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Résumé: Cet article analyse des problèmes d’appariement dynamiques quand les agents reçoivent 
successivement différents objets (positions, bureaux..) un ensemble fini de n objets 
indivisibles sont attribués à n agents qui vivent durant n périodes. A chaque période, un 
nouvel agent entre et l’agent le plus âgé quitte la société, libérant l’objet qu’il détient. Nous 
définissons les règles d’appariement indépendantes (quand l’attribution d’un objet à un agent 
est indépendante des attributions aux autres agents), les règles d’appariement efficaces (quand 
il n’existe pas de règle alternative qui augmente le surplus total) et les règles d’appariement 
justes (qui traitent de façon égale dans le long terme deux agents qui sont identiques). Quand 
les agents sont homogènes, nous caractérisons les règles indépendantes, efficaces et justes 
comme une combinaison convexe de règles de position et d’ancienneté. Quand les agents 
tirent de façon aléatoire leurs types, nous montrons qu’indépendance et efficacité sont 
incompatibles, et qu’il n’existe pas de règles efficaces et justes qu’il existe plus de deux types 
d’agents. Nous montrons que deux règles simples (les règles type-position et type-séniorité) 
sont à la fois efficaces et justes dans les sociétés dichotomiques. 

 
Abstract: We analyze dynamic assignment problems where agents successively receive different objects 

(positions, offices, etc.). A finite set of n vertically differentiated indivisible objects are 
assigned to n agents who live n  periods. At each period, a new agent enters society, and the 
oldest agent retires, leaving his object to be reassigned.  We define independent assignment 
rules (where the assignment of an object to an agent is independent of the way other objects 
are allocated to other agents), efficient assignment rules (where there does not exist another 
assignment rule with larger expected surplus), and fair assignment rules (where agents 
experiencing the same circumstances have identical histories in the long run). When agents 
are homogenous, we characterize efficient, independent and fair rules as generalizations of the 
seniority rule. When agents draw their types at random, we prove that independence and 
efficiency are incompatible, and that efficient and fair rules only exist when there are two 
types of agents. We characterize two simple rules (type-rank and type-seniority) which satisfy 
both efficiency and fairness criteria in dichotomous settings 
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1 Introduction

This paper considers assignment rules to allocate a fixed number of vertically
differentiated objects to an overlapping population of economic agents. These
allocation problems arise frequently in organizations where exit and entry of
new members lead to a reassignment of fixed resources like positions, offices,
housing, priority rank, etc.. For example, how should one allocate the office of
a faculty member who retires or leaves an academic department? How should
one post career diplomats across embassies whose ranking by importance is
commonly accepted? How should one transfer high level bureaucrats or high
school teachers across regions in a centralized bureaucracy? How should one
allocate campus housing among generations of students? How should one
choose the priority sequence in serial dictatorship systems like the one used
by airline pilots to select routes and schedules every month?

While all these assignment problems share a common structure, the al-
location rules used in practice vary widely. In order to limit moving costs,
department chairs will often choose to assign the offices of departing faculty
members to newcomers, a rule that we will label the replacement rule. Career
diplomats often climb up the hierarchy of diplomatic posts by being assigned
to an embassy which is one step up the ladder, a rule that we will label the
rank rule. Slots in campus dormitories are usually allocated according to
random serial dictatorship: an ordering of students is picked at random, and
students choose sequentially following this order. When all students agree
on the ranking of the dormitories, this allocation method is equivalent to the
uniform rule, where every agent has the same probability of receiving the ob-
ject. Finally, airline pilots select routes and schedules according to a seniority
rule, where the pilots’ priority ranks are determined by the seniority list.1

High level bureaucrats and high school teachers are transferred according to
complex priority systems, taking into account seniority, on-the-job seniority
and merit.2

In this paper, our objective is to characterize efficient and fair assign-
ment rules in allocation problems with overlapping generations of agents.
We first consider a model with homogeneous agents. In this environment, all

1The pilots’ seniority lists is of paramount importance in many airlines. For example,
the planned merger between Delta and Northwestern failed because pilots could not agree
on the merger of the seniority lists of the two companies. See “NWA pilots set merger
conditions,” Minneapolis Star Tribune, January 18, 2008.

2See the illuminating account of the transfer of members of the Indian Administrative
Service in Iyer and Mani (2008). The transfer of high school teachers in France, a concrete
assignment problem which motivated one of us to undertake this study, is explained in
detail in Appendix A.
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assignments generate the same value and are equally efficient, and we focus
attention on fair rules which guarantee that in the long run all agents expe-
rience the same history. We prove that both the rank and the seniority rules
are fair, but the replacement and uniform rules are not. We characterize a
one-parameter family of rules (which are convex combinations of rank and
seniority rules) as the unique fair assignment rules for which the assignment
of an object to an agent is independent of the way other objects are assigned
to other agents. We also analyze a model with heterogeneous players with
different productivity levels. In this setting, optimal matchings are assorta-
tive and assign higher ranked objects to more productive agents. However,
individual rationality constrains the reassignment of objects as agents cannot
be forced to accept an object of lower rank than the one they currently hold.
Taking this constrain into account, we characterize efficient allocation rules
as lexicographic assignments where objects are first allocated according to the
agents’ productivity levels. If there are more than three levels of productivity,
these efficient rules cannot be fair, and generate trajectories where different
agents who were born and lived in societies characterized by the same dis-
tribution of agents’ productivity levels, experience different histories. The
incompatibility between efficiency and fairness does not arise in dichotomic
societies where the type-rank and type-seniority rules, which allocate goods
lexicographically, first taking into account an agent’s productivity, and then
selecting according to the rank or seniority rules among agents of the same
productivity, are both efficient and fair.

Our characterization of efficient and fair assignment rules relies on the
analysis of the dynamical system of assignments among overlapping agents.
Because agents can always choose to keep the object they currently hold,
the current assignment constrains the allocation of objects in future periods,
generating the dynamics of the model. Each assignment rule gives rise to
a finite Markov chain over the set of allocations. When the Markov chain
is convergent, (or quasi-convergent in a model where the drawing of agents’
productivity levels creates an exogenous source of randomness in the sys-
tem), the dynamical system will eventually reach a steady state, at which
point all agents will experience the exact same history. We thus interpret as-
signment rules which generate convergent and quasi-convergent rules as fair
allocation rules. In the simpler case of homogeneous agents, we also investi-
gate other dynamical properties of the system, providing sufficient conditions
for assignment rules to be ergodic (generating a long run behavior which is
independent of the initial conditions) or irreducible (achieving a long run
distribution where all assignments have positive probability). While some of
our results are general and apply to all assignment rules, others are obtained
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for the special class of independent assignment rules, where the allocation of
an object to an agent is independent of the way other objects are allocated
to the other agents.

The intuition underlying our characterization of efficient and fair Marko-
vian assignment rules can easily be grasped. When agents are homogeneous,
the only candidate for a steady state of the dynamical system is a monotonic
allocation, where older agents receive objects of higher rank. This mono-
tonic allocation is an absorbing state of the Markov chain for the seniority
and rank rules, but not for the uniform or replacement rules. Furthermore,
it is easy to check that, starting from any initial condition, the rank and
seniority rules lead to this monotonic allocation in a small number of steps,
so that the Markov chain on assignments generated by these rules is conver-
gent. The rank rule also satisfies the property of independence, and we show
that the family of independent rules generating convergent Markov chains is
a slight generalization of the rank rule, which allocates any object but the
highest according to the rank rule, and allocates the highest object through
a convex combination of the rank and seniority rules. When agents are het-
erogeneous, the incompatibility of fairness and efficiency is explained by the
fact that allocations must be path dependent. Efficiency and individual ra-
tionality typically constrain the assignments along different trajectories of
the dynamical system, and may generate different assignments for the same
distribution of agent’s productivity levels. When productivity levels can only
take on two values, this path dependence disappears. Any efficient assign-
ment partitions the set of objects into two classes, assigning higher objects to
high productivity agents and lower objects to low productivity agents. When
objects inside each class are allocated according to the seniority or rank rules,
the dynamical system converges to assignments which respect the two-class
structure, and allocate objects inside each class in a monotonic way.

In its vast majority, the literature on matching and allocation rules only
considers static assignment problems (See Roth and Sotomayor (1990) and
Thomson (2007) for exhaustive accounts of the literature on matching and
allocation models respectively). In matching markets where agents enter/exit
the market, Blum et al. (1997) and Cantala (2004) study the re-stabilization
process triggered by such disruptions. The individual rationality condition,
which is central to our analysis, was introduced by Abdulkadiroglu and
Sönmez (1999) in the context of house allocations and incorporated to senior
matching markets in Cantala and Sanchez (2008). Moulin and Stong (2002)
and (2003) analyze a problem of allocation of balls to different urns which
bears some resemblance to the problem of allocation of objects to agents with
different ages.
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Very recently, there have been various attempts to embed assignment
problems in dynamic contexts.3 Ünver (2008) analyzes kidney exchange in
a dynamic framework, where pairs of kidney donors-recipients enter and
exit the pool of matchable agents according to a random Poisson process.
In a context where side-payments are allowed, Parkes and Singh (2003),
Athey and Segal (2007), Bergemann and Valimäki (2006) and Gershkov
and Moldovanu (2008a, 2008b) study dynamic assignment problems, where
agents enter sequentially, and participate in a Vickrey-Clarke-Groves revela-
tion mechanism which determines transfers and good allocations. They show
that Vickrey-Clarke-Groves mechanisms and optimal stopping rules can be
combined to obtain efficient dynamic mechanisms. In these models, objects
can only be assigned once at the time of entry. Abdulkadiroglu and Loerscher
(2007) analyze a dynamic version of the school choice problem, explicitly al-
lowing for reallocation of students to schools and for a dynamical linkage
between the different allocations. In their model, individual rationality con-
straints are not present, and the set of agents is fixed. Finally, Kurino (2008)
analyzes a dynamic model of house allocation with overlapping agents. His
starting point is very close to ours – he studies dynamic reallocation of cam-
pus housing with overlapping generations of students – but his modeling
strategy is very different. He bases his analysis on a dynamic extension of
Abdulkadiroglu and Sönmez (1999)’s study of housing allocation with ex-
isting tenants, and checks whether the rules analyzed by Abdulkadiroglu
and Sönmez (1999) in a static setting keep the same efficiency and incentive
properties in a dynamic environment.

The rest of the paper is organized as follows. We present an illustrative
example with three agents and three objects in Section 2. The general model,
notations and definitions are introduced in Section 3. Section 4 is devoted to
the analysis of the model with homogeneous agents, and Section 5 considers
the model with heterogeneous agents. Section 6 contains our conclusions and
directions for future work.

3There is also an older literature in operations research and management which has
studied dynamical control of matching processes. See for example Talluri and Van Rysin
(2004) for an introduction to the literature on dynamic pricing and revenue management
and Bartholomew (1982) and Nilakantan and Ragavhendra (2005) for an account of the
literature on manpower planning.
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2 An illustrative example

We introduce the main concepts and results of our analysis with an illustra-
tive example. Suppose that there are three objects to be allocated, j = 1, 2, 3.
Agents are homogeneous and have the same ranking for the objects, prefer-
ring 3 to 2 to 1. Each agent lives for three periods and any period t, i = 1, 2, 3
denotes the ages of the agents in the system. An assignment is a bijection
between the set of agents and the set of objects. There are six possible
assignments:

µ1 : (1, 2, 3)

µ2 : (1, 3, 2)

µ3 : (2, 1, 3)

µ4 : (2, 3, 1)

µ5 : (3, 1, 2)

µ6 : (3, 2, 1).

In assignment µ1 (the “monotonic assignment”), the youngest agent gets
object 1, the middle agent object 2 and the oldest agent object 3. Assignment
µ6 is the reverse assignment, where the youngest agent gets the best object
and the oldest agent the worst. The other assignments can be described in
a similar way.

At any period, the oldest agent leaves the system and a new agent enters.
The object held by the oldest agent, µi(3) is then reassigned to one of the
agents in the system, according to the fixed assignment rule. This assignment
may trigger a cascade of reallocations: if the object is assigned to agent 2 or
agent 1, object µi(2) or µi(1) must in turn be reallocated. The cascade of
reassignments ends when the entering agent receives an object. By individual
rationality, agents cannot be forced to accept an object worse than the object
they currently hold. This implies that object j, can only be assigned to an
agent who holds an object j′ < j. The entering agent can receive any of the
objects j = 1, 2, 3.

For any allocation rule, this sequence of reallocations generates a Markov
chain over the set of assignments M = {µ1, µ2, µ3, µ4, µ5, µ6}. We now ana-
lyze the properties of this Markov chain for four natural assignment rules.
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2.1 The seniority rule

The seniority rule assigns any object to the oldest agent who can receive
it. The following example shows how one constructs a Markov chain for
this assignment rule. Suppose that the current assignment is the monotonic
assignment µ1. At the next period, object 3 is reassigned to the oldest agent
who holds object 2. In turn, object 2 is reassigned to the middle agent,
who holds object 1, and object 1 is finally reallocated to the entering agent.
This shows that, when the current state is µ1, the next state will also be µ1

with probability 1. The transition probability matrix of the Markov chain
generated by the seniority rule is given by:

P =


1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 1 0 0 0 0


The transitions between states are represented in Figure 1. The Markov

chain generated by the seniority rule is convergent: the system converges to
the steady state µ1 in at most two steps.

2.2 The rank rule

The rank rule assigns object j to the agent who holds object j − 1. The
transition probability matrix is given by:

P =


1 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 1 0 0 0 0


Figure 2 shows the transitions between states for the Markov chain gen-

erated by the rank rule. The dynamical properties of the Markov chain
generated by the rank rule are very similar to those of the Markov chain
generated by the seniority rule. The system converges to the steady state µ1

in at most two steps.4

4The only difference between the two dynamical systems is that it takes two steps to
go from µ3 to µ1 with the rank rule, and only one step with the seniority rule.
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2.3 The uniform rule

The uniform rule assigns object 3 with equal probability to all three agents,
object 2 with equal probability to the entering agent and the agent holding
object 1, and object 1 to the entering agent. We compute the transition
probability matrix of the uniform rule as:

P =



1
6

1
3

1
6

0 1
3

0
1
2

0 1
2

0 0 0
1
3

1
6

0 1
6

0 1
3

1 0 0 0 0 0
0 1

2
0 1

2
0 0

0 1 0 0 0 0


The transitions between states are given in Figure 3. One can easily

check that there is a path from any assignment to any assignment. Hence
the Markov chain is irreducible, and in the long run, the system converges to
an invariant distribution whose support is the entire set M.5 We compute
the invariant distribution as:

p1 =
36

127
' 0.28, p2 =

28

127
' 0.22, p3 =

30

127
' 0.24, p4 =

11

127
' 0.08,

p5 =
12

127
' 0.09; p6 =

10

127
' 0.07.

The invariant distribution puts the highest weight on the monotonic as-
signment µ1 and the lowest weight on the reverse assignment µ6.

2.4 The replacement rule

The replacement rule assigns any object to the entering agent, and generates
a Markov chain represented by the following transition probability matrix:

P =


0 0 0 0 1 0
0 0 1 0 0 0
0 0 1 0 0 0
0 0 0 0 0 1
0 0 0 1 0 0
0 1 0 0 0 0


5Any irreducible finite Markov chain admits a unique invariant distribution, which can

be computed by solving the equation: πP = π in π. (See e.g. Isaacson and Masden (1976),
Theorem III.2.2 p. 69)
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The Markov chain generated by the replacement rule results in two cycles,
as illustrated in Figure 4. This Markov chain is not ergodic: the long run
behavior of the system depends on the initial conditions.

2.5 Discussion

The study of the four natural assignment rules shows that two rules are
convergent (the seniority and rank rules), one is irreducible (the uniform
rule) and one is nonergodic (the replacement rule). In the long run, the rank
and seniority rule guarantee that every agent in the system will experience
the same history, receiving object 1 when young, then object 2 and object
3 when old. By contrast, neither the uniform rule nor the replacement rule
guarantee that two agents born at different times will experience the same
history in the long run. When objects are allocated uniformly (a mechanism
which may at first glance appear to be “fair” but in fact results in inequitable
outcomes), with positive probability, some agents may enjoy object 3 for the
three periods, whereas other agents will keep object 1 for their entire life.
The same inequitable outcomes arise with the replacement rule, where two
agents born at successive dates will experience very different histories, as
agents keep the same object throughout their entire life.

3 The Model

3.1 Markovian assignment rules

3.1.1 Agents and goods

We consider the allocation of n vertically differentiated indivisible goods to
overlapping generations of agents. Time is discrete and runs as t = 1, 2, ....
The set of goods is denoted J , and j = 1, 2, ...n indexes the qualities of the
goods.

Agents live for exactly n periods, and enter and exit society one by one.
Hence, at any period t, there are exactly n agents present in the society. We
let I denote the set of agents, and i = 1, 2, ..., n be the index of an agent’s
age or cohort.

We consider two models: one where agents are homogeneous and are only
indexed by their age i, and one where agents are heterogeneous, draw in-
dependently a productivity k in the set K = {1, 2, ...,m} according to the
probability distribution q(k). In heterogeneous societies, agents are charac-
terized by the pair (i, k). Alternatively, we can define the mapping θ, from

8



I to K, assigning a productivity to agents according to their age in every
society. When agents are heterogeneous, we assume that the surplus of a
match, σ(j, k) is an increasing, supermodular function of agent’s types and
goods’ qualities:

σ(j′, k) > σ(j, k) for all j′ > j,

σ(j, k′) > σ(j, k) for all k′ > k,

If k′ ≥ k and j′ > j, then σ(k′, j′) + σ(k, j) ≥ σ(k′, j) + σ(k, j′),

with strict inequality when k′ > k. Hence, total surplus is maximized when
the matching is assortative, assigning higher objects to agents of higher pro-
ductivity.

3.1.2 Assignments

Definition 1 An assignment µ is a bijection from I to J assigning to every
agent i the object j = µ(i). Given that I and J have the same cardinality, an
assignment can be identified with a permutation over the finite set {1, 2, ...n}.

The set of all assignments is denotedM. A state s in the economy is de-
fined both by an assignment µ and a type profile θ, s = (µ, θ). Hence, for each
type profile, there are n! states in a society of n agents, each corresponding
to a different permutation over the finite set {1, 2, ...n}.

We now consider the dynamical structure of assignments. Let µt−1 denote
the assignment of the economy at date t− 1. At the end of period t− 1, the
oldest agent alive in period t − 1, n, relinquishes object µt−1(n) and leaves
the society. A new agent, 1, enters at t with no object – by convention we
denote the null object by 0 – and agents i = 2, 3, ..., n retain the objects they
were assigned in the previous period, µt−1(i− 1).

Definition 2 A truncated assignment ν is an injection from I to J ∪ {0},
such that

• For all agents i 6= 1, ν(i) ∈ J ,

• ν(1) = 0

9



A truncated assignment specifies the goods held by all agents but the
entering agent in society, and assigns the null object to the entering agent.
Clearly, for any truncated assignment ν, there is a unique object j which is
unassigned, such that ν−1(j) = ∅. At the beginning of period t, the truncated
assignment verifies ν(i) = µt−1(i − 1) for agents i = 2, ..., n and ν(1) = 0
with object j = µt−1(n) unassigned. It will be assigned to one of the current
members of society according to an assignment rule α. This, in turn, will
free a new object to be reassigned, etc.. The cascade of re-assignments will
end when the entering agent is assigned an object. We consider well-defined
assignment rules, namely rules such that the re-assignement process does not
cycle.

3.1.3 Assignment rules

We impose two restrictions on assignment rules. First, we suppose that
agents cannot be forced to give back their current object, and can only re-
ceive an object which is better than the one they currently hold.6 Second,
we focus on assignment rules which only depend on the current truncated
assignment of objects to agents, and not on the entire history of assign-
ments.7 Assignment rules which possess this Markovian property are called
Markovian assignment rules. Formally, we define:

Definition 3 A Markovian assignment rule is a collection of probability dis-
tributions αj(ν, θ, i) in [0, 1]n, describing the probability that agent i receives
object j, given the truncated assignment ν (such that ν−1(j) = ∅) and the
type profile θ. Moreover,

∑
i|ν(i)<j αj(ν, θ, i) = 1.

3.1.4 Examples of Markovian assignment rules

We now describe examples of Markovian assignment rules. The four assign-
ment rules for homogeneous agents discussed in the previous Section can now
formally be defined:8

6This assumption is of course an extreme simplification. It captures the idea that
demotions and promotions are asymmetric, and that it is easier to promote than to demote,
or that demotion incurs high costs.

7Notice that some common rules are not Markovian. For example, rules based on on
the job seniority require information about the number of periods during which agent i has
owned object j, an information which cannot be recovered from the current assignment ν.

8When agents are homogeneous, we omit the type profile θ in order to simplify nota-
tions.
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The seniority rule assigns object j to the oldest agent with an object smaller
than j, αj(ν, i) = 1 if and only if i = max{k|ν(k) < j}.

The rank rule assigns object j to the agent who currently owns object j− 1,
αj(ν, i) = 1 if and only if ν(i) = j − 1.

The uniform rule assigns object j to all agents who own objects smaller than
j with equal probability, αj(ν, i) = 1

|{k|ν(k)<j}| for all i such that ν(i) < j.

The replacement rule assigns object j to the entering agent, αj(ν, i) = 1 if
and only if i = 1.

When agents are heterogeneous, an important class of assignment rules
are type-lexicographic rules which assign objects using productivity as the
first criterion.

Definition 4 A Markovian assignment rule α is type-lexicographic if, for
any j, ν and θ, αj(ν, θ, i) > 0⇒ θ(i) ≥ θ(k) ∀k, ν(k) < j.

The type-seniority and type-rank are two examples of type-lexicographic
rules, which assign objects among agents with the same productivity accord-
ing to seniority and rank respectively:

The type-seniority rule is defined by αj(ν, θ, i) = 1 if θ(i) ≥ θ(k) for all k
such that ν(k) < j and i > l for all l such that θ(l) = θ(i) and ν(l) < j.

The type-rank rule is defined by αj(ν, θ, i) = 1 if θ(i) ≥ θ(k) for all k such
that ν(k) < j and ν(i) > ν(l) for all l such that θ(l) = θ(i) and ν(l) < j.

3.2 Markov processes generated by assignment rules

Given an assignment rule α and a probability distribution q over types, we can
compute the transition probability from state s = (θ, µ) to state s′ = (θ′, µ′):

• First, the conditional probability of type profile θ′ given type profile θ
is given by:

q(θ′|θ) = q(k) if θ′(1) = k, θ′(i) = θ(i− 1), i = 2, ..., n,

q(θ′|θ) = 0 otherwise.

• Second, given the new type profile θ′, and the assignment rule α, con-
struct sequences of reassignments defining the probability of reaching
state µ′ from state µ, p(µ′|µ) as follows:

11



1) Consider the sequence of agents i0 = n + 1, i1 = µ′−1(µ(i0 − 1)), ..., im =
µ′−1(µ(im−1 − 1)), ..., iM = 1. This sequence of agents corresponds to the
unique sequence of reallocations of goods for which society moves from as-
signment µ to assignment µ′. First, the good held by the last agent at date
t, µ(n) is assigned to agent i1 = µ′−1(µ(n)). Then the good held by agent
i1 at period t+ 1 (or by agent i1 − 1 at period t) is reallocated to the agent
i2 = µ′−1(µ(i1−1)), etc. The process continues for a finite number of periods
until a good is assigned to agent iM = 1, after which no other good can be
reallocated.
2)The probability of reaching µ′ from µ is thus simply the probability that
the sequence of reallocations of goods between agents i0, ..., iM is realized:

p(µ′|µ) =
M−1∏
m=0

αµ(im−1)(ν
m, θ, im+1) (1)

where νm(i) = µ(i− 1) for i 6= it, t = 1, 2, ...,m and νm(i) = µ′(i) for i = it,
t = 1, 2, ...,m.

Hence the transition probability from state s = (θ, µ) to state s′ = (θ′, µ′)
is q(θ′|θ)p(µ′|µ).

It is interesting to note that while any assignment rule α generates a
unique Markov process on the set of assignments and type profiles, the con-
verse statement is not true. One can easily construct Markov processes over
the set of states which cannot be generated by Markovian assignment rules,
as shown by the following example.9

Example 1 Consider three homogeneous agents, and consider a Markov
process over states such that p(µ1|µ1) = 1 and p(µ3|µ2) = 1. Let the trun-
cated assignment be given by ν(1) = 0, ν(2) = 1 and ν(3) = 3. Because
p(µ1|µ1) = 1, we must have α2(ν, 2) = 1. However, because p(µ3|µ2) = 1 we
must also have α2(ν, 1) = 1, a contradiction.

3.3 Efficiency and Independence

3.3.1 Efficient assignment rules

When agents are heterogeneous, the total surplus varies with the assignments,
and different assignment rules result in different total surpluses. We define
a notion of efficiency of assignment rules, based on the following (static)
criterion.

9We are indebted to Nicolas Houy for this example.
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Definition 5 An assignment rule α is efficient if there does not exist another
assignment rule α′, such that, for every state s = (µ, θ)

∑
θ′

∑
µ′

∑
i

q(θ′|θ)p′(µ′|µ)σ(θ′(i), µ′(i)) ≥
∑
θ′

∑
µ′

∑
i

q(θ′|θ)p(µ′|µ)σ(θ′(i), µ′(i)),

with strict inequality for some state.

Some remarks are in order. First, because the assignment rule α can be
made conditional on the type profile θ′, definitions of efficiency ex ante and
at the interim stage (after the type profile θ′ has been drawn), are equiva-
lent.10 Second, this definition of efficiency is static, and only considers total
surplus at the next step of the Markov chain, and not the surplus generated
by the two assignment rules α and α′ along the entire path of the Markov
chain, or in the long run. Third, by using this definition we impose the same
constraint on the assignment rules α and α′, and in particular, we do not con-
sider efficiency improving reassignments which would violate the individual
rationality condition, namely the fact that an agent holding object j cannot
be reassigned an object of value smaller than j. Finally, when agents are
homogeneous, any assignment rule is efficient.

3.3.2 Independent assignment rules

A Markovian assignment rule may condition the assignment of object j to
agent i on the objects currently held by the other agents (the truncated as-
signment ν) and the the profile. A simple property of Markovian assignment
rules is independence, stating that the assignment of object j to player i does
not depend either on the current assignment of objects held by the other
players, nor on their types:

Definition 6 A Markovian assignment rule α ∈ M satisfies independence
if, for any i, j, ν, ν ′ such that ν(i) = ν ′(i), ν−1(j) = ∅, and θ(i) = θ′(i) ,
αj(ν, θ, i) = αj(ν

′, θ′, i).

The independence property is appealing because it states that an agent’s
assignment only depends on his characteristics (age, productivity, and object
currently held) and not on the characteristics of the other agents. A stronger
independence property states that an agent’s assignment is also independent
of his age:

10This is reminiscent of the equivalence between the definition of Bayesian equilibria
using ex ante or interim calculations. See Fudenberg and Tirole (1991) p. 215.
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Definition 7 A Markovian assignment rule α ∈ M satisfies strong inde-
pendence if, for any i, j, k, ν, ν ′ such that ν(i) = ν ′(k), ν−1(j) = ∅, and
θ(i) = θ′(k) , αj(ν, θ, i) = αj(ν

′, θ′, k) ,

Notice that the rank, uniform and replacement rules are all strongly in-
dependent. The seniority rule is not independent, but satisfies a weaker
independence property, stating that the assignment αj(ν, i) only depends on
the truncated assignment of objects for agents who currently hold objects
smaller than j and are thus eligible to receive object j. Formally:

Definition 8 A Markovian assignment rule α ∈M satisfies weak indepen-
dence if, for any i, j, ν, ν ′ such that ν(i) = ν ′(i), ν(k) = ν ′(k) for all k such
that ν(k) < j, ν−1(j) = ∅, θ(i) = θ′(i), and θ(k) = θ′(k), for all k such that
ν(k) < j, αj(ν, θ, i) = αj(ν

′, θ′, i).

3.4 Fairness and Dynamical Properties of Markovian
rules

3.4.1 Fair assignment rules

We propose a definition of fairness based on the comparison of histories expe-
rienced by agents born at different times. An assignment rule will be called
fair if, in the long run, two agents born at different times in the same cir-
cumstances experience the same history. More precisely, we interpret “same
circumstances” as meaning that the agents belong to societies with the same
distribution of types throughout their lifetime. Formally,

Definition 9 An assignment rule is fair if for any two agents i and i′ en-
tering society at dates t and t′, any realization of type profiles such that
θt+ τ = θt′ + τ(i′) for τ = 0, 1, ..., n − 1, the assignment rule α generates
a deterministic sequence of assignments such that µt+τ (i) = µt

′+τ (i′) for
τ = 0, 1, ..., n− 1.

Our definition of fairness captures different aspects. First, it excludes
probabilistic rules because they generate different outcomes for identical
agents. Second, it guarantees that agents receive the same sequence of assign-
ments along their lifetime when they live in the same circumstances. Hence,
this definition compares deterministic trajectories rather than expected pay-
offs. In that sense, this is a stronger notion than a notion based on expected
lifetime outcomes. When agents are homogeneous, this definition of fairness
collapses into a simple requirement: an assignment rule is fair if it is deter-
ministic and guarantees the same sequence of assignments to all the agents.
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3.4.2 Convergent, ergodic, irreducible assignment rules

There is a close connection between the notion of fairness and convergence
of the Markov process generated by an assignment rule. In order to illus-
trate this connection, we first recall the definition of well-known dynamical
properties of Markov chains (See Kemeny and Snell (1960) or Isaacson and
Madsen (1976)).

Definition 10 Two states s and s′ intercommunicate if there exists a path
in the Markov chain from s to s′ and a path from s′ to s.

Definition 11 A set of states C is closed if, for any states s ∈ C, s′ /∈ C,
the transition probability between s and s′ is zero.

Definition 12 A recurrent set is a closed set of states such that all states
in the set intercommunicate. If the recurrent set is a singleton, it is called
an absorbing state.

With these definitions in hand, we can define dynamical properties of the
Markov chains generated by the assignment rule:

Definition 13 A Markovian assignment rule α is irreducible if the induced
Markov chain is irreducible (the only recurrent set is the entire state set).
A Markovian assignment rule α is ergodic if the induced Markov chain is
ergodic (has a unique recurrent set).11 A Markovian assignment rule α is
convergent if the induced Markov chain is convergent (admits a unique ab-
sorbing state, and any initial assignment converges to the absorbing state).

when agents are heterogeneous, while the notions of ergodic and irre-
ducible assignment rules are well defined, it is clear that assignment rules
are never convergent. The random drawing of the type of the entering agent
every period introduces a source of randomness in the Markov chain which
prevents the existence of absorbing states. However, distinguishing between
the two sources of randomness (one linked to the exogenous drawing of the
type of the entering agent every period, and one to the dynamics of reassign-
ments), we propose the following notion of quasi-convergence

11This definition of ergodicity does not agree with the definition given by Isaacson and
Masden (1976) who also require all recurrent states to be aperiodic, so that an invariant
distribution exists, nor with Kemeny and Snell (1960)’s definition where an ergodic Markov
chain is defined by the fact that the only recurrent set is the entire state set. For lack of
better terminology, we call ergodic a finite Markov chain such that the long run behavior
of the chain (whether it is a cycle or an invariant distribution) is independent of the initial
conditions.
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Definition 14 A Markovian assignment rule α is quasi-convergent if the
induced Markov chain has a unique recurrent set of nm states S such that,
for any s, s′ in S, θ(s) 6= θ(s′).

In words, a quasi-convergent Markov chain ultimately settles in a recur-
rent state, where a single assignment arises for every type profile θ. When
there is a unique type, this definition is of course equivalent to convergence
to a unique absorbing state. Quasi-convergent and fair allocation rules are
related by the following observation:

Remark 1 A Markovian assignment rule with heterogeneous agents is fair if
and only if any recurrent set S of the induced Markov chain contains exactly
nm states such that for any s, s′ in S, θ(s) 6= θ(s′).

Hence, any quasi-convergent assignment rule is fair; conversely, any fair
rule such that the long run trajectory of agents is independent of initial
conditions is quasi-convergent. In order to study fair allocation rules, we
will thus focus attention on convergent rules in the model with homogeneous
agents, and quasi-convergent rules in the model with heterogeneous agents.

4 Markovian assignment rules with homoge-

neous agents

In this Section, we study Markovian assignment rules when agents are homo-
geneous. We first characterize independent assignment rules, then analyze
the dynamical properties of the Markov chains generated by assignment rules.

4.1 Independent assignment rules

The following Lemma characterizes assignment rules satisfying independence,
and highlights the gap between independence and strong independence.

Lemma 1 If a Markovian rule α satisfies independence, then for any j < n,
ν, ν ′ and i, k such that ν(i) = ν ′(k), αj(ν, i) = αj(ν

′, k). Furthermore, for
any ν, ν ′ such that ν(i) = ν ′(j), ν(j) = ν ′(i),αn(ν, i) + αn(ν, j) = α(ν ′, i) +
αn(ν ′, j).

Lemma 1 shows that if a Markovian assignment rule satisfies indepen-
dence, the assignment of any object j < n is strongly independent, and fully
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determined by the probabilities αj(k) of assigning object j to an agent cur-
rently holding object k < j. However, this property does not hold for the
assignment of the highest object , n. For the assignment of the last object,
the only constraint imposed by independence is that, for any two assignments
which only differ in the positions of i and j, the total probability assigned
to agents i and j be constant. As the following simple example shows, there
exist assignment rules satisfying independence which allocate object n with
different probabilities to two agents of different ages holding the same object.

Example 2 Let n = 3. Consider the assignment of object 3 and the two
truncated assignments ν(2) = 1, ν(3) = 2, ν ′(2) = 2, ν ′(3) = 1. Independence
puts no restriction on the assignment rule α3, as there is no agent i for
which ν(i) = ν ′(i). Now, we must have: α3(ν, 1) + α3(ν, 2) + α3(ν, 3) =
1 = α3(ν

′, 1) + α3(ν
′, 2) + α3(ν

′, 3). This implies that the assignment rules
satisfying independence are characterized by three numbers, α3(ν, 1), α3(ν, 2)
and α3(ν

′, 2), but it does not imply that α3(ν, 2) = α3(ν
′, 3) nor α3(ν

′, 2) =
α3(ν, 3).

4.2 Convergent Markovian assignment rules

We first characterize convergent assignment rules. Recall that an agent is
never reassigned an object of lower value than the object she currently holds.
Hence, for any i = 1, ..., n− 1, µt+1(i + 1) ≥ µt(i). If an assignment µ is an
absorbing state, we must have

µ(i+ 1) = µt(i+ 1) = µt+1(i+ 1) ≥ µt(i) = µ(i). (2)

Hence, at an absorbing state, the assignment must be monotone, assigning
higher objects to older agents. The only monotone assignment is the identity
assignment ι for which ι(i) = i for all i = 1, ...n. Hence, the only candidate
absorbing state is the identity assignment ι.

Proposition 1 Both the seniority and rank assignment rules are convergent.

Proposition 1 shows that both the seniority and rank rules are convergent
and that the absorbing state is reached in at most n periods. Furthermore, a
careful inspection of the proof of the Proposition reveals that any Markovian
assignment rule which can be written as a convex combination of the rank and
seniority rule, is also convergent. However, the seniority and rank rules (and
their convex combinations) are not the only convergent rules. A complete
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characterization of convergent assignment rules is difficult, because the con-
dition guaranteeing that the identity assignment is absorbing only pins down
the assignment rule for the truncated assignments ν̃j, where ν̃j(i) = i− 1 for
i ≤ j and ν̃j(i) = i for i > j, but does not impose any conditions for other
assignments. When assignments are independent of the assignments of the
other agents, progress can be made and the next Theorem characterizes the
one-parameter family of independent convergent rules.

Theorem 1 An assignment rule α is independent and convergent if and only
if αj(j − 1) = 1 for all j < n, αn(ν, n) = 1 if ν(n) = n− 1, and there exists
λ ∈ [0, 1] such that αn(ν, n) = λ and αn(ν, ν−1(n−1)) = 1−λ if ν(n) 6= n−1.

Theorem 1 characterizes the family of independent and convergent as-
signment rules as rules which allocate any object j < n according to the
rank rule, and allocate object n according to a convex combination of the
rank and seniority rules. If, in addition, we require the assignment rule to
be strongly independent, if αn(ν, n) = 1 when ν(n) = n − 1, we must have
αn(n− 1) = 1, so that:

Corollary 1 The only strongly independent, convergent assignment rule is
the rank rule.

4.3 Ergodic assignment rules

We first recall some definitions of special permutations.

Definition 15 A permutation from a set of n elements to itself is a cycle,
denoted κ, if π(i) = π(i+ 1) for all i = 1, 2, .., n and π(n) = 1.

Definition 16 A permutation from a set of n elements to itself is an (i, j)
transposition, denoted τi,j, if π(i) = j, π(j) = i and π(k) = k for all k 6= i, j.
For a shorthand, we will denote any (1, i) transposition as τi.

Using these definitions, we can decompose the evolution of the Markov
chain as a composition of cycles and transpositions. Consider an initial state
µ at period t, and succession of reassignments i0, ..., iM . The state µ′ at period
t+1 is obtained by (i) first applying a cycle, which lets object µ(n) be assigned
to the entering agent, (ii) then applying a transposition between agent 1
and agent i1, assigning object µ(n) to i1, (iii), then applying a transposition
between agent 1 and agent i2, assigning object µ(i1) to agent i2, etc... Hence,
we may write:
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µ′ = µ ◦ κ ◦ τi1 ... ◦ τim ◦ ... ◦ τ1,

where it is understood that τ1, the identity permutation, is just added for
the sake of completeness, and to signal the end of the process of composition
of permutations.

We are now ready to provide a simple characterization of ergodic assign-
ment rules based on the accessibility of an assignment where the highest
object is assigned to the oldest player.

Theorem 2 An assignment rule α is ergodic if and only if there exists an
assignment µ′ with µ′(n) = n such that, for all assignments µ with µ(n) = n,
the permutation µ−1(µ′) can be decomposed into a sequence of permutations,
µ−1(µ′1 ◦ ... ◦ πm ◦ ...πM such that either πm is a cycle or a (1, i) transpo-
sition and, if it is a (1, i) transposition, α(µ◦...◦πm−1)−1(1)(ν

m−1, i) > 0, where
νm−1(j) = (µ ◦ ... ◦ πm−1)(j) for all j = 2, ..., n.

Theorem 2 is based on the simple observation that any recurrent set must
contain an assignment for which µ(n) = n, so that in order to check ergod-
icity, one only needs to check that there exists an assignment assigning the
highest object to the oldest agent which can be reached from any assignment
assigning the highest object to the oldest agent. This condition is always vio-
lated for the replacement rule, for which the set of states can be decomposed
into n cycles, each cycle containing a single assignment such that µ(n) = n,
and for which there is no path between the cycles.

Proposition 2 does not pin down a simple condition guaranteeing the ex-
istence of a path in the Markov chain from an assignment µ to an assignment
µ′ with µ(n) = µ′(n) = n. A simple sufficient condition is that any object i
is assigned with positive probability to an agent of age i holding object i−1:

Corollary 2 Suppose that αi(i, ν) > 0 whenever ν(i) = i − 1, then the
assignment rule α is ergodic.

Corollary 2 generalizes our result on the convergence of the rank and
seniority rules, by showing that any assignment rule which assigns object i
to agent i when he holds object i − 1 with positive probability (a condition
satisfied both by the rank and seniority rule) must be ergodic. Furthermore, if
the condition of Corollary 2 is satisfied, then it is possible to reach the identity
assignment ι from itself, so that the period of the recurrent state ι is equal
to one. As all states in a recurrent set must have the same period (Isaacson
and Masden (1976), Theorem II.2.2 p.54), all states in the unique recurrent
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set are aperiodic. Hence, the Markov chain is ergodic in the stronger sense
of Isaacson and Masden (1976), and admits a unique invariant distribution.

The sufficient condition identified in Corollary 2 is not necessary. As the
following four player example shows, a Markovian assignment rule may be
ergodic even when it allows some ”gaps” (situations where the probability of
assigning object j to the agent holding object j − 1 is equal to zero).

Example 3 Let n = 4. Consider the strongly independent assignment rule
α4(3) = 1, α3(1) = 1, α2(1) = 1, α1(0) = 112.

Let all states such that µ(4) = 4 be ordered as in Subsection 2. In
addition, define the states:

µ7 : (1, 3, 4, 2)

µ8 : (1, 2, 4, 3)

µ9 : (1, 4, 3, 2)

µ10 : (1, 4, 2, 3) .

Figure 5 illustrates the transitions between these states and shows that
there exists a path leading to the identity matching from any other state,
proving that the assignment rule is ergodic.

4.4 Irreducible assignment rules

In this Subsection, we characterize irreducible assignment rules, generating
irreducible finite Markov chains, where any state can be reached from any
other state.

Theorem 3 An assignment rule α is irreducible if and only if
(i) For all j, all truncated assignments ν of objects in J \ j, αj(ν, 1) > 0 and
(ii) For all assignments µ, µ′ such that µ(n) = µ′(n) = n, the permutation
µ−1(µ′) can be decomposed into a sequence of permutations, µ−1(µ′1◦ ...◦πm◦
...πM such that either πm is a cycle or a (1, i) transposition, if πm is a (1, i)
transposition, both πm−1 and πm+1 are cycles, and α(µ◦...◦πm−1)−1(1)(ν

m−1, i) >
0, where νm−1(j) = (µ ◦ ... ◦ πm−1)(j) for all j = 2, ..., n.

Theorem 3 provides a characterization of irreducible assignment rules
which relies on two conditions: (i) assumes that replacement (the alloca-
tion of any object to the entering agent) occurs with positive probability at

12For strongly independent assignment rules, we simplify notations and let αj(i) denote
the probability that the agent who currently holds object i receives object j.
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all states, (ii) assumes that any two assignments which allocate the highest
object to the oldest agent are related through a sequence of elementary per-
mutations, with cycles and (1, i) transpositions such that any transposition
in the sequence is followed by a cycle.

At first glance, condition (ii) may appear to be a mere rephrasing of the
irreducibility condition – guaranteeing that any state can be reached from
any state. However, condition (ii) is weaker than the irreducibility condi-
tion, as it only applies to a set of states of cardinality (n − 1)! rather than
n! Condition (ii) also focusses attention on a special sequence of “elemen-
tary permutations” rather than arbitrary assignments. When condition (i) is
satisfied, any path from a state µ to a state µ′ can be generated through ele-
mentary permutations. Hence, in the direction of sufficiency, requiring that
the states can be reached though elementary permutations is not more de-
manding than requiring that the states can be reached through any arbitrary
reassignment. In the direction of necessity, checking that there is no elemen-
tary permutations leading from one state to another is easier than checking
that states cannot be reached through any reassignment. Furthermore, the
description of elementary permutations will serve as a building block for the
analysis of irreducible assignment rules satisfying independence.

Theorem 4 For any independent assignment rule α, consider the graph
G(α) defined over the nodes {1, 2.., n − 1} by gi,j = 1 if and only if either
αj(i) > 0 or αi(j) > 0. Any independent Markovian assignment rule α such
that αj(0) > 0 for all j ≥ 1, and for which the graph G(α) is connected is
irreducible.

Theorem 4 provides a simple sufficient condition to check whether an
independent assignment rule is irreducible. This condition is satisfied when
the set of states for which transitions occur with positive probability is rich
enough. For example, it is always satisfied for the uniform assignment rule
where αj(i) > 0 for all i ≤ j, or when the probability of assigning object j
to an agent holding j − 1 is positive, αj(j − 1) > 0 (in which case the graph
G(α) is a connected line), or if the probability of assigning object j to the
agent holding object 1 is positive for all j, αj(1) > 0 (in which case the graph
G(α) is a connected star with 1 as the hub).

However, as shown by the following example, the condition is not neces-
sary. There exist irreducible assignment rules for which the graph G(α) is
not connected.

Example 4 Let n = 4. Consider the strongly independent assignment rule,
α1(0) = 1, α2(0) = 1, α3(0) = α3(1) = 1

2
, α4(0) = α4(1), α4(2) = α4(3) = 1

4
.
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In this Example, the graph G(α) only contains the link (1, 3) and is not
connected. However, all assignments with µ(n) = 4 intercommunicate, as
illustrated in Figure 6, which uses the same ordering of three player assign-
ments as that used in Subsection 2.

5 Markovian assignment rules with heteroge-

neous agents

In this Section, we allow for heterogeneity across agents. We first prove that
independence and efficiency are incompatible, then study rules satisfying
efficiency and quasi-convergence.

5.1 Independent and efficient assignment rules

We first observe that independence places very strong restrictions on assign-
ment rules with heterogeneous agents.

Lemma 2 Let α be an independent assignment rule among heterogeneous
agents. Then, for any θ, θ′ ∈ Θ, any j ∈ J , ν ∈ T and i ∈ I, αj(ν, θ, i) =
αj(ν, θ

′, i).

With heterogeneous players, independence thus limits the set of rules to
those rules which do not depend on agents’ types and satisfy independence
for homogeneous players (e.g. the rank or uniform rules, which do not take
into account players’ types). Our next result characterizes efficient Marko-
vian assignment rules, and shows that they exhibit a simple lexicographic
structure.

Theorem 5 An assignment rule α is efficient if and only if it is type-
lexicographic.

We combine Theorem 5 and Lemma 2 to show that efficiency and inde-
pendence are incompatible when agents are heterogeneous. Theorem 5 shows
that when there exists at least two types of agents, there exist states where
an efficient rule must allocate objects according to agents’ types. Hence, ef-
ficient rules cannot satisfy the necessary condition for independence derived
in Lemma 2.

Corollary 3 Suppose that the set K contains at least two types. Then there
is no assignment rule satisfying independence and efficiency.
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5.2 Efficient and fair assignment rules

We finally characterize rules satisfying both efficiency and quasi-convergence.
When K = 2, any lexicographic rule which first assigns objects to agents of
high type, and then selects among them according to the seniority or rank rule
satisfies both efficiency and quasi-convergence. When K > 2, we show that
there does not exist any rule satisfying both efficiency and quasi-convergence.

Theorem 6 Suppose that the set K contains at least three types. Then there
is no assignment rule satisfying efficiency and quasi-convergence.

The proof of Theorem 6 relies on a simple argument, which is worth repro-
ducing here. Consider states where only three types L,M,H can be drawn.
Because the assignment rule is quasi-convergent, at states where all agents
have the same type, the only candidate assignment is the identity assignment
(See Subsection 4.2). Hence, if type (L,L, L) is realized, µ(i) = ι. Similarly,
if type (M,M,M) is realized, µ(i) = ι. Now consider successive changes
in the type profiles, from (L,L, L) to (M,L,L), (H,M,L) and (H,H,M) ;
and from (M,M,M) to (H,M,M) and (H,H,M). Applying Theorem 5, an
efficient rule is type lexicographic, and objects must be assigned according to
agents’ types. However, these assignments result in two different assignments
according to the path of changes in the type profile. Starting from (L,L, L),
one reaches the assignment µ(1) = 1, µ(2) = 2, µ(3) = 3, and starting from
(M,M,M), the assignment µ′(1) = 2, µ′(2) = 3, µ′(3) = 1. Hence, the rule
cannot be quasi-convergent at state (H,H,M).

The incompatibility between quasi-convergence and efficiency hedges on
the fact that agents cannot be forced to accept objects lower than the ones
they currently hold. This creates a path-dependence which prevents the
emergence of quasi-convergent rules, when efficiency is satisfied.13 The in-
tuition underlying Theorem 6 relies on the existence of at least three types.
With only two types, efficiency and quasi-convergence can be satisfied simul-
taneously.

Theorem 7 Suppose that |K| = 2. The type-rank and type-seniority rules
are both efficient and quasi-convergent.

Theorem 7 indicates that, if one can separate the set of types in dichoto-
mous categories, there exist assignment rules satisfying both criteria of inter-
generational equity (time invariance) and efficiency (static efficiency). The

13If efficiency is not required, quasi-convergent rules exist. For example, the rank and
seniority rules satisfy both quasi-convergence and independence, but not efficiency.
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type-rank and type-seniority rules stand out as simple rules which should be
used to allocate objects in a dichotomous world.

To understand why these rules satisfy efficiency and quasi-convergence,
consider the set S ′ of states s = (µ, θ) such that µ allocates objects according
to a lexicographic criterion, first using an agent’s type, and then his seniority.
(Formally, for all i, j, µ(i) > µ(j) ⇒ θ(i) > θ(j) or θ(i) = θ(j), i > j.) The
type-seniority and type-rank rules have the property that the set S ′ is a
closed set (from any state in S ′, all transitions lead to another state in S ′).14

Furthermore, because the probability of any type is positive, there exists a
path between any two states in S ′, which is then a recurrent set. Because the
state sH = (ι, (H,H...H)) belongs to the set S ′, and there exists a path under
the type-seniority and type-rank rules from any state s = (µ, (H,H, .., H))
to sH , and a path from any state to a state where all types are high, there
exists a path from any state s to state sH in S ′, showing that S ′ is the unique
recurrent set of the Markov chain.

The previous argument also highlights why a complete characterization
of efficient and quasi-convergent rules for two types may be difficult. The
argument shows that the transitions are only pinned down for a small number
of states (states in S ′ and states where all agents have high types), and
transitions among other states can be arbitrary. Nevertheless, the important
conclusion is that efficient and quasi-convergent assignment rules exist for two
types, and the type-rank and type-seniority rules emerge as simple, useful
rules to apply in dichotomous settings.

6 Conclusion

In this paper, we analyze dynamic assignment problems where agents suc-
cessively receive different objects (positions, offices, etc.). A finite set of n
vertically differentiated indivisible objects are assigned to n agents who live
n periods. At each period, a new agent enters society, and the oldest agent
retires, leaving his object to be reassigned. A Markovian assignment rule
specifies the probability that agents receive objects, and generates a finite
Markov chain over the set of assignments. We define independent assignment
rules (where the assignment of an object to an agent is independent of the
objects currently held by the other agents), efficient assignment rules (where
there does not exist another assignment rule with larger expected surplus),
fair assignment rules (where two agents living in equal circumstances expe-

14This is the step in the argument which cannot be generalized to more than two types,
as shown by the heuristic argument illustrating Theorem 6.
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rience the same history) and analyze the dynamic properties of the Markov
chains generated by assignment rules. When agents are homogeneous, we
characterize independent convergent assignment rules, and provide sufficient
conditions for irreducibility and ergodicity. When agents draw at random
their types, we prove that independence and efficiency are incompatible, and
assignment and quasi-convergent rules only exist for two types. We char-
acterize two simple rules (type-rank and type-seniority) which satisfy both
equity and efficiency criteria in dichotomous settings.

The results of our analysis rely on the assumption that agents cannot
be forced to accept objects lower than the one they currently hold. This
individual rationality requirement creates a history dependence in the process
of allocation, and lies at the root of the dynamic aspects of our model. We
believe that individual rationality is likely to be a necessary requirement in
many assignment processes, but if it is not, history-independent efficient and
equitable assignment rules could easily be devised.

While our analysis represents a first step in the understanding of dynamic
assignment processes, it is based on a number of simplifying assumptions that
we hope to relax in future research. First, we have assumed that all agents
have the same preferences over the objects. Allowing for diversity in prefer-
ences would open an entire new set of questions on stability of assignment
rules. Second, we have supposed that agents’ types are perfectly observ-
able. Relaxing this assumption would lead us to study incentive properties
of assignment rules and move closer to the literature on dynamic mechanism
design. Finally, we have considered a model where agents enter and exit
one-by-one. If agents were to enter and exit in groups, our analysis would
remain valid if the assignment rule of groups of agents could be decomposed
in successive individual assignment rules. However, there exist other group
assignment rules which do not satisfy this decomposability property and de-
serve further study.
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8 Appendix A: The transfer of high school

teachers in France

High school teachers in France are allocated to different schools by a central-
ized mechanism administered by the Ministry of Education. The assignment
rule by which high school teachers are matched to vacant positions is a very
good example of a dynamic assignment rule.15

Every year in November, high school teachers who wish to be transferred
are asked to declare their intentions to the Ministry of Education. There
are two different phases in the allocation. In the first phase, in February,
teachers are transferred across regions (called ”académies”). In the second
phase, in May, teachers are assigned to high schools in every académie.

Teachers are asked to submit their preferences for the two phases. In
the first phase, they must rank the different regions in which they want to
be transferred ; in the second phase, they must rank twenty high schools in
the region to which they have been assigned.16 Positions are then allocated
to teachers following a serial dictatorship rule, where the priority ranking
of teachers is determined by their accumulated ”points”. These points are
computed taking into account seniority, on-the-job-seniority and personal
circumstances according to a complex formula given in Table 1.

Figure 7 displays the threshold number of points needed to enter specific
académies for high school teachers of English in February 2008. The Ministry
of Education also publishes every year the number of points needed to enter
specific high schools in the second phase of the assignment mechanism.

15The complete details of the procedure can be found on the website of the French
Ministry of Education, http://www.education.gouv.fr.

16Teachers who don’t want to be transferred across regions only participate in the second
phase.
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9 Appendix B: Proofs

Proof of Lemma 1: Consider two assignments ν and ν ′ such that ν(i) =
ν ′(k), ν ′(i) = ν(k) = n and ν(l) = ν ′(l) for all l 6= i, k. For any j < n,
αj(ν

′, i) = αj(ν, k) = 0. For any j, by independence, αj(ν, l) = αj(ν
′, l).

Now, as
∑

i,ν(i)<j αj(ν, i) =
∑

i,ν′(i)<j αj(ν
′, i), we conclude that αj(ν, i) =

αj(ν
′, k).

Next, consider two assignments ν, ν ′ such that ν(i) = ν ′(j), ν(j) = ν ′(i).
As

∑
k αn(ν, k) =

∑
k αn(ν ′, k), and, by independence, αn(ν, k) = αn(ν ′, k)

for all k 6= i, j, so that αn(ν, i) + αn(ν, j) = αn(ν ′, i) + αn(ν ′, j).

Proof of Proposition 1: We first check that the identity assignment is
indeed an absorbing state. A necessary and sufficient condition for this to
occur is that: ∏

j

αj(ν̃
j, j) = 1, (3)

where ν̃j(i) = i− 1 for i ≤ j and ν̃j(i) = i for i > j.
Both the seniority and rank assignment rules satisfy this condition, as j

is at the same time the oldest agent eligible to receive object j and the agent
with the highest ranked object in the matching ν̃j.

Next we show that starting from any initial state µ, there exists a time t
at which the Markov chain is absorbed into the identity assignment ι.

In the rank rule, if µ(n) = k, all objects j = 1, 2, ..., k are reassigned to
the agents sequentially. In particular, at period 1, object 1 will be reassigned
to the entering agent so that µ1(1) = 1. At period 2, object 2 is reassigned
to agent 2 (who currently holds object 1) and object 1 is reassigned to the
entering agent, so that µ2(1) = 1 and µ2(2) = 2. Following this argument, is
it easy to see that µn = ι.

In the seniority rule, notice that the entering agent can never receive any
object but object 1. Similarly if ν(1) = 1, αk(ν, 1) = 0 for all k > 2, and
more generally if ν(i) = i, αk(ν, i) = 0 for all k > i+ 1.

The preceding argument shows that, starting from any µ at period 0,
in the seniority rule µ1(1) = 1. Furthermore, at period 2, object 1 must
be reassigned to the entering agent so that µ2(1) = 1, µ2(2) = 2. We thus
conclude that µn = ι, namely, the Markov chain is absorbed into the identity
assignment in at most n periods.

Proof of Theorem 1: By Proposition 1, the rank rule and the seniority
rules are convergent, so that the rule α, which is a convex combination of
the seniority and rank rules, is also convergent.
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Next suppose that the rule α satisfies independence and is convergent.
Because it is convergent, the identity assignment is an absorbing state, so
that

αj(ν̃j, j) = 1.

By independence, from Lemma 1, αj(j − 1) = αj(ν̃j, j) = 1 for all j < n.
Furthermore, by independence again, from Lemma 1, for any two assignments
ν, ν ′ which only differ in the position of two agents, the total probability of
assigning object n to the two agents is constant. As αn(ν̃n, n)+αn(ν̃n, k) = 1
for all k < n, we conclude that, for all ν,

αn(ν, n) + αn(ν, ν−1(n− 1)) = 1.

Next construct two different truncated assignments ν and ν ′ such that
ν−1(n) = i, ν ′−1 = j and ν−1(n − 1) = ν ′n−1(n − 1) = k. By independence,
αn(ν, ν−1(n−1)) = αn(ν ′, ν ′−1(n−1)) so that αn(ν, n) = αn(ν ′, n). Applying
independence again, for any ν, ν ′ such that ν(n) = i < n − 1 and ν ′(n) =
j < n− 1, we have:

αn(ν, n) = αn(ν ′, n) = λ,

so that

αn(ν, ν−1(n− 1)) = 1− λ

for any ν such that ν(n) 6= n− 1, establishing the result.

Proof of Theorem 2: Suppose first that the condition holds. Because ob-
ject n is reassigned at least every n periods, and can only be reassigned when
µ(n) = n, any recurrent set must contain an assignment for which µ(n) = n.
Suppose by contradiction that there are two recurrent sets, each containing
an assignment where µ(n) = n, denoted µ1 and µ2. If the condition holds,
there exists an assignment µ′ with µ′(n) = n which can be reached from
both µ1 and µ2, contradicting the fact that µ1 and µ2 belong to two distinct
recurrent sets.

Conversely, suppose that the condition is violated and that there is a
single recurrent set. There must exist one assignment µ′ with µ′(n) = n in
the recurrent set. However, if the condition is violated there exists another
assignment µ with µ(n) = n such that there is no path in the Markov chain
from µ to µ′, contradicting the fact that there is a single recurrent set.
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Proof of Corollary 2: We will show the existence of a path to the identity
assignment ι. Because object 1 is reassigned at least every n periods, there
exists a time t at which µt(1) = 1. Then, as α2(2, ν

t) > 0, we can construct a
path where µt+1(1) = 1, µt+1(2) = 2. Repeating the argument, we eventually
reach the identity assignment.

Proof of Theorem 3: (Sufficiency) Consider two assignments µ and µ′.
We will exhibit a path from µ to µ′. First observe that because αj(ν, 1) >
0 for all j, by successively applying cycles κ , one eventually reaches an
assignment µ0 for which µ0(n) = n. Similarly, there exists an assignment
µ1 for which µ1(n) = n, and such that, by successively applying cycles, one
reaches assignment µ′ from µ1.

By condition (ii), there exists a sequence of permutations from µ0 to µ1

such that, at each step, with positive probability, the object held by the last
player is assigned to player i, and the object held by player i to the entering
player. Hence, one can construct a path between µ0 and µ1, concluding the
sufficiency part of the proof.
(Necessity) Suppose first that condition (i) is violated, i.e. there exists j and
a truncated assignment ν of objects in J \ j such that αj(ν, 1) = 0. Consider
the assignment µ such that µ(1) = j, µ(i) = ν(i) for i = 2, ..., n.For this
assignment to be reached, it must be that object j is assigned to the entering
player with positive probability when all other players hold the objects given
by the truncated assignment ν. Hence, if αj(ν, 1) = 0, assignment µ can never
be reached from any other state, contradicting the fact that the Markov chain
is irreducible.

Next suppose that condition (ii) is violated.
We will first show that any reassignment from a matching µ to a matching

µ′, π = µ−1(µ′) can be decomposed into a sequence of cycles and (1 − i)
transpositions such that, if πm is a (1, i) transposition, then πm−1 and πm+1

are cycles. Let i0 = n + 1, i1 = µ′−1(µ(i0 − 1)), ..., im = µ′−1(µ(im−1 −
1)), ..., iM = 1 be the sequence of reassignments from µ to µ′.

Consider the following sequence of permutations:

• First assign object µ(n) to agent i1 and object µ(i1−1) to the entering
agent ( apply κ ◦ τi1)

• Then, during n− 1 periods, assign the object held by the last agent to
the entering agent ( apply κn−1)

After this first cycle of n permutations, we have that, for all j 6= i1−1, n,
(π1 ◦ ... ◦ πn)(j) = j. For i1 − 1, we have (π1 ◦ ... ◦ πn)(i1) = π1(π2 ◦ .. ◦
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πn)(i1 − 1)) = π1(i1) = n. For n, we have (π1 ◦ ... ◦ πn)(n) = π1(π2 ◦ .. ◦
πn)(n)) = π1(1) = i1 − 1. Hence, after the first cycle of n permutations,
we have µn(j) = µ(j) for all j 6= i1 − 1, n, µn(i1 − 1) = µ(n) = µ′1) and
µn(n) = µ(i1 − 1).

In the second cycle, we allocate object µ(i1 − 1) to agent i2, by applying
a cycle followed by a transposition τi2 , and then apply a cycle during n − 1
periods, κn−1. The process is repeated until we assign object µ(iM−1) to the
entering agent.

Next, if condition (i) is satisfied, it must be that all cycles can be gener-
ated with positive probability. Furthermore, if state µ′ can be reached from
state µ through some reassignment, we must have αµ(im−1)(ν

m, im+1) > 0 for
all m, so that the transpositions τim occur with positive probability. Hence,
if state µ′ can be reached from state µ by some arbitrary reassignment, it
must also be reached through a sequence of permutations alternating cycles
and transpositions τim as in the statement of the Proposition.

Hence, if for any sequence of permutations alternating cycles and trans-
positions, state µ′ cannot be reached from state µ, we conclude that there is
no path in the Markov chain from µ to µ′, and the Markov chain induced by
the assignment rule is not irreducible.

Proof of Theorem 4: Given Theorem 3, we need to show that there exists
a path from any assignment µ such that µ(n) = n to any assignment µ′ such
that µ′(n) = n. The mapping µ′−1 ◦ µ is a permutation over {1, ..., n} which
leaves the last element invariant. As any permutation can be decomposed
into a sequence of transpositions, the induced permutation over the elements
in {1, ..., n−1} can be decomposed onto a sequence of transpositions τim,im+1 ,
m = 1, ...,M − 1, where 1 ≤ im ≤ n− 1 for all m.

µ′ = µ ◦ τi1,i2 ◦ ... ◦ τim,im+1 ◦ ... ◦ τiM−1,iM .

We now show that there exists a path in the Markov chain corresponding
to this sequence of transpositions. We first consider the first transposition,
τi1,i2 . Let j1 = µ(i1) and j2 = µ(i2). Suppose without loss of generality
that j1 ≥ j2. Because the graph G(α) is connected, there exists a sequence
j1 = j1, ..., jq, ..., jQ = j2 such that αjq(jq+1) > 0 for all q = 1, ..., Q − 1.
Let iq = µ−1(jq) be the agent holding good jq in µ. We can decompose the
transposition τi1,i2 as:

τi1,i2 = τi1,i2 ◦ ..τiQ−2,iQ−1
◦ τiQ−1,iQ ◦ τiQ−1,iQ−2

◦ ....τi2,i1
≡ χ
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To check this equality, notice that, for any i not included in the sequence
iq, τi1,i2(i) = i = χ(i). Furthermore,

χ(i1) = τi1,i2 ◦ ..τiQ−2,iQ−1
◦ τiQ−1,iQ ◦ τiQ−1,iQ−2

◦ ....τi2,i1(i1)
= τi1,i2 ◦ ..τiQ−2,iQ−1

(iQ)

= iQ

= i2.

Similarly,

χ(i2) = τi1,i2 ◦ ..τiQ−2,iQ−1
◦ τiQ−1,iQ ◦ τiQ−1,iQ−2

◦ ....τi2,i1(iQ)

= τi1,i2 ◦ ..τiQ−2,iQ−1
(iQ−1)

= i1

= i1.

Finally, for iq, q 6= 1, Q,

χ(iq) = τi1,i2 ◦ ..τiQ−2,iQ−1
◦ τiQ−1,iQ ◦ τiQ−1,iQ−2

◦ ....τi2,i1(iQ)

= τi1,i2 ◦ ...τiq−1,iq ◦ ... ◦ τiQ−1,iQ ◦ ...τiq−1,iq(iq)

= τi1,i2 ◦ ...τiq−1,iq ◦ ... ◦ τiQ−1,iQ ◦ ...τiq ,iq+1(iq−1)

= τi1,i2 ◦ ...τiq−1,iq(iq−1)

= τi1,i2 ◦ ...τiq−2,iq−1(iq)

= iq.

We now construct a path from µ to µ ◦ τi1,i2 . We first apply cycle κ for
n− i1 + 1 periods, so that µ ◦ κn−i1+1(1) = j1.

If i2 ≤ i1 − 1, then j2 = µ ◦ κn−i1+1(i2 + n − i1 + 1), and, because
αj1(j2) > 0, we can apply the transposition τi2+n−i1+1, to obtain µ◦κn−i1+1 ◦
τi2+n−i1+1(1) = j2 and µ ◦ κn−i1+1 ◦ τi2+n−i1+1(i2 + n− i1 + 1) = j1. Applying
the cycle κ again for i1 + 1 periods, we finally have: µ ◦ κn−i1+1 ◦ τi2+n−i1+1 ◦
κi1−1(i1) = j2,µ◦κn−i1+1◦τi2+n−i1+1◦κi1−1(i2) = j1 and µ◦κn−i1+1◦τi2+n−i1+1◦
κi1−1(i) = µ(i) for all i 6= i1, i2.

If i2 ≥ i1 + 1, then j2 = µ ◦ κn−i1+1(i2 − i1 + 1), and we now apply the
transposition τi2−i1+1 followed by i1 − 1 cycles to finally obtain µ ◦ τi1,i2 .

A similar construction can be applied to construct a path from µ to any
composition of µ with a sequence of transpositions, concluding the proof of
the Theorem.

Proof of Lemma 2: Consider two type profiles θ, θ′ such that θk = θ′k
for all k 6= i and θi 6= θ′i. For any j and any ν,

∑
i|ν(i)<j αj(ν, θ, i) =
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∑
i|ν(i)<j αj(ν, θ

′, i) = 1. By independence, αj(ν, θ, k) = αj(ν, θ
′, k) for any

k 6= i, so that αj(ν, θ, i) = αj(ν, θ
′, i) for any ν, j. By independence again,

for any θ′′ such that θ′′(i) = θ′(i), αj(ν, θ
′, i) = αj(ν, θ

′′, i), concluding the
proof of the Lemma.

Proof of Theorem 5: We first establish the following claim.

Claim 1 Let α and α′ be two rules which are type-lexicographic for all reas-
signments following the assignment of good j at ν and ν ′, where {k|ν(k) <
j} = {k|ν ′(k) < j}. For any assignments µ and µ′ generated by α and α′,∑

k|ν(k)<j σ(θ(k), µ(k)) =
∑

k|ν′(k)<j σ(θ(k), µ′(k)).

To prove the claim, consider the change in aggregate surplus (from the
original truncated assignment ν), generated by the reassignment µ:

∆(µ, ν) = σ(θ(i1), j) +
M−1∑
m=2

(σ(θ(im+1), ν(im))− σ(θ(im), ν(im)).

For any type k, let i(k) denote the agent i for which θ(i) = k and
ν(i) ≤ ν(j) for any j such that θ(j) = k. In words, i(k) denotes the agent
of type k with the lowest object in ν. Any type-lexicographic assignment
rule generates a reassignment sequence i1, ..., iM such that θ(im) ≥ θ(im+1)
for all m. Furthermore, for any type k such that θ(1) ≤ k, agent i(k)
must belong to the sequence. (Suppose not, then there exist k, m such that
θ(im) ≥ k, θ(im+1) < k and ν(im) > ν(i(k)), contradicting the fact that the
assignment rule is type-lexicographic for the assignment of object ν(im).)

Hence, for any type-lexicographic rule, the reassignment sequence can be
decomposed into intervals I1, I2, ..., IK , where K is the number of types k
such that θ(1) ≤ k and {i|θ(i) = k, ν(i) < j} 6= ∅, any two agents in the
same interval has the same type, and agents i(k) are the last agents in the
intervals Ik. This implies that for any µ generated by a type-lexicographic
assignment rule,

∆(µ, ν) = σ(θ(i1, j)+
∑

k|θ(1)≤k,{i|θ(i)=k,ν(i)<j}6=∅

σ(k, ν(i(k+1))−σ(k+1, ν(i(k+1))

which shows that any two type-lexicographic rules generate the same aggre-
gate surplus.

Going back to the proof of the Theorem, consider an assignment rule
α which is not type-lexicographic. Then there exists j, ν and θ such that
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the rule assigns object j with positive probability to some agent i and there
exists i′ such that ν(i′) < j and θ(i′) > θ(i). If this occurs in more than one
instance, consider a situation where, for all ν ′ such that ν ′(i) = ν(i) when
ν(i) ≥ j, all j′ < j, αj′(ν

′, θ, i) > 0 ⇒ θ(i) = maxk|ν(k)<j′ θ(k). In words,
for all reassignments following the assignment of good j when the truncated
assignment is ν, the assignment rule prescribes to assign the object to an
eligible agent with the highest type, and the assignment of good j to agent
i is the last instance where the good is assigned with positive probability
to an eligible agent of lower type. Furthermore, pick i′ such that θ(i′) =
maxk|ν(k)<j θ(k).

Consider a new assignment rule α′ which only differs from α in the
assignment of j to i and i′ at ν and θ and is defined by α′j(ν, θ, i

′) =
αj(ν, θ, i

′) + αj(ν, θ, i) , α′j(ν, θ, i) = 0. We will show that the assignment
rule α′ generates a higher expected surplus than rule α.

Consider any two sequences of reassignments i1 = i, ..., iM = 1 and i1 =
i′
′M ′ = 1. Suppose first that ν(i) > ν(i′). Because α is type lexicographic

at ν ′ where ν ′(i) = ν(i) for all i such that ν(i) > j and ν ′1) = j, θ(i2) =
maxk|ν(k)<ν(i) θ(k) = θ(i′). By Claim 1, assignment rule α generates the same
surplus as a rule which assigns object ν(i1) to i′ at ν ′. Hence we compute
the aggregate surplus at µ as:

S(µ) = σ(θ(i), j) + σ(θ(i′), ν(i)) +
∑

k|ν(k)>ν(i′),k 6=i

σ(θ(k), ν(k))

+
∑

k|ν(k)<ν(i′)

σ(θ(k), µ(k)).

Next, consider the aggregate surplus generated by the reassignment µ′:

S(µ′) = σ(θ(i′), j) +
∑

k|ν(k)>ν(i′)

σ(θ(k), ν(k)) +
∑

k|ν(k)<ν(i′)

σ(θ(k), µ′(k)).

By Claim 1,
∑

k|ν(k)<ν(i′) σ(θ(k), µ′(k)) =
∑

k|ν(k)<ν(i′) σ(θ(k), µ(k)), so
that

S(µ′)− S(µ) = σ(θ(i′), j) + σ(θ(i), ν(i))− σ(θ(i′), ν(i))− σ(θ(i), j)) > 0,

where the last inequality holds by strict supermodularity of the surplus func-
tion.
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Next suppose that ν(i′) > ν(i). Let m̃ = maxm|ν(i
′m) > ν(i). Because

µ′ is generated by a type-lexicographic rule, the argument used in the proof
of Claim 1 shows that θ(i

′m̃) > θ(i) = θ(i
′m̃+1). By Claim 1, the aggregate

surplus generated by µ′ is equal to the surplus generated when object ν(i
′m̃)

is assigned to i. Hence,

S(µ′) =
∑

k|ν(k)≥ν(i′m̃)

σ(θ(k), µ′
′m̃)

+σk|ν(i)<ν(k)<ν(i′m̃)σ(θ(k), ν(k)) +
∑

k|ν(k)<ν(i)

σ(θ(k), µ′(k)).

Similarly, we compute

S(µ) = σ(θ(i), j) +
∑

k|ν(k)>ν(i)

σ(θ(k), ν(k)) +
∑

k|ν(k)<ν(i)

σ(θ(k), µ(k)).

By Claim 1,
∑

k|ν(k)<ν(i) σ(θ(k), µ′(k)) =
∑

k|ν(k)<ν(i) σ(θ(k), µ(k)), so that

S(µ′)− S(µ) = σ(θ(i′), j) +
m̃∑
m=2

(σ(θ(im), ν(im−1))− σ(θ(im), ν(im)))

+σ(θ(i), ν(i
′m̃)− σ(θ(i), j)− σ(θ(i′), ν(i′)).

Next recall that θ(i′) ≥ θ(i′2).. ≥ θ(i
′m̃) > θ(i) and j > ν(i′

′2) > ... > ν(i).
Hence, strict supermodularity implies

σ(θ(i′), j) + σ(θ(i), ν(i′)) > σ(θ(i′), ν(i′)) + σ(θ(i), j),

σ(θ(i), ν(i
′m̃)) + σ(θ(i

′m̃), ν(i′)) > σ(θ(i), ν(i′
′m̃), ν(i

′m̃)),

σ(θ(i
′m), ν(i

′m−1)) + σ(θ(i
′m−1), ν(i′

′m−1), ν(i
′m−1))

+σ(θ(i
′m), ν(i′))∀m = 3, .., m̃

Summing up these inequalities,

σ(θ(i′), j) +
m̃∑
m=2

(σ(θ(im), ν(im−1))− σ(θ(im), ν(im))) + σ(θ(i), ν(i
′m̃)

−σ(θ(i), j)− σ(θ(i′), ν(i′)) > 0

36



showing that S(µ′)−S(µ) ≥ 0. This last step concludes the argument, as the
expected surplus generated by α′ is always larger than the expected surplus
generated by α.

Conversely, consider a type-lexicographic rule α, and suppose that it is
inefficient. Then, there exists a state described by a type vector θ, a truncated
assignment ν and an object j and an alternative allocation rule α′ which
generates a higher expected surplus. By the argument above, if the allocation
rule α′ is not type-lexicographic, there exists a type-lexicographic rule α′′

which generates at least as high an expected surplus. But then, by Claim 1,
the two assignment rules α and α′′ must generate the same aggregate surplus,
resulting in a contradiction.

Proof of Theorem 6: Consider a society with at least three types, and con-
sider the realization of type profiles (L,L, ...., L) and (M,M....,M). Because
the assignment rule is quasi-convergent, it must result in a single assignment
at these states, which has to be the identity assignment. Now consider the
sequence of changes in type profiles, where first an agent M enters, then
n− 1 agents H. By efficiency, the assignment rule is type-lexicographic and
object n is assigned to the entering agent M , then object n − 1 to the first
agent H, etc.. In the end, the process will result in the identity assignment,
where the oldest agent (agent M) is assigned object n, and any H agent
i receives object i. Consider instead a sequence of changes in type profiles
from (M,M, ..) where n − 1 H agents enter in sequence. By efficiency, ob-
jects will be assigned sequentially to all the entering H agents, resulting in
a final assignment where the oldest agent (agent M) holds object 1 and any
agent i of type H holds object i+ 1. Because the rule results in two different
assignments for the same type profile, it cannot be quasi-convergent.

Proof of Theorem 7: Consider the set S ′ = {s = (µ, θ)|∀i, jµ(i) > µ(j)⇒
θ(i) > θ(j) or θ(i) = θ(j) and i > j}. This is the set of states where objects
are allocated according to a lexicographic criterion, using first an agent’s
type and then her seniority. Notice that, for all θ, there is a unique state
s = (µ, θ) in S ′. Furthermore, when θ = (H,H, ..., H), µ(i) > µ(j)⇔ i > j,
so the assignment µ such that (µ, θ) ∈ S ′ is the identity assignment ι.

Now, consider a state s = (µ, θ) in S ′. We will characterize the transitions
induced by the type-rank and type seniority rules. Let ≺ denote the type-
lexicographic ordering among agents at θ′, the type profile obtained after
agent n has left and a new agent has entered. Let m be the rank of the new
agent in that ordering. We need to distinguish between different cases. First,
suppose that θ(n) = H so that µ(n) = n. Then objects n, n − 1,..,n − m
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will be reassigned sequentially to all agents according to the lexicographic
ordering. The new assignment µ′ then respects the type-seniority ordering.
If, on the other hand θ(n) = L, and µ(n) = k, object k will either be assigned
to the entering agent (if he has a high type), or to the oldest agents of low
type, inducing a chain of reassignments of objects 1, 2, ...k among agents of
low type. In both cases, the resulting assignment µ also respects the type-
seniority ordering. Hence, from any state s in S ′, the Markov chain induced
by the type-seniority and type-rank rules results in a new state in S ′, showing
that S ′ is a closed set.

Next, note that because the probability of high and low types is positive,
for any θ, θ′, there exist states s = (µ, θ) and s′ = (µ′, θ′), with p(s′|s) > 0.
This shows that all states in S ′ intercommunicate, and S ′ is a recurrent set.

Finally, using the argument of Proposition 1, we see that from any state
s′ = (µ, (H,H,H, ...H)), there exists a path to sH = (ι, (H,H, ..., H)). For
any state s, there exists a path to a state s′ where all agents have high type.
Hence, there exists a path from any state s to sH (and then to any state in
S ′), showing that S ′ is a unique recurrent set. As it contains exactly one state
per type profile, we conclude that the type-rank and type-seniority rules are
quasi-convergent.
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10 Tables and Figures

Seniority 7 points per ”echelon” (on average 3 years of service)
+ 49 points after 25 years of service

On the job seniority 10 points per year
+ 25 points every 4 years

Current job 50 points if first assignment
If assigned in a ”violent” high school + 300 points after 4 years

Family circumstances 150.2 points if spouse is transferred
+ 75 points per child

Table 1: Priority points for high school teachers in France

Figure 1: Seniority assignment for three agents
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Figure 2: Rank assignment for three agents

Figure 3: Uniform assignment for three agents
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Figure 4: Replacement assignment for three agents

Figure 5: Transitions between states for Example 3
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Figure 6: Transitions between states for Example 4

Figure 7: Thresholds for transfers of English teachers 2008
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