

bahawa terdapat kesan luluhawa terhadap prestasi letupan. Persamaan terbaik dibangunkan dengan 

analisis regrasi pelbagai (MVRA) dengan mengambil kira nilai prestasi letupan dan input parameter. 

Hasil jangkaan batu liar batu granit dengan kaedah MVRA bagi batuan masif, blok dan hancur, 

memberikan nilai R2 sebanyak 0.8843, 0.86 dan 0.9782 masing-masing. Dengan menggunakan model 

jangkaan pula, nilai AOP dan PPV dibandingkan antara model ANN dan hibrid. Untuk batu kapur, AOp 

dianalisis dengan model PSO-ANN menunjukkan R2 sebanyak 0.961; PPV yang dinilai dengan model 

FA-ANN menghasilkan R2 (0.966). Bagi batu terbang granit dengan model ramalan GWO-ANFIS 

menunjukkan R2 (1). Data set yang sama dianalisa dengan menggantikan WI dengan BWi menunjukkan 

keputuan yang sama. Model ANFIS menghasilkan R2 (1). Model terbaik dalam menjalankan model 

ialah PSO-ANN untuk AOp, FA-ANN untuk PPV dan GWO-ANFIS untuk batu terbang. Carta ramalan 

dibina untuk AOp, PPV dan batu terbang untuk kegunaan di lapangan. Indeks letupan dan indeks 

luluhawa menunjukkan pengelasan semula zon luluhawa yang pelbagai – masif, bongkah dan batu retak 

dan input parameter berguna dalam meramal prestasi letupan untuk batuan terluluhawa tropika. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Background 

In July 2013, a blasting incident in Seri Alam, Johor terrorised the nation. The 

terror did not just end there. In July 2015, a second blasting took place at a construction 

site in Batu Pahat, Johor (Edy Tonnizam et al., 2013, 2016). These explosions killed 

several people and left others with serious injuries. Additionally, these blasting had 

damaged properties worth millions of Ringgit Malaysia. Investigations revealed that 

both accidents resulted from the site personnel’s inability to identify weak geological 

structure (Edy Tonnizam et al., 2018). Besides, researchers had also claimed that 

geological inconsistency and sudden abnormality had resulted in flyrock accidents 

(McKenzie, 2009; Raina et al., 2015). 

Rock mass classification has been widely used for more than a century in 

various applications of rock engineering design such as tunnelling, foundation, slopes, 

rippability, and excavatability. Rock mass classification is essential as it simplifies the 

complexity of actual rock mass into intelligible units (Singh and Goel, 1997). 

Moreover, it is a powerful instrument in the feasibility of design (Stille and Palmström, 

2003). 

During blasting operation, approximately 15 to 30% of the released energy is 

exclusively used for the fragmentation and displacement of the rocks (Armaghani et 

al., 2013; Khandelwal and Monjezi, 2013). On the contrary, the remaining 70-85% of 

energy causes an undesirable environmental impact such as air overpressure (AOp), 

ground vibration, and flyrock in the surrounding areas (Hanispanah et al., 2018). On 

the other hand, less than 1% of the energy may be sufficient to cause a flyrock during 

the blast (Adhikari, 1999). Various techniques had been developed to predict the 

blasting performance and compare it to the measured value. The projection of the 



2 

blasting performance is based on a wide range of the input parameters of the blasting. 

From 1960 to 2000, the extrapolation of the blastability was correlated to the empirical 

equations. Researchers had theorised that both ground vibration and AOp with 

empirical equations depend on the blast designs. Lilly (1986) introduced the concept 

of blastability index based on the site-specific rock mass properties, which in turn 

could be correlated to the powder factor.  

Ghose (1988) developed a blastability index for the coal-bearing strata based 

on the rock mass properties, and stiffness ratio, which was to the powder factor. On 

the other hand, the Julius Kruttschnitt Mineral Research Centre (JKRMC, 1996) 

introduced the blastability concept mainly for the coal-bearing rocks based on the size 

and strength of the rock block to get the desired fragmentation. Nevertheless, such a 

technique was not possible to be adopted for every site. In contrast, Lu (1997) 

introduced a concept of blastability based on the energy required to convert the situ 

block size into a blasted block size. Scholars had also developed the indexed systems 

for blastability based on rock mass and material properties (Latham and Lu, 1999; 

Azimi et al., 2016). Therefore, most of the blastability indices developed since 1986 

were for general blasting. 

Multivariable regression analysis (MVRA) provides better results than 

empirical equations (Hasanipanah et al., 2017). This is mainly because the empirical 

equations use the blast design parameters whereas MVRA utilises more of the input 

parameters, which include rock mass and material properties (Armaghani et al., 2016; 

Fouladgar et al., 2017). During the last decade, many researchers had established 

artificial intelligence (AI) models to predict the environmental effect as a result of the 

blasting (Armaghani et al., 2019). AI models can predict better results with nonlinear 

input parameters. 

There is a significant deterioration in the physical and geomechanical 

properties during the process of weathering near the earth’s surface under varied 

climatic conditions (Tugrul, 2014). Thick and deep weathering profiles are observed 

in the tropical region (Shaw, 1997). The variation of the rock mass and material 



 

 

properties demands special attention and classification in the blasting application, 

specifically during the developmental stage. 

The development blast is usually carried out in near-surface during earthwork 

whereas the production blast is done on the developed benches (Lee and Kim, 2016). 

Nonetheless, it is a challenging task to develop horizontal benches because the 

topography and thickness of the weathered rock vary in the developmental area. 

Therefore, the stiffness ratio has always been an issue in the developmental blast. 

Abrupt changes in material and mass properties usually exist in thick tropically 

weathered rock, especially in the completely weathered (CW) to moderately weathered 

(MW) zones. The prediction of blasting operation and its impacts on the environment 

during the developmental stage is highly imperative Thus, there is a need to prepare 

guidelines or predictive regimes for the blasting of the weathered rocks to simplify the 

operations carried out by field personnel who are directly involved in the blasting 

process. 

1.2 Problem Statement 

The geomechanical properties and geological features of the rock mass have 

great influence in the blasting operations. The complexity of these parameters become 

crucial when the tropical rock mass is subjected to different degrees of weathering. On 

the other hand, the effects of the blasting operation depend on the fracture patterns and 

the heterogeneity of the rock mass. 

Blasting effects include the AOp, ground vibration and flyrock, which affect 

the environment and its surroundings. It is common for the blasting process to involve 

a wider spectrum of weathering zones in the developmental stage of earthwork. The 

issues during this stage include a lower drilling depth, variable length of burden, weak 

geological structures at the blasting face, and the heterogeneity of the rock mass. These 

issues create obstacles in the blast design as a result of the insufficient stemming of 

the length or burden. Therefore, it is necessary to address the issues of tropical rock 

mass for the process of developmental blast. The existing rock mass classification for 
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the purpose of blasting may need specific refinements to cater to the unique issues in 

the tropically weathered rock environment. Furthermore, it is imperative to examine 

the correlation between the exploratory qualitative parameters of the tropically 

weathered rock and the blasting performance. Besides, it is significant to improvise 

the prediction accuracy of the environmental effects with the measured values. Hence, 

a better prediction of the blast performance techniques, which include input parameters 

such as tropical weathering, blast design, and blastability is needed for better accuracy. 

The technique has to be simple for site personnel to practice as they are the ones who 

are directly involved in the blasting process. 

1.3 Objectives 

The aim of this study is to investigate the uniqueness of the tropical rock mass 

and its material properties that influence the environmental effects of the blasting such 

as AOp, peak particle velocity (PPV), and flyrock distance, to develop the best 

prediction model for this issue. Therefore, the subsequent objectives were designed to 

achieve the purpose of the present study:  

i. To investigate tropical rock mass profile that contributes to the performance of 

development blast. 

ii. To determine significant factors of tropically weathered rock properties that 

influence blast performance. 

iii. To develop a unique rock mass classification system for blastability of the 

tropically weathered rock. 

iv. To develop a method to predict the blasting effect of tropical rock mass to the 

environment. 

 



 

 

1.4 Scope of the Study 

The present study selected a limestone quarry in Thailand and two granite 

quarries in Johor, Malaysia because they were located in the tropical region. All three 

quarries were fully operational and met the requirements of the construction 

aggregates. Furthermore, the developmental area had a series of variable bench heights 

in the highly weathered (HW) and CW rocks. Besides, the benches in the production 

area were well developed with uniform heights from the MW to the fresh (F) rock. 

This study examined the rock mass properties of the weathered igneous and 

sedimentary rocks identified based on numerous studies. Next, a method was selected 

to investigate the weathering zones in the field and identify similar rock mass 

properties, based on the conducted review. Researchers had tested the various physical 

and mechanical properties of the weathered rock in the laboratory. This study included 

simple physical and mechanical properties of the weathered rock to develop the 

weathering index. The block weathering index was developed based on the analysis of 

the exploration data. This study further compared the weathered rock mass and 

material properties to each degree of weathering and to each parameter, which was 

assigned into five groups based on these properties. The weight among these 

parameters was based on the inter-relationship of the individual parameter in a 

complete data set. The 3-Dimensional (3D) block model was developed based on 

exploratory data samples via the Surpac software. The processed output of the 

individual block in the 3D block model has been designated as block weathering index. 

From 1960 to 2000, the development of blastability was assessed significantly. 

The production of blast performance was mainly based on empirical equations and 

blast design parameters. Therefore, this study compared the blastability indexes 

designed by Lilly (1986) and Ghose (1988). The blastability index consisted of five 

input parameters that were scrutinised to determine the environmental effects as a 

result of blasting. This study reviewed Christaras and Chatziangelou (2017) blasting 

quality system for widely, intermediate, and closely spaced joint spaces. Next, this 

study identified the research gap to develop the rock mass classification system in the 

tropically weathered rock.  The data collection method at the field was developed 
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based on the evaluation of previous literature on environmental data for the AOP, PPV, 

and flyrock blasting. Similarly, the input parameters were selected from the works of 

literature on the prediction of blast performance. Then the data collection was carried 

out for a year and six months. It included field observations of environmental effects 

as a result of the blasting at three quarries, sample collection, and laboratory testing. 

This study examined the existing rock mass classification systems that were 

still in practice for different applications such as tunnel system, excavation, and slope 

stability to identify the research gaps. Therefore, the classification for tunnel system 

and slope stability is related to the rock mass supporting against gravity. Meanwhile, 

the classification for excavatability depends upon the equipment, which is being used. 

As a result, a rock mass classification system for blastability of the tropically 

weathered rock was developed in this work. Then the multivariate regression analysis 

(MVRA) was used to develop the equations because the empirical equations that 

predicted the blast performance failed in terms of accuracy. Hence, the MVRA 

technique is a benchmark to evaluate performances based on different techniques. In 

the last decade, researchers had employed AI techniques to develop models that predict 

the blast performance. Nevertheless, recently, the hybrid AI and machine learning 

(ML) models were developed to predict blast performance. AI models were used to 

predict the AOp and ground vibrations. On the other hand, ML models were mainly 

used to predict flyrock. Therefore, the best computational models for AOp, PPV, and 

flyrock were evaluated. 

The scope of the study is limited to 3 quarries in the tropical region, 10 data 

sets, developmental blast with a maximum of 166 blasting events per data set. 

1.5 Research Questions 

Researchers had studied the process of weathering in tropically weathered 

rocks for multiple geomechanical problems. For the last six decades, many researchers 

had developed the performance of general blasting, specifically on production blast. 

The blast performance evaluation is crucial and therefore, the latest techniques need 



 

 

to be incorporated to increase its accuracy. The following questions were framed for 

this research:  

i. Which key tropical rock mass properties or structural characteristics 

influence the blast performance for AOp, ground vibration, and 

flyrock? 

ii. What are the properties of granite and limestone that influence the 

performance of developmental blast? 

iii. How does the blast design determined by various tropically weathered 

zones influence the performance of the developmental performance?  

v. How do the different prediction methods accurately forecast the 

performance of the developmental blast? 

 

1.6 Significance of Research 

The prediction of blast performance in a specific rock had been researched 

extensively for a long time globally. The existing prediction methods on blast 

performance are chiefly employed for general blasting and not specifically for the 

tropically weathered rock mass in development blasting. Therefore, the following are 

the advantages or benefits expected from this research project: 

i. The geoengineering properties of tropical rock mass for blasting will 

be catalogued. This significant contribution will benefit the civil and 

mining engineering works. Therefore, Malaysia will stand in the 

forefront as a research hub for studies that involve tropical rock masses. 

ii. The engineers will understand the effects and possible mechanics of 

blasting in the tropically weathered rock mass. This knowledge will, 
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therefore, minimise the inappropriate blast design, in which the tropical 

rock mass is involved. 

iii. Society will experience visible benefits based on their understanding of 

the potential risk of blasting tropical rock mass. Hence, this knowledge 

will increase the safety factors, especially when dealing with 

excavation via blasting. 

iv. A systematic approach that assesses blasting sites based on 

geoengineering aspects will be considered in the process of blasting 

design. Based on the economic scale, a good blasting design will 

minimise the risk of environmental effects such as flyrock, ground 

vibration and AOp. 

 

1.7 Definition of Terms 

Blasting is essential for works pertaining to hard rock excavations in the mining 

and civil engineering project areas. Listed below are the common terms related to 

blasting and the techniques to predict the blast performance in the present study. 

Burden 

(Bhandari, 1997) 

Shortest distance from the free face. Expressed in m 

 

Spacing 

(Rai and Imperial, 

2005) 

Distance between holes parallel to the face. Expressed in m 

 

Hole diameter 

(AyalaCarcedo, 

2017) 

The diameter of the blast hole. Expressed in mm 

 

Bench height 

(Bowa, 2015) 

The height of the bench along which excavation is done. 

Expressed in m 

 



 

 

Subgrade 

(Adhikari, 1999) 

Drilling, which is done below the bench height to avoid the 

toe. Subgrade drilling is about 10 to 15% of bench height. 

Expressed in m 

 

Power factor 

(Amini et al., 2012) 

The weight of explosives consumed per tonne of rock 

generated due to blasting. Expressed in kg per tonne. 

 

Airover Pressure 

(Singh and Sinha, 

2013) 

Air pressure created due to the movement of rock during 

blasting is known as airover pressure. Expressed indB. 

Ground vibration 

(Khandelwal and 

Singh, 2007) 

Vibration due to blasting, which is created as a shock wave 

in the ground or rock mass and transmitted through the 

ground. It does not cause permanent deformation. Expressed 

mm/sec 

 

Flyrock 

(Kecojevic and 

Radomsky, 2005) 

The undesired throw of rock fragment during blasting at the 

quarry or civil projects. It is measured from the centre of a 

blast to the maximum distance travelled by the rock 

fragment. Expressed in m 

MVRA 

(Kleinbaum et al., 

1988) 

The best-fit equation is developed for the measured 

parameter with the coefficient values for each independent 

variable or input parameter. It is also known for the 

widening of the simple regression concept. 

 

AI 

(Negnevitsky, 2005) 

Intelligence demonstrated by computers through systematic 

investigation motivated by humans for a given problem 

through learning and solving. 

 

Development 

blasting 

(Bhanadari, 1997) 

The blasting carried out during the developmental stage at 

the near-surface, which has the variable depth of blast holes 

with varying weathering stages 
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Production blast 

(Siskind et al., 1980) 

 

Blasting carried out where the normal consistent depth of 

blast holes that exist in well-developed benches to achieve 

maximum production 
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