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Abstract. This paper proposes a simple degradation model that estimates morphological changes 

in pure iron scaffolding due to surface erosion. The main contribution of this work is to estimate 

the degradation of porous pure iron scaffolding and analyze the impact of morphological changes 

on mechanical properties. In this study, the pure iron scaffolding model was designed in CAD 

software with 3 different porosity such as 30%, 41%, and 55% respectively. The geometry 

images of CAD models with a resolution of 3316 x 5530 pixels are captured layer by layer with 

a thickness of 0.02 mm. The purpose of this method is to replace the function of the μ-CT 

scanning technique. Two-dimensional morphological erosion is applied to reduce the number of 

pixels of the image model. This erosion process is adjusted iteratively with increasing number 

of pixels to erode the image model until the volume of the scaffold after reconstruction matches 

the volume of the model undergoing mathematical calculations. Their changes in the volume of 

scaffold geometry and degradation of mechanical properties were evaluated using finite element 

analysis. This study found that mechanical properties such as elastic modulus and yield strength 

decreased systematically during the 19 week degradation period. In addition, deformation 

analysis is performed on models based on finite element analysis. 

 

Keywords: Scaffold, pure iron, degradation, morphology, surface erosion, mechanical 

properties, finite element analysis. 

1.  Introduction 

Bone tissue engineering scaffolds made of biodegradable material for bone replacement has been shown 

to be a promising scaffold for triggering bone tissue regeneration and provide sufficient support until 

completing the tissue healing process. There are known biodegradable materials based on polymers, 

ceramics, and bioactive glass for orthopedic purposes; however, their mechanical properties are not 

suitable for bone load-bearing implants applications, in contrast to metallic biomaterials [1–4]. Three 
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metal biomaterials, based on Iron (Fe), Zinc (Zn) and Magnesium (Mg), have been studied over the past 

decade and are thought to be possible materials for the production of biodegradable, load-bearing 

orthopedic implants [4–9]. A majority of the available investigations have been performed using 

magnesium-based biomaterials because magnesium is potential to degrade in vivo without causing 

toxicological problems and its mechanical properties in the range of human bone [10]. However, Mg-

based biodegradable materials have high corrosion rates and that is a major limitation which results in 

poor mechanical integrity and the fact that the problem of hydrogen evolution drastically complicates 

the healing process [6]. In contrast, the degradation rates of Zinc and its alloys are suitable for 

applications that can biodegrade, but the mechanical properties and high density of these materials limit 

their applications [10]. Compared with Zinc and Magnesium, Iron possesses significantly higher value 

of mechanical strength. Elastic modulus of Fe too high as compared human bone [11], but it can be 

decreased by creating porous structure on the material. In addition, the degradation rate of metallic iron 

in body fluids is significantly lower than zinc and magnesium and the corrosion product is not connected 

with hydrogen evolution [12]. Furthermore, in vitro and in vivo test have been performed in previous 

investigation and the results shows that iron based materials suitable materials for biodegradable load-

bearing implant [9, 13–15].   

 

 Mechanical degradation of pure iron scaffold has been investigated in previous study by 

experimental procedures [16–18]. However, this method is time-consuming and high cost with limited 

applicability for extensive studies. These drawbacks can be overcome by the additional use of 

mathematical and numerical models. Previous researchers [19,20] presented mathematical models to 

analyze biodegradation of biopolymer. Adachi et al. [21] has been successfully develop a polymeric 

biomaterials degradation simulation based on voxel finite element to degrade surface of the scaffold and 

remodeling a new bone in the same time frame. The simulation method is promising for optimization of 

porous scaffold microstructure design. However, the method process is very complex despite using 

simple rate equations for new bone formation and degradation of scaffold being used. Sanz-Herrera and 

Boccaccini [22] presented a novel theoretical model for the analysis and simulation degradation and 

bioactivity of bioactive glass through Voxel-FEM method. Another investigation, degradation 

simulation of titanium based on phenomenological method to predict the change of complex geometry 

of scaffold due to surface erosion at different stages [23]. To the best of our knowledge, the degradation 

simulation of pure iron and impact its morphological parameters to the mechanical properties has not 

presented yet.  

 

The focus of this study is the simulation of predicted scaffold geometry changes due to degradation 

and its effect on mechanical properties. For this purpose, raw image data from the pure iron scaffold 

model is processed and partially degraded geometry is calculated. Scaffolding geometry after 

degradation is obtained and then used to conduct finite element analysis to assess degradation of 

mechanical properties such as Young's modulus and yield strength. This method provides a means to 

assess the macro architecture of bone tissue and bone scaffolding, before and after implantation. The 

mechanical integrity of bone scaffolding can be anticipated, where morphological changes as structural 

support are analyzed. In addition, the mechanical strength of bone scaffolding is largely determined by 

its degradation behavior, especially to the completion of the healing process of bone tissue.  Finally, this 

method provides the basic features of the proposed framework for the optimal design of a porous 

scaffolding macro structure taking into account its degradation behavior. 

 

2.  Material and Method 

2.1.  3D-Model Preparation and Characterization 

Three-dimensional of porous pure iron models are generated using a computer-aided design (CAD) 

software into cuboid-shaped with model measuring 5 x 5 x 3 mm. The percentage porosity of the model 
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is varied and the pore size is 800 µm demonstrated in Figure 1. The morphological parameters of the 

model calculated using software commands are presented in Table 1. 

 
Figure 1. Three different morphologies of porous model: A) 30%, B) 41%, C)55% porosity [24] 

 

Table 1. The morphological parameters detail of the CAD models 

Model Porosity, p (%) Surface Area (mm2) Volume (mm3) Height (mm) Mass (mg) 

A 30 % 189.30 52.87 5 416.08 

B 41% 209.81 45.57 5 350.76 

C 55% 225.75 33.83 5 266.24 

*density of pure iron 𝜌 =7.87 g/cm3  

2.2.  Degradation rate of pure iron 

Biodegradation rate of pure iron demonstrated in Figure 2. The degradation rate of pure iron can be 

expressed using logarithmic regression functions. This function scales the degradation rate of pure iron 

[25] according to the time of immersion [24]. 
 

  
Figure 2. Degradation rate of pure uncoated pure Fe is taken from Huang et al. [25] 

 

The logarithmic regression model equation that shows the correlation between the degradation time and 

the degradation rate can be represented as follows: 
 

Degradation rate = 0.033 ln (degradation time) + 0.036                             (1) 

 

Using logarithmic regression model, 𝑊𝑓 model based on degradation has been obtained [26].  

 

∆𝑊𝑚 =
𝑊𝑜−𝑊𝑓

𝐴𝑡
         (2) 
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𝑊𝑓 =  𝑊𝑜 − (∆𝑊𝑚 ∗  At)           (3) 

 

Where ∆𝑊𝑚 is degradation rate value, 𝑊𝑓 and  𝑊𝑜 are weight model after and before degradation 

respectively, A is surface area in contact with SBF is similar to the exposed surface area of the model in 

mm2, and t is time of exposure in days. Finally, the volume after degradation was calculated using 

equation as follow: 

 

𝑉𝑓  = 
𝑊𝑓

𝜌
           (4) 

2.3.  3D-Model Preparation and Characterization 

Two basic mechanisms of degradation are usually distinguished. Surface erosion and bulk degradation. 

For Fe-based biodegradable alloy, the ideal degradation process under immersion in Hank’s solution 

has been addressed in previous research [27]. Theoretically, localized degradation of pure iron is more 

likely to occur in a high chloride ion concentration solution and in crevices. In addition, a non-uniform 

stress distribution at different points along a bone scaffold is a potential factor influencing the induction 

of localized degradation. To enhance general degradation in the living tissue, two kinds of improvements 

might be helpful, as shown in the idealized degradation process in Figure 3. A Pits should be formed as 

much as possible during formation and propagation stages. As the time goes on and the pits grow, they 

will become connected, forming and degraded surface. General degradation can be achieved as all 

metals beneath are in the same degradation product covered condition. Decreasing the pitting potential 

or introducing a widespread secondary phase intermetallic network is possible way to realize this ideal 

degradation process. Furthermore, in section B, the pits grow in the horizontal direction. It is hard pits 

to grow in this way because of the self-catalytic mechanism of iron degradation. The inhibition of 

localized acidification and increasing the degradation potential of the degradation products could be 

trying to solve this problem.  

 

 
Figure 3. Schematic diagram for ideal degradation process Fe-based biodegradable alloys in Hank’s 

solution [27] 

 

In order to develop a degradation simulation of porous iron scaffolds, we assumed the material undergo 

ideal degradation process, which is manifested in the gradual thinning of the scaffolds without localized 

degradation. This investigation considers surface erosion, which is better suited to describe the 

degradation behaviour of pure iron scaffolds. The schematic diagram process to obtain 3D degradation 

model of porous iron scaffold is illustrated step-by-step in Figure 4. The geometric images of CAD 

models with a resolution of 3316 x 5530 pixels are captured layer by layer with a thickness of 0.02 mm 

using the software command. The purpose of this method is to replace a function of the μCT scanning 

technique. The µCT scanning technique has been used in tissue engineering to aim the scaffold 

evaluation /tissue integration, tissue formation and scaffold degradation [28].  After that, the images are 



FIRST 2019

Journal of Physics: Conference Series 1500 (2020) 012023

IOP Publishing

doi:10.1088/1742-6596/1500/1/012023

5

 

 

 

 

 

 

 

transformed into binary form or simply black and white voxel using image J software. Segmentation or 

thresholding procedure is conducted by using MIMICS (Materialise, Leuven, Belgium) to select the 

region of interest (ROI) area. Furthermore, 2-D morphological erosion command is applied to decrease 

pixel number of the images model. This erosion process is iteratively adjusted with increasing number 

of pixels to erode the images model until the volume scaffold after reconstruction Vdm matches with the 

model volume Vmc which underwent the mathematical calculation. In this work, the 3D model 

degradation simulation was set for 28, 68, 90, and 135 days respectively. 
 

 
Figure 4. Schematic diagram simulation process to obtain degradation model of porous iron scaffold 

 

Finally, the 3D reconstruction model is obtained with the 3D mask calculate software command and the 

tabulation results of degradation simulation can be shown in Table 2. 
 

Table 2. The morphology indices of pure iron bone scaffold before and after degradation simulation 

Model Time, (days) BV TV BV/TV Porosity (%) 

A 

0 52.5521 

75 

0.70069 29.93053 

28 51.689341 0.68919 31.08087 

68 50.05806 0.66744 33.25592 

90 48.97895 0.65305 34.69473 

135 46.31015 0.61746 38.25313 

B 

0 44.43369 

75 

0.59244 40.75508 

28 43.38259 0.57843 42.15654 

68 41.43564 0.55247 44.75248 

90 40.14729 0.53529 46.47028 

135 37.59306 0.50124 49.87592 

C 

0 33.77488 

75 

0.45033 54.96682 

28 32.77892 0.43705 56.29477 

68 30.31739 0.40423 59.57681 

90 29.10741 0.38809 61.19012 

135 26.14338 0.34857 65.14216 
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2.4.  Finite Element Simulation 

Finite element simulation is a numerical model to analyse the mechanical characterization of porous 

iron scaffold using a virtual model. By using this approach, modulus of elasticity, yield strength (𝜎𝑦𝑠), 

stress distribution, and deformation of the sample can be obtained. 

2.4.1.  Material and Model. In order to calculate the structure properties of the porous scaffold model 

using numerical simulation, the mechanical properties of solid pure iron are used in this scope of the 

investigation. Mechanical properties data of commercially available pure iron rod with 99.8% purity 

(made by Goodfellow Inc, Cambridge, UK) as shown in Table 3 [30]. 

 

Table 3. The mechanical properties of Fe (made of Goodfellow Inc, Cambridge, UK) [30] 

Density  (g/cm3) Elastic Modulus (GPa) Poisson’s ratio Yield Strength ys (MPa) 

7.87 200 0.3 150 

 

2.4.2.  Boundary Condition and Evaluation. The reconstruction of 3D model scaffold before and after 

degradation were exported to finite element analysis using MSC.Marc® integrated by a user subroutine. 

Finite element analysis in the present investigation to imitate quasi-static compression in order to 

determine the structural properties of the porous iron. The boundary conditions of all models 

demonstrated in Figure 5. A time-dependent displacement boundary condition was defined on the top 

surface to simulate the moving load cell of an experimental test rig. In addition, a fix-displacement 

boundary condition in the y-direction is assigned the opposite surface in its normal direction but x and 

y-direction move freely inside the x-y plane. The model is fixed in the y-direction at the bottom and a 

uniform compressive strain limit  = 0.3 is applied to the top surface of the model to mimic in vitro 

experimental testing conditions. 

 

 
Figure 5. Schematic illustration of boundary conditions applied to the numerical model 

 

As validation requirement, the boundary condition is valid according when the experimental and 

simulation line on stress-strain curve is coincide the each other. Meanwhile as shown in Figure 6, the 

stress-strain curve of solid pure iron under compressive load has a good agreement between simulation 

and experimental data on the slope of the elastic region. As a result, this boundary condition is applied 

for simulate the mechanical properties of porous scaffold model before and after degradation. 
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Figure 6. Comparison of Stress-Strain curve between the finite element simulation and the 

experimental of bulk pure iron specimen 
 

3.  Results and Discussion 

3.1.  The stress-strain curve 

The quasi-static compressive stress-strain curve of porous pure iron with different porosities have been 

obtained from numerical simulation which is ilustrated in Figure 7. The stress strain curves are 

represented by different line color types namely red, blue, magenta, cyan, and black for 0, 28, 68, 90, 

and 135 days respectively. It can be observed that the stresses gradually decrease as the degradation 

time increase due to increasing porosity caused by surface erosion. This phenomenon may arise from 

the fact that the porosity, p increases from A (p = 29.93%) – C (p = 54.96). The linear correlation between 

mechanical properties and porosity is widely documented in the literature for metallic foams and porous 

biomaterials [30][31]. 

 

 
Figure 7. Stress-strain curves from finite element simulations. 

 

Using stress-strain data in Figure 7, elastic modulus E, and yield strength 𝜎0.2 can be determined. The 

summary of mechanical properties of all models are illustrated in Figure 8. In general, all mechanical 

properties are gradually decrease in similar pattern. The result shows that the mechanical response 

appears to weaken with increasing the degradation time in simulation before-after degradation. A logical 

explanation of this behaviour is may due to eroded struts and thin walls, which deteriorate the 

mechanical integrity of the scaffolds as demonstrated in Figure 10. In yield strength, the values of the 

initial scaffolds are in the range of 54.96 – 87.74 MPa. The maximum value belongs to model A (87.74 
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MPa) and the minimum value corresponds to model C (54.967 MPa). In elastic modulus, the values of 

the initial scaffold are in the range 28.7, 21.8, and 16.9 GPa for model A, B and C respectively. 

Furthermore, the ordered and controllable porous structure techniques for elastic modulus of the porous 

FE scaffold can be controllable precisely by adjusting the porosity and arranging the pores [33,34].  In 

this study, the elastic modulus of porous Fe scaffolds has been similar with the cancellous bone structure 

based on different anatomical site in previous investigation. Such as, human cancellous bone in proximal 

tibia (23.6 ± 3.34 GPa), greater trochanter (24.4±2.0 GPa), for femoral neck (18 ± 2.8 GPa) [35], for 

human femur (17.5 ± 1.12 GPa), distal femur (18.1 ±1.7 GPa) [36], femoral head (21.8±2.9 GPa), femur 

trochanter (21.3±2.1 GPa) [37] and (19.4±2.3 GPa) for tibia/vertebrae [38]. This information is crucial 

in order to apply the bone scaffold for load bearing purposes. In fact, one possible implant loosening 

mechanism that followed to stress shielding effect, poor osteointegration and bone resorption is 

incompatibility between elastic modulus of bone scaffold and cancellous bone [39]. In additional, the 

mechanical properties reduced after model degrades for 28, 68, 90, and 135 days respectively. It can be 

concluded that porous pure iron scaffolds begin to lose their structural integrity proportional to the 

increasing degradation period. 

 
Figure 8. Elastic modulus and yield strength determined by simulation  

 

Furthermore, the effect of morphological changes on the elastic modulus of porous scaffold had strong 

correlation as demonstrated in Figure 9. The alteration of porous scaffold due to degradation has caused 

large changes to the specimen with a higher percentage of porosity [40]. Consequently, the degradation 

has weakened the struts of the structure and it could be reduced the stiffness of scaffold that indicated 

by the decrease of elastic modulus (see Figure 10). Unfortunately, degradation simulation was assumed 

ideal degradation process without localized degradation caused by high CL- concentration, non-uniform 

stress and crevice. This degradation phenomenon is impossible to occur when scaffold implanted into 

bone tissue environment with different flow rate in bone marrow [41]. 

 
Figure 9. the effect of morphological changes (BV/TV & porosity) on the elastic modulus of porous 

scaffold 
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The fracture characteristic of porous scaffold before and after degradation can be shown in Figure 10 

denoted by dash line and high principal elastic strain. The characteristic of fracture is similar to actual 

cancellous bone indicated by global fracture [42], this could represent the damage behavior of the 

scaffold once implanted to prevent different directional stress effects.  

 

 
Figure 10. Contour plots of the fracture pattern a) before and b) after degradation simulation. 

4.  Conclusion 

In this study, the mechanism of degradation has been simulated using phenomenological methods to 

predict surface erosion at various stages due to immersion in body fluids. Mechanical porous 

degradation of Fe has been discussed in this paper using numerical analysis based on finite element 

analysis. General mechanical properties (elastic modulus and yield strength) are reduced by ~ 19% from 

the initial state when the sample reaches a 135 days degradation period. The results showed that the 

mechanical properties and morphological parameters had a good correlation with R2 = 0.98. Finally, a 

detailed fracture characteristic analysis is performed on the model based on finite element analysis. The 

characteristics of a fracture are similar to the actual cancellous bone shown by global fractures. 
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