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ABSTRACT

Source redundancy does not contain any significant information for

transmission in a communication system and therefore, one of the approaches to

overcome this issue is by exploiting the source redundancy for error-correction via

Joint Source Channel Coding (JSCC) design. Existing JSCC systems were developed

to exploit 1-Dimensional (1D) correlation exhibited by a source and later, a JSCC

system exploiting 2-Dimensional (2D) source correlation known as the 2D JSCC

system was introduced and had been proven to outperform the 1D JSCC system in

terms of Bit Error rate (BER). However, the source correlation knowledge in the

2D JSCC system has been assumed to be perfectly known at the receiver. In a real

communication system, source correlation knowledge may not always be available

and thus, this research aims to develop a high performance 2D JSCC system for

the unknown source correlation knowledge. A parameter estimation technique had

been developed based on the Baum-Welsh algorithm and employed jointly with

iterative channel decoding. Simulation results revealed that the proposed 2D JSCC

system with parameter estimation (2D-JSCC-PET1) for an unknown source correlation

knowledge can achieve performance very close to the ideal 2D JSCC system with

a known source correlation knowledge by a difference of 0.05 dB. Furthermore, the

proposed 2D-JSCC-PET1 system outperformed the benchmark 2D JSCC system using

a different estimation technique (2D-JSCC-PET2) by 0.84 dB at a source correlation

of p = 0.7 and the performance difference became larger with the increase of source

correlation strength. The effectiveness of the proposed 2D-JSCC-PET1 system is

demonstrated through image transmission simulations and the simulation results reveal

that despite the correlation knowledge is unknown, the proposed 2D-JSCC-PET1

system can perform very close to the ideal 2D JSCC system with only 0.26 % and

0.06 % difference in Pixel-error percentage for an image exhibiting strong and weak

correlation, respectively.
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ABSTRAK

Sumber berulang tidak mengandungi sebarang maklumat penting untuk

penghantaran dalam sistem komunikasi dan oleh itu, salah satu pendekatan

untuk mengatasi masalah ini adalah dengan memanfaatkan sumber berulang untuk

pembetulan ralat melalui reka bentuk Pengkodan Sumber Bersama (JSCC). Sistem

JSCC yang sedia ada telah dibangunkan untuk mengeksploitasi korelasi 1-Dimensi

(1D) yang dipamerkan oleh sumber dan kemudian, sistem JSCC mengeksploitasi

korelasi sumber 2-Dimensi (2D) yang dikenali sebagai sistem JSCC 2D telah

diperkenalkan dan ia telah terbukti dapat mengatasi sistem JSCC 1D dari segi Kadar

Ralat Bit (BER). Walau bagaimanapun, pengetahuan sumber korelasi dalam sistem

JSCC 2D diandaikan telah diketahui dengan sempurna di penerima. Dalam sistem

komunikasi yang sebenar, pengetahuan sumber korelasi tidak selalunya diketahui dan

oleh itu, penyelidikan ini bertujuan untuk membangunkan sistem JSCC 2D berprestasi

tinggi untuk maklumat korelasi sumber yang tidak diketahui. Teknik penganggaran

parameter dibangunkan berdasarkan algoritma Baum-Welsh dan digunakan bersama

dengan penyahkodan saluran berulang. Hasil simulasi menunjukkan bahawa sistem

JSCC 2D yang dicadangkan dengan teknik anggaran parameter (2D-JSCC-PET1)

untuk maklumat korelasi sumber yang tidak diketahui dapat mencapai prestasi yang

sangat baik dengan sistem JSCC 2D yang ideal dengan maklumat korelasi sumber

yang diketahui dengan hanya perbezaan 0.05 dB. Tambahan pula, sistem 2D-

JSCC-PET1 yang dicadangkan dapat mengatasi sistem penanda aras JSCC 2D yang

menggunakan teknik penganggaran yang berbeza (2D-JSCC-PET2) sebanyak 0.84

dB pada korelasi sumber p = 0.7 dan perbezaan prestasi mereka menjadi lebih besar

dengan peningkatan kekuatan korelasi sumber. Keberkesanan sistem 2D-JSCC-PET1

yang dicadangkan dapat dibuktikan melalui simulasi penghantaran gambar dan hasil

simulasi menunjukkan bahawa walaupun pengetahuan sumber korelasi tidak diketahui,

sistem 2D-JSCC-PET1 yang dicadangkan dapat menyaingi sistem 2D JSCC yang ideal

dengan perbezaan hanya 0.26% dan 0.06% perbezaan dalam peratusan ralat piksel

untuk imej yang menunjukkan korelasi yang kuat dan lemah.
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CHAPTER 1

INTRODUCTION

1.1 Background

People began to communicate long distance using wireless since the

electromagnetic wave technology was introduced via the development of wireless

telegraph system in 1894 by Guglielmo Marconi. This technology has brought a

lot of benefits to people to convey their message in a reliable and efficient way.

Wireless technologies, such as Third Generation (3G) and Fourth Generation (4G)

have helped people to transfer information that require a lot of memory, such as videos

and images, at a transfer rate up to 2 Mb/s. Furthermore, the current development of

Fifth Generation (5G) technology can transmit large data that requires a huge memory

to be processed in the blink of an eye with data rate up to 10 Gb/s.

However, regardless of how advanced the technology is, there is still a

constraint. The speed to transmit information still has a limit and the limit is given by

the Shannon’s capacity theorem which implies that transmission without error can only

be achieved if the entropy of the information is lower than the channel capacity [1]. In

real communication systems, especially within urban area, distortion such as noise

and interferences may occur and this leads to the error in the transmitted data at

the receiver. Therefore, in a communication design, source and channel coding are

used to overcome this issue. Source coding allows only necessary information to

be transmitted by compressing the data while channel coding protects the data from

noise and corrects the errors in the affected data at the receiver. Source and channel

coding have been improved over the years including the advent of turbo codes which

demonstrate very high performance near to the Shannon’s limit [2].
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Source and channel coding can be designed separately to obtain reliable

transmission without loss in overall performance including zero delay as stated by

Shannon’s separation theorem [1]. However, it is not possible to achieve the ideal

performance with zero delay as restriction on latency definitely occurs. One of the

approaches is exploiting the redundancy left in source encoders [3]. Therefore, the

Joint Source and Channel Coding (JSCC) was introduced and well adopted in many

applications such as video transmission [4, 5] and image transmission [6]. The JSCC

system also has been shown in many research works using binary Markov source

[7–10] and Hidden Markov Model [11,12]. In a JSCC system, source coding removes

any redundancy that is unnecessary information to compress the data sequence while

channel coding adds redundancy for error correction of the data sequence.

In previous research [13–15], 2-Dimensional (2D) source correlation was

exploited in a JSCC system and utilized in the system design to improve Bit

Error Rate (BER) performance. However, these studies assumed that the source

correlation knowledge is perfectly known at the receiver. This assumption improves

the performance, but it affects the reliability of the information of source correlation to

be exploited at the receiver. Practically, source correlation knowledge is unknown

and needs to be estimated. Thus, many researchers have taken up this issue and

developed various parameter estimation techniques to estimate the source correlation

at the receiver to ensure the performance is improved and applicable in real practices.

This research looks into this problem by estimating the source correlation specifically

on the 2D source correlation of binary Markov sources.

1.2 Problem Statement

A JSCC system has been investigated and implemented in many research and

has shown capability of considering jointly the source and channel properties in a

communication system [7–10]. At the receiver, the JSCC system utilizes the residual

redundancy left in the compressed bit stream by a source encoder at the channel

decoder. The residual redundancy appearing in the bit stream is used to decrease the

search space for the encoded source sequences.
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The existing JSCC works [7–10] considered 1-Dimensional (1D) source

correlation to be exploited at the receiver. However, several studies [13–15] have

suggested that the system performance can be improved if the multi-dimensional

source correlation, for example 2D source correlation, is exploited. The exploitation of

source redundancy in 2D could provide more knowledge of the sources as compared

to the 1D source correlation. As an example, the 2D source correlation knowledge

has the information of the source correlation in the horizontal and vertical directions.

Hence, the knowledge of the sources from both directions can be utilized to improve

the capability of the error correction and further improve the system performance.

The JSCC system exploiting the 2D source correlation or also known as the 2D JSCC

system has been done in previous work of [14] using high rate Turbo Bose-Chaudhuri-

Hocquenghem (BCH) codes and showed that this coding scheme outperforms the

1D source correlation and other conventional systems without exploiting source

correlation.

The existing works on 2D JSCC systems of [13–15] assumed that the

knowledge related to the source correlation such as the transition probabilities are

known and perfectly available at the receiver and thus, ensuring the system achieves

optimum performance. However, in reality, this source correlation knowledge is

unknown and needs to be estimated. Furthermore, achieving ideal performance is

difficult due to the existence of noise and fading effect in the channel. Hence, the

reliability of the results cannot be guaranteed.

Several methods of parameter estimation have been presented in various studies

based on a Hidden Markov Model (HMM) such as the Baum-Welch Algorithm

(BWA) [11, 12] This enables the decoder to utilize the estimated statistics of the

source correlation knowledge in channel decoding to improve the system performance.

However, previous works on parameter estimation techniques [12, 16] were only

developed for 1D source correlation. Despite the good performance of the HMM,

the complexity and memory requirements are disadvantageous for actual applications.

This research addresses the mentioned concerns and investigates a parameter

estimation technique using the BWA for the 2D JSCC system for unknown source
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correlation knowledge.

1.3 Research Objectives

The primary aim of this research is to develop a high performance JSCC

system exploiting 2D source correlation in channel decoding for unknown source

correlation knowledge at the receiver. To achieve this primary aim, the following

specific objectives are derived:

1. To investigate on parameter estimation techniques for 2D JSCC systems.

2. To develop a parameter estimation technique for the 2D JSCC system with

unknown source correlation knowledge performing near to the ideal 2D JSCC

system with known source correlation knowledge.

3. To evaluate the effectiveness of the proposed 2D JSCC system assisted with

parameter estimation by image simulations.

1.4 Scope of Research

The research aims to design and propose a 2D JSCC system with parameter

estimation for unknown source correlation knowledge. The proposed 2D JSCC system

is implemented on an Additive White Gaussian Noise (AWGN) wireless channel with

Binary-Phase-Shift-Keying (BPSK) signaling. The binary sources are considered and

characterized using the first-order Markov chain.

The proposed estimation technique is based on the BWA to achieve a

near optimum performance system approaching the ideal system of known source

correlation knowledge. The modified Bahl-Cocke-Jelinek-Raviv (BCJR) algorithm as

derived in [14] is used at the receiver for the proposed 2D JSCC system to exploit the

source correlation during channel decoding providing the information about the source.

The performance of the proposed system is simulated using the MATLAB software.
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The BER performance is evaluated and compared to various systems including the 2D

JSCC system with the perfect assumption on source correlation knowledge known as

the ideal 2D JSCC system, the 2D JSCC system with different estimation technique,

the 2D JSCC system without parameter estimation and the non-JSCC system. The

efficiency of the proposed JSCC system is demonstrated via simulations of image

transmission.

1.5 Research Contribution

The contributions of this research can be listed as follows:

1. Investigation on parameter estimation techniques for JSCC and 2D JSCC

systems [17].

2. Development of an accurate parameter estimation technique for the 2D JSCC

system with unknown source correlation knowledge [17].

3. Development of the high performance 2D JSCC system with the

implementation of combined parameter estimation technique blocks for

unknown source correlation knowledge [17].

4. Development of the high performance 2D JSCC system with parameter

estimation for unknown source correlation knowledge performing very close

to the ideal 2D JSCC system with the increasing number of iterations [17].

5. Demonstration of the effectiveness of the proposed 2D JSCC system with

parameter estimation for unknown source correlation knowledge via image

transmission for image with strong correlation and image with weak correlation

[18].

1.6 Structure of the Thesis

The thesis consists of six chapters and it is structured as follows:
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Chapter 2 investigates and reviews the background and previous works related

to this research. The overview and implementation of source and channel coding are

described. The basic concept of JSCC is presented together with the various types of

JSCC methods. The different types of JSCC techniques and the latest works related

to JSCC are studied and reviewed. The concept of 2D source correlation used in a

JSCC technique is explained based on previous works related to JSCC. Also, different

parameter estimation techniques are reviewed along with the examples of parameter

estimation techniques that have been used in HMM.

Chapter 3 presents the overview of the proposed system model used throughout

the thesis. The methodology of this research is presented in the form of a flowchart in

this chapter. The proposed system design, including the model of the transmitter and

receiver are briefly introduced. An iterative decoder is invoked to decode and recover

the original source. The metrics used to measure the performance of the proposed

system are presented.

Chapter 4 proposes the 2D JSCC system with parameter estimation. The source

model, which is based on the first order Markov process, is described. The proposed

2D JSCC system with parameter estimation is thoroughly elaborated in this chapter.

The algorithm to estimate the correlation parameter is detailed. The performance of the

proposed system with unknown source correlation knowledge is compared to the ideal

2D JSCC system with perfect assumption on the availability of the source correlation

knowledge at the receiver. The proposed 2D JSCC system is also compared with the

2D JSCC system relying on a different estimation technique, the 2D JSCC system

without employing any parameter estimation technique and the non-JSCC system.

Chapter 5 demonstrates the effectiveness of the proposed system via image

simulations using two image tests. The first image test considers the transmission

of an image exhibiting weak correlation while the second image test considers the

transmission of an image exhibiting strong correlation. The proposed system is then

compared to other systems in terms of the quality of the decoded images.

Chapter 6 summarizes the thesis and suggests potential future works.
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40. Douillard, C., Jézéquel, M., Berrou, C., Brengarth, N., Tousch, J. and Pham,

N. The turbo code standard for DVB-RCS. 2nd International Symposium on

Turbo Codes & Related Topics, Brest, France. 2000. 535–538.

41. Coding, T. C. Recommendation for Space Data System Standards.



82

Consultative Committee for Space Data Systems, NASA, Washington, DC (Jan.

1987) CCSDS, 1992.

42. Andrews, K. S., Divsalar, D., Dolinar, S., Hamkins, J., Jones, C. R. and

Pollara, F. The Development of Turbo and LDPC Codes for Deep-Space

Applications. Proceedings of the IEEE, 2007. 95(11): 2142–2156. ISSN

0018-9219.

43. Sun, Y., Zhu, Y., Goel, M. and Cavallaro, J. R. Configurable and scalable

high throughput turbo decoder architecture for multiple 4G wireless standards.

2008. ISSN 1063-6862. 209–214. doi:10.1109/ASAP.2008.4580180.

44. Xiang, W. et al. Joint source-channel coding for image transmission and

related topics. Ph.D. Thesis. University of South Australia Adelaide. 2003.

45. Camiciotti, L., Lamy, C., Meilhac, L., Olivieri, S. and Verdi, P. Joint source-

channel coding for 4G multimedia streaming. 2nd WWRF meeting, WG3.

2001.

46. Masnick, B. and Wolf, J. On linear unequal error protection codes. IEEE

Transactions on Information Theory, 1967. 13(4): 600–607.

47. Kwon, J. C. and Kim, J.-k. An adaptive rate allocation to source-channel

coding for Internet video. Global Telecommunications Conference, 2002.

GLOBECOM’02. IEEE. IEEE. 2002, vol. 1. 544–548.

48. Modestino, J., Daut, D. and Vickers, A. Combined source-channel coding

of images using the block cosine transform. IEEE Transactions on

Communications, 1981. 29(9): 1261–1274.

49. Kurtenbach, A. and Wintz, P. Quantizing for noisy channels. IEEE

Transactions on Communication Technology, 1969. 17(2): 291–302.

50. Marcellin, M. W. and Fischer, T. R. Trellis coded quantization of memoryless

and Gauss-Markov sources. IEEE transactions on communications, 1990.

38(1): 82–93.

51. Wang, M. and Fischer, T. R. Trellis-coded quantization designed for noisy

channels. IEEE Transactions on Information Theory, 1994. 40(6): 1792–1802.

52. Bauer, R. and Hagenauer, J. Symbol-by-symbol MAP decoding of variable

length codes. ITG FACHBERICHT, 2000: 111–116.



83

53. Gortz, N. On the iterative approximation of optimal joint source-channel

decoding. IEEE Journal on Selected Areas in Communications, 2001. 19(9):

1662–1670.

54. Adrat, M., Vary, P. and Spittka, J. Iterative source-channel decoder using

extrinsic information from softbit-source decoding. Acoustics, Speech, and

Signal Processing, 2001. Proceedings.(ICASSP’01). 2001 IEEE International

Conference on. IEEE. 2001, vol. 4. 2653–2656.

55. Hagenauer, J. and Gortz, N. The turbo principle in joint source-channel

coding. Information Theory Workshop, 2003. Proceedings. 2003 IEEE. IEEE.

2003. 275–278.

56. Huo, Y., Wang, T., Maunder, R. and Hanzo, L. Two-dimensional iterative

source-channel decoding for distributed video coding. IEEE Communications

Letters, 2014. 18(1): 90–93.

57. Huo, Y., Wang, T., Maunder, R. G. and Hanzo, L. Iterative source and channel

decoding relying on correlation modelling for wireless video transmission. IET

Communications, 2013. 7(14): 1465–1475.

58. Garcia-Frias, J., Zhong, W. and Zhao, Y. Turbo-like codes for source and joint

source-channel coding. Proc. of the 3rd Intl. Symp. Turbo Codes and Related

Topics. 2003.
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